L(s) = 1 | + 4·3-s + 6·4-s + 8·9-s − 4·11-s + 24·12-s + 13·16-s − 12·17-s − 12·23-s + 16·27-s − 12·29-s − 16·33-s + 48·36-s − 12·37-s − 24·41-s − 24·44-s + 48·47-s + 52·48-s − 48·51-s + 40·61-s + 12·64-s + 8·67-s − 72·68-s − 48·69-s + 28·71-s + 48·73-s − 8·79-s + 42·81-s + ⋯ |
L(s) = 1 | + 2.30·3-s + 3·4-s + 8/3·9-s − 1.20·11-s + 6.92·12-s + 13/4·16-s − 2.91·17-s − 2.50·23-s + 3.07·27-s − 2.22·29-s − 2.78·33-s + 8·36-s − 1.97·37-s − 3.74·41-s − 3.61·44-s + 7.00·47-s + 7.50·48-s − 6.72·51-s + 5.12·61-s + 3/2·64-s + 0.977·67-s − 8.73·68-s − 5.77·69-s + 3.32·71-s + 5.61·73-s − 0.900·79-s + 14/3·81-s + ⋯ |
Λ(s)=(=((524⋅1712)s/2ΓC(s)12L(s)Λ(2−s)
Λ(s)=(=((524⋅1712)s/2ΓC(s+1/2)12L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
25.30769139 |
L(21) |
≈ |
25.30769139 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+12T+82T2+516T3+3079T4+14512T5+60188T6+14512pT7+3079p2T8+516p3T9+82p4T10+12p5T11+p6T12 |
good | 2 | 1−3pT2+23T4−9p3T6+203T8−237pT10+993T12−237p3T14+203p4T16−9p9T18+23p8T20−3p11T22+p12T24 |
| 3 | 1−4T+8T2−16T3+22T4−16T5+16T6−28T7−29T8+304T9−760T10+1928T11−4304T12+1928pT13−760p2T14+304p3T15−29p4T16−28p5T17+16p6T18−16p7T19+22p8T20−16p9T21+8p10T22−4p11T23+p12T24 |
| 7 | 1−4pT3+6pT4+212T5+8p2T6−928T7−3125T8+6744T9+31992T10+888pT11−376p3T12+888p2T13+31992p2T14+6744p3T15−3125p4T16−928p5T17+8p8T18+212p7T19+6p9T20−4p10T21+p12T24 |
| 11 | 1+4T+8T2+64T3+74T4−72pT5−1712T6−13364T7−46833T8+42384T9+129224T10+1266064T11+10886032T12+1266064pT13+129224p2T14+42384p3T15−46833p4T16−13364p5T17−1712p6T18−72p8T19+74p8T20+64p9T21+8p10T22+4p11T23+p12T24 |
| 13 | (1+20T2−12T3+255T4+124T5+3948T6+124pT7+255p2T8−12p3T9+20p4T10+p6T12)2 |
| 19 | 1−92T2+4626T4−167116T6+4842975T8−117605944T10+2422842556T12−117605944p2T14+4842975p4T16−167116p6T18+4626p8T20−92p10T22+p12T24 |
| 23 | 1+12T+72T2+400T3+2878T4+18936T5+100016T6+521948T7+2709363T8+13154744T9+63001992T10+314746192T11+1561862208T12+314746192pT13+63001992p2T14+13154744p3T15+2709363p4T16+521948p5T17+100016p6T18+18936p7T19+2878p8T20+400p9T21+72p10T22+12p11T23+p12T24 |
| 29 | 1+12T+72T2+708T3+5562T4+21252T5+105192T6+726444T7+804479T8−8873352T9−9334512T10−305351640T11−3778100564T12−305351640pT13−9334512p2T14−8873352p3T15+804479p4T16+726444p5T17+105192p6T18+21252p7T19+5562p8T20+708p9T21+72p10T22+12p11T23+p12T24 |
| 31 | 1−156T3−2754T4+452T5+12168T6+245112T7+3961447T8+323440T9−4624648T10−168645768T11−4098407752T12−168645768pT13−4624648p2T14+323440p3T15+3961447p4T16+245112p5T17+12168p6T18+452p7T19−2754p8T20−156p9T21+p12T24 |
| 37 | 1+12T+72T2+308T3+2250T4+13364T5+45800T6−79636T7−905p2T8−18417192T9−170081904T10−1483635480T11−9533058292T12−1483635480pT13−170081904p2T14−18417192p3T15−905p6T16−79636p5T17+45800p6T18+13364p7T19+2250p8T20+308p9T21+72p10T22+12p11T23+p12T24 |
| 41 | 1+24T+288T2+2680T3+20998T4+135832T5+803744T6+4720696T7+28651119T8+187625072T9+744256p2T10+199495088pT11+52761079188T12+199495088p2T13+744256p4T14+187625072p3T15+28651119p4T16+4720696p5T17+803744p6T18+135832p7T19+20998p8T20+2680p9T21+288p10T22+24p11T23+p12T24 |
| 43 | 1−184T2+18790T4−1391328T6+81780959T8−4113094280T10+185743711652T12−4113094280p2T14+81780959p4T16−1391328p6T18+18790p8T20−184p10T22+p12T24 |
| 47 | (1−24T+392T2−4556T3+43823T4−353156T5+2577076T6−353156pT7+43823p2T8−4556p3T9+392p4T10−24p5T11+p6T12)2 |
| 53 | 1−204T2+26562T4−2416476T6+178063743T8−11083541624T10+618583405660T12−11083541624p2T14+178063743p4T16−2416476p6T18+26562p8T20−204p10T22+p12T24 |
| 59 | 1−468T2+102802T4−14182372T6+1399420159T8−107717762600T10+6886886586172T12−107717762600p2T14+1399420159p4T16−14182372p6T18+102802p8T20−468p10T22+p12T24 |
| 61 | 1−40T+800T2−12504T3+184598T4−40056pT5+28233248T6−305052840T7+3158111167T8−30151790672T9+267303164864T10−2283320825520T11+18527414094644T12−2283320825520pT13+267303164864p2T14−30151790672p3T15+3158111167p4T16−305052840p5T17+28233248p6T18−40056p8T19+184598p8T20−12504p9T21+800p10T22−40p11T23+p12T24 |
| 67 | (1−4T+356T2−1240T3+55175T4−159748T5+4798716T6−159748pT7+55175p2T8−1240p3T9+356p4T10−4p5T11+p6T12)2 |
| 71 | 1−28T+392T2−4432T3+35314T4−151184T5+211376T6+3536900T7−37488993T8+144764696T9−1069498168T10+21338963608T11−259039666848T12+21338963608pT13−1069498168p2T14+144764696p3T15−37488993p4T16+3536900p5T17+211376p6T18−151184p7T19+35314p8T20−4432p9T21+392p10T22−28p11T23+p12T24 |
| 73 | 1−48T+1152T2−19520T3+277734T4−3608128T5+43755776T6−498961648T7+5387964143T8−54979433440T9+528636621952T10−4817379931648T11+41994385065940T12−4817379931648pT13+528636621952p2T14−54979433440p3T15+5387964143p4T16−498961648p5T17+43755776p6T18−3608128p7T19+277734p8T20−19520p9T21+1152p10T22−48p11T23+p12T24 |
| 79 | 1+8T+32T2−1220T3+5350T4+114868T5+1491944T6−12162584T7−38174937T8+233812952T9+16545882392T10−38512918912T11−355031479032T12−38512918912pT13+16545882392p2T14+233812952p3T15−38174937p4T16−12162584p5T17+1491944p6T18+114868p7T19+5350p8T20−1220p9T21+32p10T22+8p11T23+p12T24 |
| 83 | 1−776T2+288430T4−67950336T6+11308890671T8−1401355662904T10+132600210726644T12−1401355662904p2T14+11308890671p4T16−67950336p6T18+288430p8T20−776p10T22+p12T24 |
| 89 | (1−12T+354T2−4000T3+61415T4−604868T5+6702448T6−604868pT7+61415p2T8−4000p3T9+354p4T10−12p5T11+p6T12)2 |
| 97 | 1+4T+8T2−20T3−17958T4−32004T5+15848T6+4133236T7+241837519T8+226090952T9−316274672T10−41141248808T11−2546305955668T12−41141248808pT13−316274672p2T14+226090952p3T15+241837519p4T16+4133236p5T17+15848p6T18−32004p7T19−17958p8T20−20p9T21+8p10T22+4p11T23+p12T24 |
show more | |
show less | |
L(s)=p∏ j=1∏24(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−3.75600823870450447334562151096, −3.69086205948017133142668399181, −3.57083841786235917877760601424, −3.45882879475510456915603280400, −3.28986629576383943473126540518, −3.24758644841945179823625589409, −2.90861653426051887263425095461, −2.90247002571030957063690467903, −2.82596095726175182370677088746, −2.57896880192536085953765257936, −2.44791485572697754172012076659, −2.41923256804051677742879643610, −2.26689207800569984707263466951, −2.21478924343758568121041337397, −2.20640820135803467913573115292, −2.13474387297100110461170401022, −2.13296026176283081126478299432, −1.94812258682500143143470157713, −1.73346879741093572899547184143, −1.72211865247491794086935508072, −1.40601133373346756352026358988, −1.10099095083585080560776985323, −0.798235789122958250204344552123, −0.53938213434604074267978219897, −0.45878954507378967587357711680,
0.45878954507378967587357711680, 0.53938213434604074267978219897, 0.798235789122958250204344552123, 1.10099095083585080560776985323, 1.40601133373346756352026358988, 1.72211865247491794086935508072, 1.73346879741093572899547184143, 1.94812258682500143143470157713, 2.13296026176283081126478299432, 2.13474387297100110461170401022, 2.20640820135803467913573115292, 2.21478924343758568121041337397, 2.26689207800569984707263466951, 2.41923256804051677742879643610, 2.44791485572697754172012076659, 2.57896880192536085953765257936, 2.82596095726175182370677088746, 2.90247002571030957063690467903, 2.90861653426051887263425095461, 3.24758644841945179823625589409, 3.28986629576383943473126540518, 3.45882879475510456915603280400, 3.57083841786235917877760601424, 3.69086205948017133142668399181, 3.75600823870450447334562151096
Plot not available for L-functions of degree greater than 10.