L(s) = 1 | − 2.60·2-s − 1.18·3-s + 4.77·4-s + 3.07·6-s + 3.53·7-s − 7.21·8-s − 1.60·9-s + 2.94·11-s − 5.64·12-s + 4.01·13-s − 9.20·14-s + 9.23·16-s − 17-s + 4.17·18-s − 6.97·19-s − 4.18·21-s − 7.66·22-s − 6.12·23-s + 8.53·24-s − 10.4·26-s + 5.44·27-s + 16.8·28-s + 5.30·29-s + 6.49·31-s − 9.59·32-s − 3.48·33-s + 2.60·34-s + ⋯ |
L(s) = 1 | − 1.84·2-s − 0.682·3-s + 2.38·4-s + 1.25·6-s + 1.33·7-s − 2.55·8-s − 0.534·9-s + 0.888·11-s − 1.62·12-s + 1.11·13-s − 2.45·14-s + 2.30·16-s − 0.242·17-s + 0.982·18-s − 1.60·19-s − 0.912·21-s − 1.63·22-s − 1.27·23-s + 1.74·24-s − 2.04·26-s + 1.04·27-s + 3.18·28-s + 0.984·29-s + 1.16·31-s − 1.69·32-s − 0.606·33-s + 0.446·34-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5473207215 |
L(21) |
≈ |
0.5473207215 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+T |
good | 2 | 1+2.60T+2T2 |
| 3 | 1+1.18T+3T2 |
| 7 | 1−3.53T+7T2 |
| 11 | 1−2.94T+11T2 |
| 13 | 1−4.01T+13T2 |
| 19 | 1+6.97T+19T2 |
| 23 | 1+6.12T+23T2 |
| 29 | 1−5.30T+29T2 |
| 31 | 1−6.49T+31T2 |
| 37 | 1−3.43T+37T2 |
| 41 | 1−4.61T+41T2 |
| 43 | 1−10.2T+43T2 |
| 47 | 1−3.67T+47T2 |
| 53 | 1+6.77T+53T2 |
| 59 | 1−9.92T+59T2 |
| 61 | 1+2.36T+61T2 |
| 67 | 1+9.56T+67T2 |
| 71 | 1−5.51T+71T2 |
| 73 | 1−2.00T+73T2 |
| 79 | 1−10.5T+79T2 |
| 83 | 1−9.07T+83T2 |
| 89 | 1−2.63T+89T2 |
| 97 | 1−5.86T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.94805070342518662444957674120, −10.48113946114586763958242639779, −9.179829265380621468720940348191, −8.422462251088697546291467715765, −7.962402113983155982404201152036, −6.52136385484807824788455224299, −6.02983365902527318815063093902, −4.33516982401709700523998025002, −2.25703778911600787632433421835, −0.989009460232569672358177642769,
0.989009460232569672358177642769, 2.25703778911600787632433421835, 4.33516982401709700523998025002, 6.02983365902527318815063093902, 6.52136385484807824788455224299, 7.962402113983155982404201152036, 8.422462251088697546291467715765, 9.179829265380621468720940348191, 10.48113946114586763958242639779, 10.94805070342518662444957674120