Properties

Label 2-425-1.1-c1-0-3
Degree $2$
Conductor $425$
Sign $1$
Analytic cond. $3.39364$
Root an. cond. $1.84218$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.60·2-s − 1.18·3-s + 4.77·4-s + 3.07·6-s + 3.53·7-s − 7.21·8-s − 1.60·9-s + 2.94·11-s − 5.64·12-s + 4.01·13-s − 9.20·14-s + 9.23·16-s − 17-s + 4.17·18-s − 6.97·19-s − 4.18·21-s − 7.66·22-s − 6.12·23-s + 8.53·24-s − 10.4·26-s + 5.44·27-s + 16.8·28-s + 5.30·29-s + 6.49·31-s − 9.59·32-s − 3.48·33-s + 2.60·34-s + ⋯
L(s)  = 1  − 1.84·2-s − 0.682·3-s + 2.38·4-s + 1.25·6-s + 1.33·7-s − 2.55·8-s − 0.534·9-s + 0.888·11-s − 1.62·12-s + 1.11·13-s − 2.45·14-s + 2.30·16-s − 0.242·17-s + 0.982·18-s − 1.60·19-s − 0.912·21-s − 1.63·22-s − 1.27·23-s + 1.74·24-s − 2.04·26-s + 1.04·27-s + 3.18·28-s + 0.984·29-s + 1.16·31-s − 1.69·32-s − 0.606·33-s + 0.446·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(425\)    =    \(5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(3.39364\)
Root analytic conductor: \(1.84218\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 425,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5473207215\)
\(L(\frac12)\) \(\approx\) \(0.5473207215\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
17 \( 1 + T \)
good2 \( 1 + 2.60T + 2T^{2} \)
3 \( 1 + 1.18T + 3T^{2} \)
7 \( 1 - 3.53T + 7T^{2} \)
11 \( 1 - 2.94T + 11T^{2} \)
13 \( 1 - 4.01T + 13T^{2} \)
19 \( 1 + 6.97T + 19T^{2} \)
23 \( 1 + 6.12T + 23T^{2} \)
29 \( 1 - 5.30T + 29T^{2} \)
31 \( 1 - 6.49T + 31T^{2} \)
37 \( 1 - 3.43T + 37T^{2} \)
41 \( 1 - 4.61T + 41T^{2} \)
43 \( 1 - 10.2T + 43T^{2} \)
47 \( 1 - 3.67T + 47T^{2} \)
53 \( 1 + 6.77T + 53T^{2} \)
59 \( 1 - 9.92T + 59T^{2} \)
61 \( 1 + 2.36T + 61T^{2} \)
67 \( 1 + 9.56T + 67T^{2} \)
71 \( 1 - 5.51T + 71T^{2} \)
73 \( 1 - 2.00T + 73T^{2} \)
79 \( 1 - 10.5T + 79T^{2} \)
83 \( 1 - 9.07T + 83T^{2} \)
89 \( 1 - 2.63T + 89T^{2} \)
97 \( 1 - 5.86T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.94805070342518662444957674120, −10.48113946114586763958242639779, −9.179829265380621468720940348191, −8.422462251088697546291467715765, −7.962402113983155982404201152036, −6.52136385484807824788455224299, −6.02983365902527318815063093902, −4.33516982401709700523998025002, −2.25703778911600787632433421835, −0.989009460232569672358177642769, 0.989009460232569672358177642769, 2.25703778911600787632433421835, 4.33516982401709700523998025002, 6.02983365902527318815063093902, 6.52136385484807824788455224299, 7.962402113983155982404201152036, 8.422462251088697546291467715765, 9.179829265380621468720940348191, 10.48113946114586763958242639779, 10.94805070342518662444957674120

Graph of the $Z$-function along the critical line