Properties

Label 4225.2.a.ba
Level $4225$
Weight $2$
Character orbit 4225.a
Self dual yes
Analytic conductor $33.737$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4225,2,Mod(1,4225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4225 = 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7367948540\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - 1) q^{2} + (\beta_1 + 1) q^{3} + (\beta_{2} - \beta_1 + 2) q^{4} + ( - \beta_{2} - 2 \beta_1) q^{6} + (\beta_{2} + \beta_1 - 1) q^{7} + (3 \beta_1 - 4) q^{8} + (\beta_{2} + 3 \beta_1) q^{9}+ \cdots + (\beta_{2} + 8 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 4 q^{3} + 5 q^{4} - 2 q^{6} - 2 q^{7} - 9 q^{8} + 3 q^{9} + 6 q^{11} - 2 q^{12} - 4 q^{14} + 5 q^{16} + 6 q^{17} - 5 q^{18} + 2 q^{21} - 14 q^{22} + 14 q^{23} + 8 q^{24} + 10 q^{27} - 2 q^{28}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48119
2.17009
0.311108
−2.67513 −0.481194 5.15633 0 1.28726 −0.806063 −8.44358 −2.76845 0
1.2 −1.53919 3.17009 0.369102 0 −4.87936 1.70928 2.51026 7.04945 0
1.3 1.21432 1.31111 −0.525428 0 1.59210 −2.90321 −3.06668 −1.28100 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4225.2.a.ba 3
5.b even 2 1 4225.2.a.bh 3
5.c odd 4 2 845.2.b.c 6
13.b even 2 1 325.2.a.k 3
39.d odd 2 1 2925.2.a.bf 3
52.b odd 2 1 5200.2.a.cb 3
65.d even 2 1 325.2.a.j 3
65.f even 4 2 845.2.d.b 6
65.h odd 4 2 65.2.b.a 6
65.k even 4 2 845.2.d.a 6
65.o even 12 4 845.2.l.e 12
65.q odd 12 4 845.2.n.g 12
65.r odd 12 4 845.2.n.f 12
65.t even 12 4 845.2.l.d 12
195.e odd 2 1 2925.2.a.bj 3
195.s even 4 2 585.2.c.b 6
260.g odd 2 1 5200.2.a.cj 3
260.p even 4 2 1040.2.d.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.b.a 6 65.h odd 4 2
325.2.a.j 3 65.d even 2 1
325.2.a.k 3 13.b even 2 1
585.2.c.b 6 195.s even 4 2
845.2.b.c 6 5.c odd 4 2
845.2.d.a 6 65.k even 4 2
845.2.d.b 6 65.f even 4 2
845.2.l.d 12 65.t even 12 4
845.2.l.e 12 65.o even 12 4
845.2.n.f 12 65.r odd 12 4
845.2.n.g 12 65.q odd 12 4
1040.2.d.c 6 260.p even 4 2
2925.2.a.bf 3 39.d odd 2 1
2925.2.a.bj 3 195.e odd 2 1
4225.2.a.ba 3 1.a even 1 1 trivial
4225.2.a.bh 3 5.b even 2 1
5200.2.a.cb 3 52.b odd 2 1
5200.2.a.cj 3 260.g odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4225))\):

\( T_{2}^{3} + 3T_{2}^{2} - T_{2} - 5 \) Copy content Toggle raw display
\( T_{3}^{3} - 4T_{3}^{2} + 2T_{3} + 2 \) Copy content Toggle raw display
\( T_{7}^{3} + 2T_{7}^{2} - 4T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{3} - 6T_{11}^{2} + 8T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 3T^{2} - T - 5 \) Copy content Toggle raw display
$3$ \( T^{3} - 4 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 2 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$11$ \( T^{3} - 6 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 6 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$19$ \( T^{3} - 4T + 2 \) Copy content Toggle raw display
$23$ \( T^{3} - 14 T^{2} + \cdots - 86 \) Copy content Toggle raw display
$29$ \( T^{3} - 6 T^{2} + \cdots + 108 \) Copy content Toggle raw display
$31$ \( T^{3} - 10 T^{2} + \cdots + 26 \) Copy content Toggle raw display
$37$ \( T^{3} - 28T - 52 \) Copy content Toggle raw display
$41$ \( T^{3} - 4 T^{2} + \cdots - 32 \) Copy content Toggle raw display
$43$ \( T^{3} - 6 T^{2} + \cdots + 278 \) Copy content Toggle raw display
$47$ \( T^{3} + 10 T^{2} + \cdots + 20 \) Copy content Toggle raw display
$53$ \( T^{3} - 8 T^{2} + \cdots + 304 \) Copy content Toggle raw display
$59$ \( T^{3} - 8 T^{2} + \cdots + 262 \) Copy content Toggle raw display
$61$ \( T^{3} - 6 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$67$ \( T^{3} + 10 T^{2} + \cdots - 604 \) Copy content Toggle raw display
$71$ \( T^{3} - 12 T^{2} + \cdots + 754 \) Copy content Toggle raw display
$73$ \( T^{3} - 24 T^{2} + \cdots - 236 \) Copy content Toggle raw display
$79$ \( T^{3} + 16 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$83$ \( T^{3} + 22 T^{2} + \cdots + 316 \) Copy content Toggle raw display
$89$ \( T^{3} + 10 T^{2} + \cdots - 200 \) Copy content Toggle raw display
$97$ \( T^{3} - 14 T^{2} + \cdots + 200 \) Copy content Toggle raw display
show more
show less