Properties

Label 4225.2.a.ba
Level 42254225
Weight 22
Character orbit 4225.a
Self dual yes
Analytic conductor 33.73733.737
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4225,2,Mod(1,4225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 4225=52132 4225 = 5^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 4225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 33.736794854033.7367948540
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x23x+1 x^{3} - x^{2} - 3x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 65)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β21)q2+(β1+1)q3+(β2β1+2)q4+(β22β1)q6+(β2+β11)q7+(3β14)q8+(β2+3β1)q9++(β2+8β1)q99+O(q100) q + ( - \beta_{2} - 1) q^{2} + (\beta_1 + 1) q^{3} + (\beta_{2} - \beta_1 + 2) q^{4} + ( - \beta_{2} - 2 \beta_1) q^{6} + (\beta_{2} + \beta_1 - 1) q^{7} + (3 \beta_1 - 4) q^{8} + (\beta_{2} + 3 \beta_1) q^{9}+ \cdots + (\beta_{2} + 8 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q3q2+4q3+5q42q62q79q8+3q9+6q112q124q14+5q16+6q175q18+2q2114q22+14q23+8q24+10q272q28++8q99+O(q100) 3 q - 3 q^{2} + 4 q^{3} + 5 q^{4} - 2 q^{6} - 2 q^{7} - 9 q^{8} + 3 q^{9} + 6 q^{11} - 2 q^{12} - 4 q^{14} + 5 q^{16} + 6 q^{17} - 5 q^{18} + 2 q^{21} - 14 q^{22} + 14 q^{23} + 8 q^{24} + 10 q^{27} - 2 q^{28}+ \cdots + 8 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x23x+1 x^{3} - x^{2} - 3x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2ν2 \nu^{2} - \nu - 2 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+β1+2 \beta_{2} + \beta _1 + 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.48119
2.17009
0.311108
−2.67513 −0.481194 5.15633 0 1.28726 −0.806063 −8.44358 −2.76845 0
1.2 −1.53919 3.17009 0.369102 0 −4.87936 1.70928 2.51026 7.04945 0
1.3 1.21432 1.31111 −0.525428 0 1.59210 −2.90321 −3.06668 −1.28100 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
55 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4225.2.a.ba 3
5.b even 2 1 4225.2.a.bh 3
5.c odd 4 2 845.2.b.c 6
13.b even 2 1 325.2.a.k 3
39.d odd 2 1 2925.2.a.bf 3
52.b odd 2 1 5200.2.a.cb 3
65.d even 2 1 325.2.a.j 3
65.f even 4 2 845.2.d.b 6
65.h odd 4 2 65.2.b.a 6
65.k even 4 2 845.2.d.a 6
65.o even 12 4 845.2.l.e 12
65.q odd 12 4 845.2.n.g 12
65.r odd 12 4 845.2.n.f 12
65.t even 12 4 845.2.l.d 12
195.e odd 2 1 2925.2.a.bj 3
195.s even 4 2 585.2.c.b 6
260.g odd 2 1 5200.2.a.cj 3
260.p even 4 2 1040.2.d.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
65.2.b.a 6 65.h odd 4 2
325.2.a.j 3 65.d even 2 1
325.2.a.k 3 13.b even 2 1
585.2.c.b 6 195.s even 4 2
845.2.b.c 6 5.c odd 4 2
845.2.d.a 6 65.k even 4 2
845.2.d.b 6 65.f even 4 2
845.2.l.d 12 65.t even 12 4
845.2.l.e 12 65.o even 12 4
845.2.n.f 12 65.r odd 12 4
845.2.n.g 12 65.q odd 12 4
1040.2.d.c 6 260.p even 4 2
2925.2.a.bf 3 39.d odd 2 1
2925.2.a.bj 3 195.e odd 2 1
4225.2.a.ba 3 1.a even 1 1 trivial
4225.2.a.bh 3 5.b even 2 1
5200.2.a.cb 3 52.b odd 2 1
5200.2.a.cj 3 260.g odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(4225))S_{2}^{\mathrm{new}}(\Gamma_0(4225)):

T23+3T22T25 T_{2}^{3} + 3T_{2}^{2} - T_{2} - 5 Copy content Toggle raw display
T334T32+2T3+2 T_{3}^{3} - 4T_{3}^{2} + 2T_{3} + 2 Copy content Toggle raw display
T73+2T724T74 T_{7}^{3} + 2T_{7}^{2} - 4T_{7} - 4 Copy content Toggle raw display
T1136T112+8T11+2 T_{11}^{3} - 6T_{11}^{2} + 8T_{11} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3+3T2T5 T^{3} + 3T^{2} - T - 5 Copy content Toggle raw display
33 T34T2++2 T^{3} - 4 T^{2} + \cdots + 2 Copy content Toggle raw display
55 T3 T^{3} Copy content Toggle raw display
77 T3+2T2+4 T^{3} + 2 T^{2} + \cdots - 4 Copy content Toggle raw display
1111 T36T2++2 T^{3} - 6 T^{2} + \cdots + 2 Copy content Toggle raw display
1313 T3 T^{3} Copy content Toggle raw display
1717 T36T2++8 T^{3} - 6 T^{2} + \cdots + 8 Copy content Toggle raw display
1919 T34T+2 T^{3} - 4T + 2 Copy content Toggle raw display
2323 T314T2+86 T^{3} - 14 T^{2} + \cdots - 86 Copy content Toggle raw display
2929 T36T2++108 T^{3} - 6 T^{2} + \cdots + 108 Copy content Toggle raw display
3131 T310T2++26 T^{3} - 10 T^{2} + \cdots + 26 Copy content Toggle raw display
3737 T328T52 T^{3} - 28T - 52 Copy content Toggle raw display
4141 T34T2+32 T^{3} - 4 T^{2} + \cdots - 32 Copy content Toggle raw display
4343 T36T2++278 T^{3} - 6 T^{2} + \cdots + 278 Copy content Toggle raw display
4747 T3+10T2++20 T^{3} + 10 T^{2} + \cdots + 20 Copy content Toggle raw display
5353 T38T2++304 T^{3} - 8 T^{2} + \cdots + 304 Copy content Toggle raw display
5959 T38T2++262 T^{3} - 8 T^{2} + \cdots + 262 Copy content Toggle raw display
6161 T36T2+4 T^{3} - 6 T^{2} + \cdots - 4 Copy content Toggle raw display
6767 T3+10T2+604 T^{3} + 10 T^{2} + \cdots - 604 Copy content Toggle raw display
7171 T312T2++754 T^{3} - 12 T^{2} + \cdots + 754 Copy content Toggle raw display
7373 T324T2+236 T^{3} - 24 T^{2} + \cdots - 236 Copy content Toggle raw display
7979 T3+16T2+16 T^{3} + 16 T^{2} + \cdots - 16 Copy content Toggle raw display
8383 T3+22T2++316 T^{3} + 22 T^{2} + \cdots + 316 Copy content Toggle raw display
8989 T3+10T2+200 T^{3} + 10 T^{2} + \cdots - 200 Copy content Toggle raw display
9797 T314T2++200 T^{3} - 14 T^{2} + \cdots + 200 Copy content Toggle raw display
show more
show less