Properties

Label 425.2.a.j
Level $425$
Weight $2$
Character orbit 425.a
Self dual yes
Analytic conductor $3.394$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(1,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.1893456.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 10x^{3} + 10x^{2} + 23x - 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} - \beta_1 q^{3} + (\beta_{4} + \beta_{2} + \beta_1 + 2) q^{4} + ( - \beta_{3} - \beta_{2} - \beta_1 + 1) q^{6} + (\beta_{4} + \beta_{3}) q^{7} + ( - \beta_{4} + 2 \beta_{2} + \beta_1 + 1) q^{8}+ \cdots + ( - \beta_{4} + 2 \beta_{3} - \beta_{2} + \cdots - 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + q^{2} - q^{3} + 11 q^{4} + 3 q^{6} - q^{7} + 9 q^{8} + 6 q^{9} + 4 q^{11} - 17 q^{12} + 3 q^{13} - 7 q^{14} + 27 q^{16} - 5 q^{17} + 22 q^{18} + 6 q^{19} - 5 q^{21} - 18 q^{22} - 4 q^{23} - 19 q^{24}+ \cdots - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 10x^{3} + 10x^{2} + 23x - 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 5\nu + 5 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 9\nu^{2} - \nu + 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + 9\beta_{2} + \beta _1 + 20 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.18219
1.66068
−1.96189
−2.48887
2.60789
−2.60242 −1.18219 4.77260 0 3.07656 3.53650 −7.21549 −1.60242 0
1.2 −1.24214 −1.66068 −0.457096 0 2.06279 −4.35698 3.05205 −0.242137 0
1.3 −0.150980 1.96189 −1.97720 0 −0.296207 1.54475 0.600480 0.849020 0
1.4 2.19447 2.48887 2.81568 0 5.46174 −3.05725 1.78998 3.19447 0
1.5 2.80107 −2.60789 5.84602 0 −7.30489 1.33298 10.7730 3.80107 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 425.2.a.j yes 5
3.b odd 2 1 3825.2.a.bl 5
4.b odd 2 1 6800.2.a.cd 5
5.b even 2 1 425.2.a.i 5
5.c odd 4 2 425.2.b.f 10
15.d odd 2 1 3825.2.a.bq 5
17.b even 2 1 7225.2.a.y 5
20.d odd 2 1 6800.2.a.bz 5
85.c even 2 1 7225.2.a.x 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
425.2.a.i 5 5.b even 2 1
425.2.a.j yes 5 1.a even 1 1 trivial
425.2.b.f 10 5.c odd 4 2
3825.2.a.bl 5 3.b odd 2 1
3825.2.a.bq 5 15.d odd 2 1
6800.2.a.bz 5 20.d odd 2 1
6800.2.a.cd 5 4.b odd 2 1
7225.2.a.x 5 85.c even 2 1
7225.2.a.y 5 17.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(425))\):

\( T_{2}^{5} - T_{2}^{4} - 10T_{2}^{3} + 6T_{2}^{2} + 21T_{2} + 3 \) Copy content Toggle raw display
\( T_{3}^{5} + T_{3}^{4} - 10T_{3}^{3} - 10T_{3}^{2} + 23T_{3} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - T^{4} - 10 T^{3} + \cdots + 3 \) Copy content Toggle raw display
$3$ \( T^{5} + T^{4} + \cdots + 25 \) Copy content Toggle raw display
$5$ \( T^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + T^{4} + \cdots - 97 \) Copy content Toggle raw display
$11$ \( T^{5} - 4 T^{4} + \cdots + 60 \) Copy content Toggle raw display
$13$ \( T^{5} - 3 T^{4} + \cdots - 227 \) Copy content Toggle raw display
$17$ \( (T + 1)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} - 6 T^{4} + \cdots + 400 \) Copy content Toggle raw display
$23$ \( T^{5} + 4 T^{4} + \cdots - 108 \) Copy content Toggle raw display
$29$ \( T^{5} - 2 T^{4} + \cdots + 240 \) Copy content Toggle raw display
$31$ \( T^{5} - 21 T^{4} + \cdots + 2151 \) Copy content Toggle raw display
$37$ \( T^{5} - 2 T^{4} + \cdots - 3824 \) Copy content Toggle raw display
$41$ \( T^{5} + 8 T^{4} + \cdots + 48 \) Copy content Toggle raw display
$43$ \( T^{5} - 4 T^{4} + \cdots - 14704 \) Copy content Toggle raw display
$47$ \( T^{5} - 2 T^{4} + \cdots - 480 \) Copy content Toggle raw display
$53$ \( T^{5} + 21 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$59$ \( T^{5} - 12 T^{4} + \cdots - 11760 \) Copy content Toggle raw display
$61$ \( T^{5} + 2 T^{4} + \cdots + 800 \) Copy content Toggle raw display
$67$ \( T^{5} - 12 T^{4} + \cdots - 27008 \) Copy content Toggle raw display
$71$ \( T^{5} - 21 T^{4} + \cdots + 11853 \) Copy content Toggle raw display
$73$ \( T^{5} + 22 T^{4} + \cdots + 41744 \) Copy content Toggle raw display
$79$ \( T^{5} - 41 T^{4} + \cdots + 42575 \) Copy content Toggle raw display
$83$ \( T^{5} - 8 T^{4} + \cdots - 5952 \) Copy content Toggle raw display
$89$ \( T^{5} + 10 T^{4} + \cdots - 18000 \) Copy content Toggle raw display
$97$ \( T^{5} - 20 T^{4} + \cdots + 8000 \) Copy content Toggle raw display
show more
show less