Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4225,2,Mod(1,4225)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4225.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 4225.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 3.3.148.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 65) |
Fricke sign: | |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | |||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.67513 | −0.481194 | 5.15633 | 0 | 1.28726 | −0.806063 | −8.44358 | −2.76845 | 0 | |||||||||||||||||||||||||||
1.2 | −1.53919 | 3.17009 | 0.369102 | 0 | −4.87936 | 1.70928 | 2.51026 | 7.04945 | 0 | ||||||||||||||||||||||||||||
1.3 | 1.21432 | 1.31111 | −0.525428 | 0 | 1.59210 | −2.90321 | −3.06668 | −1.28100 | 0 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
Sign | |
---|---|
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4225.2.a.ba | 3 | |
5.b | even | 2 | 1 | 4225.2.a.bh | 3 | ||
5.c | odd | 4 | 2 | 845.2.b.c | 6 | ||
13.b | even | 2 | 1 | 325.2.a.k | 3 | ||
39.d | odd | 2 | 1 | 2925.2.a.bf | 3 | ||
52.b | odd | 2 | 1 | 5200.2.a.cb | 3 | ||
65.d | even | 2 | 1 | 325.2.a.j | 3 | ||
65.f | even | 4 | 2 | 845.2.d.b | 6 | ||
65.h | odd | 4 | 2 | 65.2.b.a | ✓ | 6 | |
65.k | even | 4 | 2 | 845.2.d.a | 6 | ||
65.o | even | 12 | 4 | 845.2.l.e | 12 | ||
65.q | odd | 12 | 4 | 845.2.n.g | 12 | ||
65.r | odd | 12 | 4 | 845.2.n.f | 12 | ||
65.t | even | 12 | 4 | 845.2.l.d | 12 | ||
195.e | odd | 2 | 1 | 2925.2.a.bj | 3 | ||
195.s | even | 4 | 2 | 585.2.c.b | 6 | ||
260.g | odd | 2 | 1 | 5200.2.a.cj | 3 | ||
260.p | even | 4 | 2 | 1040.2.d.c | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
65.2.b.a | ✓ | 6 | 65.h | odd | 4 | 2 | |
325.2.a.j | 3 | 65.d | even | 2 | 1 | ||
325.2.a.k | 3 | 13.b | even | 2 | 1 | ||
585.2.c.b | 6 | 195.s | even | 4 | 2 | ||
845.2.b.c | 6 | 5.c | odd | 4 | 2 | ||
845.2.d.a | 6 | 65.k | even | 4 | 2 | ||
845.2.d.b | 6 | 65.f | even | 4 | 2 | ||
845.2.l.d | 12 | 65.t | even | 12 | 4 | ||
845.2.l.e | 12 | 65.o | even | 12 | 4 | ||
845.2.n.f | 12 | 65.r | odd | 12 | 4 | ||
845.2.n.g | 12 | 65.q | odd | 12 | 4 | ||
1040.2.d.c | 6 | 260.p | even | 4 | 2 | ||
2925.2.a.bf | 3 | 39.d | odd | 2 | 1 | ||
2925.2.a.bj | 3 | 195.e | odd | 2 | 1 | ||
4225.2.a.ba | 3 | 1.a | even | 1 | 1 | trivial | |
4225.2.a.bh | 3 | 5.b | even | 2 | 1 | ||
5200.2.a.cb | 3 | 52.b | odd | 2 | 1 | ||
5200.2.a.cj | 3 | 260.g | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|
|
|