Properties

Label 425.2.e.f.276.6
Level $425$
Weight $2$
Character 425.276
Analytic conductor $3.394$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(251,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 276.6
Root \(1.19804i\) of defining polynomial
Character \(\chi\) \(=\) 425.276
Dual form 425.2.e.f.251.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.24891i q^{2} +(-0.140032 + 0.140032i) q^{3} -3.05761 q^{4} +(-0.314920 - 0.314920i) q^{6} +(1.33807 + 1.33807i) q^{7} -2.37848i q^{8} +2.96078i q^{9} +(2.49536 + 2.49536i) q^{11} +(0.428164 - 0.428164i) q^{12} -1.27324 q^{13} +(-3.00920 + 3.00920i) q^{14} -0.766231 q^{16} +(-3.68381 - 1.85190i) q^{17} -6.65854 q^{18} -4.69149i q^{19} -0.374744 q^{21} +(-5.61186 + 5.61186i) q^{22} +(0.406537 + 0.406537i) q^{23} +(0.333063 + 0.333063i) q^{24} -2.86340i q^{26} +(-0.834700 - 0.834700i) q^{27} +(-4.09129 - 4.09129i) q^{28} +(-3.81711 + 3.81711i) q^{29} +(-4.39574 + 4.39574i) q^{31} -6.48015i q^{32} -0.698861 q^{33} +(4.16476 - 8.28457i) q^{34} -9.05292i q^{36} +(6.00080 - 6.00080i) q^{37} +10.5508 q^{38} +(0.178294 - 0.178294i) q^{39} +(4.28894 + 4.28894i) q^{41} -0.842768i q^{42} +9.16040i q^{43} +(-7.62986 - 7.62986i) q^{44} +(-0.914266 + 0.914266i) q^{46} +10.7932 q^{47} +(0.107297 - 0.107297i) q^{48} -3.41915i q^{49} +(0.775177 - 0.256526i) q^{51} +3.89307 q^{52} +9.90174i q^{53} +(1.87717 - 1.87717i) q^{54} +(3.18256 - 3.18256i) q^{56} +(0.656958 + 0.656958i) q^{57} +(-8.58435 - 8.58435i) q^{58} +3.15903i q^{59} +(3.63666 + 3.63666i) q^{61} +(-9.88565 - 9.88565i) q^{62} +(-3.96173 + 3.96173i) q^{63} +13.0408 q^{64} -1.57168i q^{66} -0.281859 q^{67} +(11.2637 + 5.66239i) q^{68} -0.113856 q^{69} +(8.30385 - 8.30385i) q^{71} +7.04216 q^{72} +(6.95405 - 6.95405i) q^{73} +(13.4953 + 13.4953i) q^{74} +14.3448i q^{76} +6.67793i q^{77} +(0.400968 + 0.400968i) q^{78} +(-11.9789 - 11.9789i) q^{79} -8.64858 q^{81} +(-9.64544 + 9.64544i) q^{82} -8.51139i q^{83} +1.14582 q^{84} -20.6010 q^{86} -1.06903i q^{87} +(5.93517 - 5.93517i) q^{88} +16.7227 q^{89} +(-1.70368 - 1.70368i) q^{91} +(-1.24303 - 1.24303i) q^{92} -1.23109i q^{93} +24.2729i q^{94} +(0.907427 + 0.907427i) q^{96} +(-4.18100 + 4.18100i) q^{97} +7.68938 q^{98} +(-7.38823 + 7.38823i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} - 12 q^{4} - 4 q^{11} + 8 q^{12} - 4 q^{14} + 4 q^{16} - 12 q^{17} - 28 q^{18} - 16 q^{21} - 20 q^{22} - 12 q^{23} + 4 q^{24} + 4 q^{27} - 4 q^{28} - 12 q^{29} + 16 q^{33} - 12 q^{34} - 12 q^{37}+ \cdots - 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.24891i 1.59022i 0.606464 + 0.795111i \(0.292587\pi\)
−0.606464 + 0.795111i \(0.707413\pi\)
\(3\) −0.140032 + 0.140032i −0.0808475 + 0.0808475i −0.746374 0.665527i \(-0.768207\pi\)
0.665527 + 0.746374i \(0.268207\pi\)
\(4\) −3.05761 −1.52881
\(5\) 0 0
\(6\) −0.314920 0.314920i −0.128565 0.128565i
\(7\) 1.33807 + 1.33807i 0.505742 + 0.505742i 0.913217 0.407475i \(-0.133591\pi\)
−0.407475 + 0.913217i \(0.633591\pi\)
\(8\) 2.37848i 0.840919i
\(9\) 2.96078i 0.986927i
\(10\) 0 0
\(11\) 2.49536 + 2.49536i 0.752381 + 0.752381i 0.974923 0.222542i \(-0.0714356\pi\)
−0.222542 + 0.974923i \(0.571436\pi\)
\(12\) 0.428164 0.428164i 0.123600 0.123600i
\(13\) −1.27324 −0.353133 −0.176566 0.984289i \(-0.556499\pi\)
−0.176566 + 0.984289i \(0.556499\pi\)
\(14\) −3.00920 + 3.00920i −0.804242 + 0.804242i
\(15\) 0 0
\(16\) −0.766231 −0.191558
\(17\) −3.68381 1.85190i −0.893455 0.449152i
\(18\) −6.65854 −1.56943
\(19\) 4.69149i 1.07630i −0.842849 0.538151i \(-0.819123\pi\)
0.842849 0.538151i \(-0.180877\pi\)
\(20\) 0 0
\(21\) −0.374744 −0.0817759
\(22\) −5.61186 + 5.61186i −1.19645 + 1.19645i
\(23\) 0.406537 + 0.406537i 0.0847687 + 0.0847687i 0.748220 0.663451i \(-0.230909\pi\)
−0.663451 + 0.748220i \(0.730909\pi\)
\(24\) 0.333063 + 0.333063i 0.0679862 + 0.0679862i
\(25\) 0 0
\(26\) 2.86340i 0.561560i
\(27\) −0.834700 0.834700i −0.160638 0.160638i
\(28\) −4.09129 4.09129i −0.773181 0.773181i
\(29\) −3.81711 + 3.81711i −0.708819 + 0.708819i −0.966287 0.257468i \(-0.917112\pi\)
0.257468 + 0.966287i \(0.417112\pi\)
\(30\) 0 0
\(31\) −4.39574 + 4.39574i −0.789499 + 0.789499i −0.981412 0.191913i \(-0.938531\pi\)
0.191913 + 0.981412i \(0.438531\pi\)
\(32\) 6.48015i 1.14554i
\(33\) −0.698861 −0.121656
\(34\) 4.16476 8.28457i 0.714251 1.42079i
\(35\) 0 0
\(36\) 9.05292i 1.50882i
\(37\) 6.00080 6.00080i 0.986526 0.986526i −0.0133844 0.999910i \(-0.504261\pi\)
0.999910 + 0.0133844i \(0.00426051\pi\)
\(38\) 10.5508 1.71156
\(39\) 0.178294 0.178294i 0.0285499 0.0285499i
\(40\) 0 0
\(41\) 4.28894 + 4.28894i 0.669819 + 0.669819i 0.957674 0.287855i \(-0.0929421\pi\)
−0.287855 + 0.957674i \(0.592942\pi\)
\(42\) 0.842768i 0.130042i
\(43\) 9.16040i 1.39695i 0.715635 + 0.698474i \(0.246137\pi\)
−0.715635 + 0.698474i \(0.753863\pi\)
\(44\) −7.62986 7.62986i −1.15024 1.15024i
\(45\) 0 0
\(46\) −0.914266 + 0.914266i −0.134801 + 0.134801i
\(47\) 10.7932 1.57434 0.787172 0.616734i \(-0.211545\pi\)
0.787172 + 0.616734i \(0.211545\pi\)
\(48\) 0.107297 0.107297i 0.0154870 0.0154870i
\(49\) 3.41915i 0.488450i
\(50\) 0 0
\(51\) 0.775177 0.256526i 0.108546 0.0359208i
\(52\) 3.89307 0.539872
\(53\) 9.90174i 1.36011i 0.733162 + 0.680054i \(0.238044\pi\)
−0.733162 + 0.680054i \(0.761956\pi\)
\(54\) 1.87717 1.87717i 0.255450 0.255450i
\(55\) 0 0
\(56\) 3.18256 3.18256i 0.425288 0.425288i
\(57\) 0.656958 + 0.656958i 0.0870163 + 0.0870163i
\(58\) −8.58435 8.58435i −1.12718 1.12718i
\(59\) 3.15903i 0.411270i 0.978629 + 0.205635i \(0.0659260\pi\)
−0.978629 + 0.205635i \(0.934074\pi\)
\(60\) 0 0
\(61\) 3.63666 + 3.63666i 0.465627 + 0.465627i 0.900495 0.434867i \(-0.143205\pi\)
−0.434867 + 0.900495i \(0.643205\pi\)
\(62\) −9.88565 9.88565i −1.25548 1.25548i
\(63\) −3.96173 + 3.96173i −0.499130 + 0.499130i
\(64\) 13.0408 1.63010
\(65\) 0 0
\(66\) 1.57168i 0.193460i
\(67\) −0.281859 −0.0344345 −0.0172173 0.999852i \(-0.505481\pi\)
−0.0172173 + 0.999852i \(0.505481\pi\)
\(68\) 11.2637 + 5.66239i 1.36592 + 0.686666i
\(69\) −0.113856 −0.0137067
\(70\) 0 0
\(71\) 8.30385 8.30385i 0.985486 0.985486i −0.0144101 0.999896i \(-0.504587\pi\)
0.999896 + 0.0144101i \(0.00458704\pi\)
\(72\) 7.04216 0.829926
\(73\) 6.95405 6.95405i 0.813910 0.813910i −0.171308 0.985218i \(-0.554799\pi\)
0.985218 + 0.171308i \(0.0547993\pi\)
\(74\) 13.4953 + 13.4953i 1.56880 + 1.56880i
\(75\) 0 0
\(76\) 14.3448i 1.64546i
\(77\) 6.67793i 0.761021i
\(78\) 0.400968 + 0.400968i 0.0454007 + 0.0454007i
\(79\) −11.9789 11.9789i −1.34773 1.34773i −0.888126 0.459600i \(-0.847993\pi\)
−0.459600 0.888126i \(-0.652007\pi\)
\(80\) 0 0
\(81\) −8.64858 −0.960953
\(82\) −9.64544 + 9.64544i −1.06516 + 1.06516i
\(83\) 8.51139i 0.934246i −0.884192 0.467123i \(-0.845291\pi\)
0.884192 0.467123i \(-0.154709\pi\)
\(84\) 1.14582 0.125020
\(85\) 0 0
\(86\) −20.6010 −2.22146
\(87\) 1.06903i 0.114613i
\(88\) 5.93517 5.93517i 0.632691 0.632691i
\(89\) 16.7227 1.77260 0.886300 0.463112i \(-0.153267\pi\)
0.886300 + 0.463112i \(0.153267\pi\)
\(90\) 0 0
\(91\) −1.70368 1.70368i −0.178594 0.178594i
\(92\) −1.24303 1.24303i −0.129595 0.129595i
\(93\) 1.23109i 0.127658i
\(94\) 24.2729i 2.50356i
\(95\) 0 0
\(96\) 0.907427 + 0.907427i 0.0926139 + 0.0926139i
\(97\) −4.18100 + 4.18100i −0.424516 + 0.424516i −0.886755 0.462239i \(-0.847046\pi\)
0.462239 + 0.886755i \(0.347046\pi\)
\(98\) 7.68938 0.776745
\(99\) −7.38823 + 7.38823i −0.742545 + 0.742545i
\(100\) 0 0
\(101\) 10.0971 1.00470 0.502348 0.864666i \(-0.332470\pi\)
0.502348 + 0.864666i \(0.332470\pi\)
\(102\) 0.576905 + 1.74331i 0.0571221 + 0.172613i
\(103\) 1.07322 0.105747 0.0528736 0.998601i \(-0.483162\pi\)
0.0528736 + 0.998601i \(0.483162\pi\)
\(104\) 3.02837i 0.296956i
\(105\) 0 0
\(106\) −22.2681 −2.16287
\(107\) −4.48903 + 4.48903i −0.433971 + 0.433971i −0.889977 0.456006i \(-0.849280\pi\)
0.456006 + 0.889977i \(0.349280\pi\)
\(108\) 2.55219 + 2.55219i 0.245585 + 0.245585i
\(109\) 7.13161 + 7.13161i 0.683085 + 0.683085i 0.960694 0.277609i \(-0.0895421\pi\)
−0.277609 + 0.960694i \(0.589542\pi\)
\(110\) 0 0
\(111\) 1.68061i 0.159516i
\(112\) −1.02527 1.02527i −0.0968787 0.0968787i
\(113\) 2.64734 + 2.64734i 0.249041 + 0.249041i 0.820577 0.571536i \(-0.193652\pi\)
−0.571536 + 0.820577i \(0.693652\pi\)
\(114\) −1.47744 + 1.47744i −0.138375 + 0.138375i
\(115\) 0 0
\(116\) 11.6712 11.6712i 1.08365 1.08365i
\(117\) 3.76978i 0.348516i
\(118\) −7.10438 −0.654011
\(119\) −2.45122 7.40715i −0.224703 0.679013i
\(120\) 0 0
\(121\) 1.45368i 0.132153i
\(122\) −8.17855 + 8.17855i −0.740451 + 0.740451i
\(123\) −1.20118 −0.108306
\(124\) 13.4405 13.4405i 1.20699 1.20699i
\(125\) 0 0
\(126\) −8.90958 8.90958i −0.793728 0.793728i
\(127\) 12.8352i 1.13894i 0.822012 + 0.569470i \(0.192852\pi\)
−0.822012 + 0.569470i \(0.807148\pi\)
\(128\) 16.3674i 1.44669i
\(129\) −1.28275 1.28275i −0.112940 0.112940i
\(130\) 0 0
\(131\) 4.96719 4.96719i 0.433985 0.433985i −0.455996 0.889982i \(-0.650717\pi\)
0.889982 + 0.455996i \(0.150717\pi\)
\(132\) 2.13685 0.185989
\(133\) 6.27753 6.27753i 0.544331 0.544331i
\(134\) 0.633876i 0.0547585i
\(135\) 0 0
\(136\) −4.40471 + 8.76187i −0.377700 + 0.751324i
\(137\) 15.1475 1.29414 0.647071 0.762430i \(-0.275994\pi\)
0.647071 + 0.762430i \(0.275994\pi\)
\(138\) 0.256053i 0.0217967i
\(139\) −8.79167 + 8.79167i −0.745700 + 0.745700i −0.973668 0.227969i \(-0.926792\pi\)
0.227969 + 0.973668i \(0.426792\pi\)
\(140\) 0 0
\(141\) −1.51139 + 1.51139i −0.127282 + 0.127282i
\(142\) 18.6746 + 18.6746i 1.56714 + 1.56714i
\(143\) −3.17719 3.17719i −0.265690 0.265690i
\(144\) 2.26864i 0.189053i
\(145\) 0 0
\(146\) 15.6391 + 15.6391i 1.29430 + 1.29430i
\(147\) 0.478791 + 0.478791i 0.0394900 + 0.0394900i
\(148\) −18.3481 + 18.3481i −1.50821 + 1.50821i
\(149\) 11.6094 0.951076 0.475538 0.879695i \(-0.342253\pi\)
0.475538 + 0.879695i \(0.342253\pi\)
\(150\) 0 0
\(151\) 1.31768i 0.107231i −0.998562 0.0536156i \(-0.982925\pi\)
0.998562 0.0536156i \(-0.0170746\pi\)
\(152\) −11.1586 −0.905083
\(153\) 5.48307 10.9070i 0.443280 0.881776i
\(154\) −15.0181 −1.21019
\(155\) 0 0
\(156\) −0.545154 + 0.545154i −0.0436473 + 0.0436473i
\(157\) 0.183886 0.0146757 0.00733783 0.999973i \(-0.497664\pi\)
0.00733783 + 0.999973i \(0.497664\pi\)
\(158\) 26.9394 26.9394i 2.14318 2.14318i
\(159\) −1.38656 1.38656i −0.109961 0.109961i
\(160\) 0 0
\(161\) 1.08795i 0.0857422i
\(162\) 19.4499i 1.52813i
\(163\) −12.7635 12.7635i −0.999718 0.999718i 0.000282311 1.00000i \(-0.499910\pi\)
−1.00000 0.000282311i \(0.999910\pi\)
\(164\) −13.1139 13.1139i −1.02402 1.02402i
\(165\) 0 0
\(166\) 19.1414 1.48566
\(167\) 5.35646 5.35646i 0.414495 0.414495i −0.468806 0.883301i \(-0.655316\pi\)
0.883301 + 0.468806i \(0.155316\pi\)
\(168\) 0.891322i 0.0687670i
\(169\) −11.3789 −0.875297
\(170\) 0 0
\(171\) 13.8905 1.06223
\(172\) 28.0090i 2.13566i
\(173\) 4.89485 4.89485i 0.372149 0.372149i −0.496111 0.868259i \(-0.665239\pi\)
0.868259 + 0.496111i \(0.165239\pi\)
\(174\) 2.40417 0.182259
\(175\) 0 0
\(176\) −1.91202 1.91202i −0.144124 0.144124i
\(177\) −0.442365 0.442365i −0.0332502 0.0332502i
\(178\) 37.6078i 2.81883i
\(179\) 10.2788i 0.768274i 0.923276 + 0.384137i \(0.125501\pi\)
−0.923276 + 0.384137i \(0.874499\pi\)
\(180\) 0 0
\(181\) −14.1846 14.1846i −1.05434 1.05434i −0.998436 0.0558986i \(-0.982198\pi\)
−0.0558986 0.998436i \(-0.517802\pi\)
\(182\) 3.83143 3.83143i 0.284004 0.284004i
\(183\) −1.01850 −0.0752896
\(184\) 0.966939 0.966939i 0.0712837 0.0712837i
\(185\) 0 0
\(186\) 2.76861 0.203005
\(187\) −4.57128 13.8136i −0.334285 1.01015i
\(188\) −33.0013 −2.40687
\(189\) 2.23377i 0.162483i
\(190\) 0 0
\(191\) 4.11140 0.297491 0.148745 0.988876i \(-0.452477\pi\)
0.148745 + 0.988876i \(0.452477\pi\)
\(192\) −1.82613 + 1.82613i −0.131790 + 0.131790i
\(193\) 10.1106 + 10.1106i 0.727779 + 0.727779i 0.970177 0.242398i \(-0.0779340\pi\)
−0.242398 + 0.970177i \(0.577934\pi\)
\(194\) −9.40270 9.40270i −0.675075 0.675075i
\(195\) 0 0
\(196\) 10.4544i 0.746746i
\(197\) −3.78391 3.78391i −0.269593 0.269593i 0.559343 0.828936i \(-0.311053\pi\)
−0.828936 + 0.559343i \(0.811053\pi\)
\(198\) −16.6155 16.6155i −1.18081 1.18081i
\(199\) 2.38613 2.38613i 0.169148 0.169148i −0.617457 0.786605i \(-0.711837\pi\)
0.786605 + 0.617457i \(0.211837\pi\)
\(200\) 0 0
\(201\) 0.0394692 0.0394692i 0.00278394 0.00278394i
\(202\) 22.7074i 1.59769i
\(203\) −10.2151 −0.716959
\(204\) −2.37019 + 0.784357i −0.165946 + 0.0549160i
\(205\) 0 0
\(206\) 2.41357i 0.168162i
\(207\) −1.20367 + 1.20367i −0.0836606 + 0.0836606i
\(208\) 0.975594 0.0676453
\(209\) 11.7070 11.7070i 0.809788 0.809788i
\(210\) 0 0
\(211\) −1.66415 1.66415i −0.114565 0.114565i 0.647500 0.762065i \(-0.275814\pi\)
−0.762065 + 0.647500i \(0.775814\pi\)
\(212\) 30.2757i 2.07934i
\(213\) 2.32561i 0.159348i
\(214\) −10.0954 10.0954i −0.690110 0.690110i
\(215\) 0 0
\(216\) −1.98532 + 1.98532i −0.135084 + 0.135084i
\(217\) −11.7636 −0.798565
\(218\) −16.0384 + 16.0384i −1.08626 + 1.08626i
\(219\) 1.94758i 0.131605i
\(220\) 0 0
\(221\) 4.69037 + 2.35791i 0.315508 + 0.158610i
\(222\) −3.77954 −0.253666
\(223\) 3.45702i 0.231499i −0.993278 0.115750i \(-0.963073\pi\)
0.993278 0.115750i \(-0.0369270\pi\)
\(224\) 8.67087 8.67087i 0.579347 0.579347i
\(225\) 0 0
\(226\) −5.95365 + 5.95365i −0.396031 + 0.396031i
\(227\) −15.3558 15.3558i −1.01920 1.01920i −0.999812 0.0193889i \(-0.993828\pi\)
−0.0193889 0.999812i \(-0.506172\pi\)
\(228\) −2.00872 2.00872i −0.133031 0.133031i
\(229\) 8.59173i 0.567757i −0.958860 0.283879i \(-0.908379\pi\)
0.958860 0.283879i \(-0.0916213\pi\)
\(230\) 0 0
\(231\) −0.935124 0.935124i −0.0615266 0.0615266i
\(232\) 9.07891 + 9.07891i 0.596060 + 0.596060i
\(233\) −6.29903 + 6.29903i −0.412663 + 0.412663i −0.882665 0.470002i \(-0.844253\pi\)
0.470002 + 0.882665i \(0.344253\pi\)
\(234\) 8.47791 0.554219
\(235\) 0 0
\(236\) 9.65908i 0.628753i
\(237\) 3.35484 0.217921
\(238\) 16.6580 5.51258i 1.07978 0.357328i
\(239\) −12.3246 −0.797212 −0.398606 0.917122i \(-0.630506\pi\)
−0.398606 + 0.917122i \(0.630506\pi\)
\(240\) 0 0
\(241\) 1.88979 1.88979i 0.121732 0.121732i −0.643616 0.765348i \(-0.722567\pi\)
0.765348 + 0.643616i \(0.222567\pi\)
\(242\) −3.26921 −0.210153
\(243\) 3.71518 3.71518i 0.238329 0.238329i
\(244\) −11.1195 11.1195i −0.711854 0.711854i
\(245\) 0 0
\(246\) 2.70134i 0.172231i
\(247\) 5.97338i 0.380077i
\(248\) 10.4552 + 10.4552i 0.663905 + 0.663905i
\(249\) 1.19187 + 1.19187i 0.0755315 + 0.0755315i
\(250\) 0 0
\(251\) −27.4415 −1.73209 −0.866046 0.499964i \(-0.833347\pi\)
−0.866046 + 0.499964i \(0.833347\pi\)
\(252\) 12.1134 12.1134i 0.763074 0.763074i
\(253\) 2.02891i 0.127557i
\(254\) −28.8653 −1.81117
\(255\) 0 0
\(256\) −10.7272 −0.670451
\(257\) 22.8819i 1.42734i 0.700484 + 0.713668i \(0.252968\pi\)
−0.700484 + 0.713668i \(0.747032\pi\)
\(258\) 2.88479 2.88479i 0.179599 0.179599i
\(259\) 16.0590 0.997855
\(260\) 0 0
\(261\) −11.3016 11.3016i −0.699553 0.699553i
\(262\) 11.1708 + 11.1708i 0.690133 + 0.690133i
\(263\) 9.48703i 0.584995i −0.956266 0.292498i \(-0.905514\pi\)
0.956266 0.292498i \(-0.0944864\pi\)
\(264\) 1.66223i 0.102303i
\(265\) 0 0
\(266\) 14.1176 + 14.1176i 0.865606 + 0.865606i
\(267\) −2.34171 + 2.34171i −0.143310 + 0.143310i
\(268\) 0.861814 0.0526437
\(269\) 4.30494 4.30494i 0.262477 0.262477i −0.563583 0.826060i \(-0.690577\pi\)
0.826060 + 0.563583i \(0.190577\pi\)
\(270\) 0 0
\(271\) 23.6580 1.43712 0.718562 0.695463i \(-0.244801\pi\)
0.718562 + 0.695463i \(0.244801\pi\)
\(272\) 2.82265 + 1.41898i 0.171148 + 0.0860385i
\(273\) 0.477139 0.0288778
\(274\) 34.0655i 2.05797i
\(275\) 0 0
\(276\) 0.348128 0.0209549
\(277\) 5.82477 5.82477i 0.349976 0.349976i −0.510124 0.860101i \(-0.670401\pi\)
0.860101 + 0.510124i \(0.170401\pi\)
\(278\) −19.7717 19.7717i −1.18583 1.18583i
\(279\) −13.0148 13.0148i −0.779178 0.779178i
\(280\) 0 0
\(281\) 15.0835i 0.899808i −0.893077 0.449904i \(-0.851458\pi\)
0.893077 0.449904i \(-0.148542\pi\)
\(282\) −3.39898 3.39898i −0.202406 0.202406i
\(283\) −12.5516 12.5516i −0.746115 0.746115i 0.227632 0.973747i \(-0.426902\pi\)
−0.973747 + 0.227632i \(0.926902\pi\)
\(284\) −25.3900 + 25.3900i −1.50662 + 1.50662i
\(285\) 0 0
\(286\) 7.14523 7.14523i 0.422507 0.422507i
\(287\) 11.4778i 0.677511i
\(288\) 19.1863 1.13056
\(289\) 10.1409 + 13.6441i 0.596525 + 0.802594i
\(290\) 0 0
\(291\) 1.17095i 0.0686421i
\(292\) −21.2628 + 21.2628i −1.24431 + 1.24431i
\(293\) −10.9192 −0.637907 −0.318953 0.947770i \(-0.603331\pi\)
−0.318953 + 0.947770i \(0.603331\pi\)
\(294\) −1.07676 + 1.07676i −0.0627979 + 0.0627979i
\(295\) 0 0
\(296\) −14.2728 14.2728i −0.829589 0.829589i
\(297\) 4.16576i 0.241722i
\(298\) 26.1084i 1.51242i
\(299\) −0.517618 0.517618i −0.0299346 0.0299346i
\(300\) 0 0
\(301\) −12.2572 + 12.2572i −0.706495 + 0.706495i
\(302\) 2.96335 0.170522
\(303\) −1.41391 + 1.41391i −0.0812272 + 0.0812272i
\(304\) 3.59476i 0.206174i
\(305\) 0 0
\(306\) 24.5288 + 12.3310i 1.40222 + 0.704914i
\(307\) −6.82894 −0.389748 −0.194874 0.980828i \(-0.562430\pi\)
−0.194874 + 0.980828i \(0.562430\pi\)
\(308\) 20.4185i 1.16345i
\(309\) −0.150285 + 0.150285i −0.00854940 + 0.00854940i
\(310\) 0 0
\(311\) 0.467408 0.467408i 0.0265043 0.0265043i −0.693730 0.720235i \(-0.744034\pi\)
0.720235 + 0.693730i \(0.244034\pi\)
\(312\) −0.424069 0.424069i −0.0240082 0.0240082i
\(313\) 2.96511 + 2.96511i 0.167598 + 0.167598i 0.785923 0.618325i \(-0.212188\pi\)
−0.618325 + 0.785923i \(0.712188\pi\)
\(314\) 0.413543i 0.0233376i
\(315\) 0 0
\(316\) 36.6267 + 36.6267i 2.06041 + 2.06041i
\(317\) 15.0370 + 15.0370i 0.844564 + 0.844564i 0.989449 0.144884i \(-0.0462810\pi\)
−0.144884 + 0.989449i \(0.546281\pi\)
\(318\) 3.11825 3.11825i 0.174863 0.174863i
\(319\) −19.0502 −1.06660
\(320\) 0 0
\(321\) 1.25721i 0.0701709i
\(322\) −2.44670 −0.136349
\(323\) −8.68817 + 17.2826i −0.483423 + 0.961627i
\(324\) 26.4440 1.46911
\(325\) 0 0
\(326\) 28.7041 28.7041i 1.58977 1.58977i
\(327\) −1.99731 −0.110451
\(328\) 10.2011 10.2011i 0.563264 0.563264i
\(329\) 14.4420 + 14.4420i 0.796211 + 0.796211i
\(330\) 0 0
\(331\) 27.7582i 1.52573i 0.646559 + 0.762864i \(0.276207\pi\)
−0.646559 + 0.762864i \(0.723793\pi\)
\(332\) 26.0245i 1.42828i
\(333\) 17.7671 + 17.7671i 0.973630 + 0.973630i
\(334\) 12.0462 + 12.0462i 0.659140 + 0.659140i
\(335\) 0 0
\(336\) 0.287141 0.0156648
\(337\) −6.20814 + 6.20814i −0.338179 + 0.338179i −0.855682 0.517503i \(-0.826862\pi\)
0.517503 + 0.855682i \(0.326862\pi\)
\(338\) 25.5901i 1.39192i
\(339\) −0.741426 −0.0402687
\(340\) 0 0
\(341\) −21.9380 −1.18801
\(342\) 31.2385i 1.68918i
\(343\) 13.9415 13.9415i 0.752772 0.752772i
\(344\) 21.7878 1.17472
\(345\) 0 0
\(346\) 11.0081 + 11.0081i 0.591799 + 0.591799i
\(347\) −3.72663 3.72663i −0.200056 0.200056i 0.599968 0.800024i \(-0.295180\pi\)
−0.800024 + 0.599968i \(0.795180\pi\)
\(348\) 3.26869i 0.175220i
\(349\) 10.8634i 0.581504i −0.956799 0.290752i \(-0.906095\pi\)
0.956799 0.290752i \(-0.0939054\pi\)
\(350\) 0 0
\(351\) 1.06277 + 1.06277i 0.0567266 + 0.0567266i
\(352\) 16.1703 16.1703i 0.861881 0.861881i
\(353\) 27.2304 1.44933 0.724664 0.689102i \(-0.241995\pi\)
0.724664 + 0.689102i \(0.241995\pi\)
\(354\) 0.994840 0.994840i 0.0528752 0.0528752i
\(355\) 0 0
\(356\) −51.1314 −2.70996
\(357\) 1.38049 + 0.693989i 0.0730631 + 0.0367298i
\(358\) −23.1161 −1.22173
\(359\) 13.0217i 0.687258i 0.939105 + 0.343629i \(0.111656\pi\)
−0.939105 + 0.343629i \(0.888344\pi\)
\(360\) 0 0
\(361\) −3.01006 −0.158424
\(362\) 31.9000 31.9000i 1.67663 1.67663i
\(363\) −0.203562 0.203562i −0.0106842 0.0106842i
\(364\) 5.20919 + 5.20919i 0.273036 + 0.273036i
\(365\) 0 0
\(366\) 2.29052i 0.119727i
\(367\) −11.8536 11.8536i −0.618755 0.618755i 0.326457 0.945212i \(-0.394145\pi\)
−0.945212 + 0.326457i \(0.894145\pi\)
\(368\) −0.311501 0.311501i −0.0162381 0.0162381i
\(369\) −12.6986 + 12.6986i −0.661063 + 0.661063i
\(370\) 0 0
\(371\) −13.2492 + 13.2492i −0.687864 + 0.687864i
\(372\) 3.76419i 0.195164i
\(373\) −1.14057 −0.0590567 −0.0295283 0.999564i \(-0.509401\pi\)
−0.0295283 + 0.999564i \(0.509401\pi\)
\(374\) 31.0656 10.2804i 1.60637 0.531588i
\(375\) 0 0
\(376\) 25.6713i 1.32390i
\(377\) 4.86009 4.86009i 0.250307 0.250307i
\(378\) 5.02355 0.258384
\(379\) 6.20062 6.20062i 0.318504 0.318504i −0.529688 0.848192i \(-0.677691\pi\)
0.848192 + 0.529688i \(0.177691\pi\)
\(380\) 0 0
\(381\) −1.79734 1.79734i −0.0920805 0.0920805i
\(382\) 9.24619i 0.473076i
\(383\) 11.9977i 0.613053i 0.951862 + 0.306526i \(0.0991668\pi\)
−0.951862 + 0.306526i \(0.900833\pi\)
\(384\) −2.29196 2.29196i −0.116961 0.116961i
\(385\) 0 0
\(386\) −22.7379 + 22.7379i −1.15733 + 1.15733i
\(387\) −27.1220 −1.37869
\(388\) 12.7839 12.7839i 0.649003 0.649003i
\(389\) 0.165600i 0.00839627i −0.999991 0.00419813i \(-0.998664\pi\)
0.999991 0.00419813i \(-0.00133631\pi\)
\(390\) 0 0
\(391\) −0.744739 2.25047i −0.0376631 0.113811i
\(392\) −8.13238 −0.410747
\(393\) 1.39113i 0.0701733i
\(394\) 8.50969 8.50969i 0.428712 0.428712i
\(395\) 0 0
\(396\) 22.5903 22.5903i 1.13521 1.13521i
\(397\) −21.5282 21.5282i −1.08047 1.08047i −0.996465 0.0840060i \(-0.973228\pi\)
−0.0840060 0.996465i \(-0.526772\pi\)
\(398\) 5.36620 + 5.36620i 0.268983 + 0.268983i
\(399\) 1.75811i 0.0880155i
\(400\) 0 0
\(401\) −26.0214 26.0214i −1.29945 1.29945i −0.928757 0.370690i \(-0.879121\pi\)
−0.370690 0.928757i \(-0.620879\pi\)
\(402\) 0.0887629 + 0.0887629i 0.00442709 + 0.00442709i
\(403\) 5.59683 5.59683i 0.278798 0.278798i
\(404\) −30.8729 −1.53599
\(405\) 0 0
\(406\) 22.9729i 1.14012i
\(407\) 29.9484 1.48449
\(408\) −0.610142 1.84374i −0.0302065 0.0912788i
\(409\) 7.05575 0.348885 0.174442 0.984667i \(-0.444188\pi\)
0.174442 + 0.984667i \(0.444188\pi\)
\(410\) 0 0
\(411\) −2.12114 + 2.12114i −0.104628 + 0.104628i
\(412\) −3.28148 −0.161667
\(413\) −4.22699 + 4.22699i −0.207997 + 0.207997i
\(414\) −2.70694 2.70694i −0.133039 0.133039i
\(415\) 0 0
\(416\) 8.25077i 0.404527i
\(417\) 2.46223i 0.120576i
\(418\) 26.3280 + 26.3280i 1.28774 + 1.28774i
\(419\) 9.53560 + 9.53560i 0.465844 + 0.465844i 0.900565 0.434721i \(-0.143153\pi\)
−0.434721 + 0.900565i \(0.643153\pi\)
\(420\) 0 0
\(421\) 11.9003 0.579984 0.289992 0.957029i \(-0.406347\pi\)
0.289992 + 0.957029i \(0.406347\pi\)
\(422\) 3.74252 3.74252i 0.182183 0.182183i
\(423\) 31.9562i 1.55376i
\(424\) 23.5511 1.14374
\(425\) 0 0
\(426\) −5.23010 −0.253399
\(427\) 9.73220i 0.470974i
\(428\) 13.7257 13.7257i 0.663457 0.663457i
\(429\) 0.889817 0.0429608
\(430\) 0 0
\(431\) −8.47563 8.47563i −0.408257 0.408257i 0.472874 0.881130i \(-0.343217\pi\)
−0.881130 + 0.472874i \(0.843217\pi\)
\(432\) 0.639573 + 0.639573i 0.0307715 + 0.0307715i
\(433\) 7.39430i 0.355347i 0.984089 + 0.177674i \(0.0568572\pi\)
−0.984089 + 0.177674i \(0.943143\pi\)
\(434\) 26.4553i 1.26990i
\(435\) 0 0
\(436\) −21.8057 21.8057i −1.04430 1.04430i
\(437\) 1.90726 1.90726i 0.0912367 0.0912367i
\(438\) −4.37994 −0.209281
\(439\) 22.3750 22.3750i 1.06790 1.06790i 0.0703785 0.997520i \(-0.477579\pi\)
0.997520 0.0703785i \(-0.0224207\pi\)
\(440\) 0 0
\(441\) 10.1234 0.482065
\(442\) −5.30274 + 10.5482i −0.252226 + 0.501729i
\(443\) −35.6597 −1.69424 −0.847121 0.531401i \(-0.821666\pi\)
−0.847121 + 0.531401i \(0.821666\pi\)
\(444\) 5.13865i 0.243870i
\(445\) 0 0
\(446\) 7.77454 0.368135
\(447\) −1.62568 + 1.62568i −0.0768921 + 0.0768921i
\(448\) 17.4495 + 17.4495i 0.824411 + 0.824411i
\(449\) −0.824876 0.824876i −0.0389283 0.0389283i 0.687375 0.726303i \(-0.258763\pi\)
−0.726303 + 0.687375i \(0.758763\pi\)
\(450\) 0 0
\(451\) 21.4049i 1.00792i
\(452\) −8.09455 8.09455i −0.380736 0.380736i
\(453\) 0.184517 + 0.184517i 0.00866938 + 0.00866938i
\(454\) 34.5339 34.5339i 1.62076 1.62076i
\(455\) 0 0
\(456\) 1.56256 1.56256i 0.0731737 0.0731737i
\(457\) 37.6351i 1.76050i −0.474514 0.880248i \(-0.657376\pi\)
0.474514 0.880248i \(-0.342624\pi\)
\(458\) 19.3221 0.902860
\(459\) 1.52910 + 4.62066i 0.0713721 + 0.215674i
\(460\) 0 0
\(461\) 22.0741i 1.02809i 0.857763 + 0.514046i \(0.171854\pi\)
−0.857763 + 0.514046i \(0.828146\pi\)
\(462\) 2.10301 2.10301i 0.0978410 0.0978410i
\(463\) −11.0361 −0.512893 −0.256447 0.966558i \(-0.582552\pi\)
−0.256447 + 0.966558i \(0.582552\pi\)
\(464\) 2.92479 2.92479i 0.135780 0.135780i
\(465\) 0 0
\(466\) −14.1660 14.1660i −0.656226 0.656226i
\(467\) 22.0407i 1.01992i −0.860198 0.509960i \(-0.829660\pi\)
0.860198 0.509960i \(-0.170340\pi\)
\(468\) 11.5265i 0.532814i
\(469\) −0.377146 0.377146i −0.0174150 0.0174150i
\(470\) 0 0
\(471\) −0.0257499 + 0.0257499i −0.00118649 + 0.00118649i
\(472\) 7.51368 0.345845
\(473\) −22.8585 + 22.8585i −1.05104 + 1.05104i
\(474\) 7.54475i 0.346542i
\(475\) 0 0
\(476\) 7.49488 + 22.6482i 0.343527 + 1.03808i
\(477\) −29.3169 −1.34233
\(478\) 27.7170i 1.26774i
\(479\) −22.1659 + 22.1659i −1.01279 + 1.01279i −0.0128704 + 0.999917i \(0.504097\pi\)
−0.999917 + 0.0128704i \(0.995903\pi\)
\(480\) 0 0
\(481\) −7.64045 + 7.64045i −0.348375 + 0.348375i
\(482\) 4.24998 + 4.24998i 0.193581 + 0.193581i
\(483\) −0.152347 0.152347i −0.00693204 0.00693204i
\(484\) 4.44480i 0.202036i
\(485\) 0 0
\(486\) 8.35511 + 8.35511i 0.378996 + 0.378996i
\(487\) 1.89382 + 1.89382i 0.0858170 + 0.0858170i 0.748712 0.662895i \(-0.230673\pi\)
−0.662895 + 0.748712i \(0.730673\pi\)
\(488\) 8.64973 8.64973i 0.391555 0.391555i
\(489\) 3.57461 0.161649
\(490\) 0 0
\(491\) 19.7985i 0.893496i −0.894660 0.446748i \(-0.852582\pi\)
0.894660 0.446748i \(-0.147418\pi\)
\(492\) 3.67273 0.165580
\(493\) 21.1304 6.99260i 0.951666 0.314931i
\(494\) −13.4336 −0.604407
\(495\) 0 0
\(496\) 3.36815 3.36815i 0.151235 0.151235i
\(497\) 22.2222 0.996803
\(498\) −2.68040 + 2.68040i −0.120112 + 0.120112i
\(499\) −19.5941 19.5941i −0.877152 0.877152i 0.116087 0.993239i \(-0.462965\pi\)
−0.993239 + 0.116087i \(0.962965\pi\)
\(500\) 0 0
\(501\) 1.50015i 0.0670218i
\(502\) 61.7136i 2.75441i
\(503\) −2.90654 2.90654i −0.129596 0.129596i 0.639333 0.768930i \(-0.279210\pi\)
−0.768930 + 0.639333i \(0.779210\pi\)
\(504\) 9.42288 + 9.42288i 0.419728 + 0.419728i
\(505\) 0 0
\(506\) −4.56285 −0.202843
\(507\) 1.59340 1.59340i 0.0707656 0.0707656i
\(508\) 39.2451i 1.74122i
\(509\) 41.9347 1.85872 0.929362 0.369169i \(-0.120358\pi\)
0.929362 + 0.369169i \(0.120358\pi\)
\(510\) 0 0
\(511\) 18.6100 0.823256
\(512\) 8.61021i 0.380521i
\(513\) −3.91599 + 3.91599i −0.172895 + 0.172895i
\(514\) −51.4595 −2.26978
\(515\) 0 0
\(516\) 3.92215 + 3.92215i 0.172663 + 0.172663i
\(517\) 26.9328 + 26.9328i 1.18451 + 1.18451i
\(518\) 36.1152i 1.58681i
\(519\) 1.37087i 0.0601746i
\(520\) 0 0
\(521\) 25.0405 + 25.0405i 1.09705 + 1.09705i 0.994754 + 0.102292i \(0.0326176\pi\)
0.102292 + 0.994754i \(0.467382\pi\)
\(522\) 25.4164 25.4164i 1.11244 1.11244i
\(523\) −6.37043 −0.278560 −0.139280 0.990253i \(-0.544479\pi\)
−0.139280 + 0.990253i \(0.544479\pi\)
\(524\) −15.1877 + 15.1877i −0.663480 + 0.663480i
\(525\) 0 0
\(526\) 21.3355 0.930273
\(527\) 24.3336 8.05261i 1.05999 0.350777i
\(528\) 0.535489 0.0233042
\(529\) 22.6695i 0.985629i
\(530\) 0 0
\(531\) −9.35319 −0.405894
\(532\) −19.1942 + 19.1942i −0.832176 + 0.832176i
\(533\) −5.46084 5.46084i −0.236535 0.236535i
\(534\) −5.26630 5.26630i −0.227895 0.227895i
\(535\) 0 0
\(536\) 0.670395i 0.0289566i
\(537\) −1.43936 1.43936i −0.0621130 0.0621130i
\(538\) 9.68144 + 9.68144i 0.417397 + 0.417397i
\(539\) 8.53203 8.53203i 0.367501 0.367501i
\(540\) 0 0
\(541\) −11.5578 + 11.5578i −0.496908 + 0.496908i −0.910474 0.413566i \(-0.864283\pi\)
0.413566 + 0.910474i \(0.364283\pi\)
\(542\) 53.2049i 2.28535i
\(543\) 3.97260 0.170481
\(544\) −12.0006 + 23.8716i −0.514521 + 1.02349i
\(545\) 0 0
\(546\) 1.07304i 0.0459221i
\(547\) 0.909839 0.909839i 0.0389019 0.0389019i −0.687388 0.726290i \(-0.741243\pi\)
0.726290 + 0.687388i \(0.241243\pi\)
\(548\) −46.3153 −1.97849
\(549\) −10.7674 + 10.7674i −0.459540 + 0.459540i
\(550\) 0 0
\(551\) 17.9079 + 17.9079i 0.762903 + 0.762903i
\(552\) 0.270805i 0.0115262i
\(553\) 32.0570i 1.36320i
\(554\) 13.0994 + 13.0994i 0.556540 + 0.556540i
\(555\) 0 0
\(556\) 26.8815 26.8815i 1.14003 1.14003i
\(557\) −35.2859 −1.49511 −0.747555 0.664200i \(-0.768773\pi\)
−0.747555 + 0.664200i \(0.768773\pi\)
\(558\) 29.2693 29.2693i 1.23907 1.23907i
\(559\) 11.6634i 0.493308i
\(560\) 0 0
\(561\) 2.57447 + 1.29422i 0.108694 + 0.0546421i
\(562\) 33.9216 1.43089
\(563\) 0.931153i 0.0392434i −0.999807 0.0196217i \(-0.993754\pi\)
0.999807 0.0196217i \(-0.00624618\pi\)
\(564\) 4.62123 4.62123i 0.194589 0.194589i
\(565\) 0 0
\(566\) 28.2275 28.2275i 1.18649 1.18649i
\(567\) −11.5724 11.5724i −0.485994 0.485994i
\(568\) −19.7505 19.7505i −0.828714 0.828714i
\(569\) 17.5921i 0.737498i 0.929529 + 0.368749i \(0.120214\pi\)
−0.929529 + 0.368749i \(0.879786\pi\)
\(570\) 0 0
\(571\) −12.2000 12.2000i −0.510554 0.510554i 0.404142 0.914696i \(-0.367570\pi\)
−0.914696 + 0.404142i \(0.867570\pi\)
\(572\) 9.71463 + 9.71463i 0.406189 + 0.406189i
\(573\) −0.575728 + 0.575728i −0.0240514 + 0.0240514i
\(574\) −25.8125 −1.07739
\(575\) 0 0
\(576\) 38.6110i 1.60879i
\(577\) −8.50534 −0.354082 −0.177041 0.984203i \(-0.556653\pi\)
−0.177041 + 0.984203i \(0.556653\pi\)
\(578\) −30.6844 + 22.8061i −1.27630 + 0.948608i
\(579\) −2.83162 −0.117678
\(580\) 0 0
\(581\) 11.3888 11.3888i 0.472487 0.472487i
\(582\) 2.63336 0.109156
\(583\) −24.7084 + 24.7084i −1.02332 + 1.02332i
\(584\) −16.5401 16.5401i −0.684433 0.684433i
\(585\) 0 0
\(586\) 24.5563i 1.01441i
\(587\) 1.55649i 0.0642433i 0.999484 + 0.0321217i \(0.0102264\pi\)
−0.999484 + 0.0321217i \(0.989774\pi\)
\(588\) −1.46396 1.46396i −0.0603726 0.0603726i
\(589\) 20.6226 + 20.6226i 0.849739 + 0.849739i
\(590\) 0 0
\(591\) 1.05974 0.0435918
\(592\) −4.59800 + 4.59800i −0.188977 + 0.188977i
\(593\) 19.6862i 0.808415i −0.914667 0.404207i \(-0.867547\pi\)
0.914667 0.404207i \(-0.132453\pi\)
\(594\) 9.36844 0.384392
\(595\) 0 0
\(596\) −35.4969 −1.45401
\(597\) 0.668269i 0.0273504i
\(598\) 1.16408 1.16408i 0.0476027 0.0476027i
\(599\) −24.7552 −1.01147 −0.505735 0.862689i \(-0.668779\pi\)
−0.505735 + 0.862689i \(0.668779\pi\)
\(600\) 0 0
\(601\) −20.0336 20.0336i −0.817186 0.817186i 0.168513 0.985699i \(-0.446103\pi\)
−0.985699 + 0.168513i \(0.946103\pi\)
\(602\) −27.5655 27.5655i −1.12348 1.12348i
\(603\) 0.834522i 0.0339844i
\(604\) 4.02895i 0.163936i
\(605\) 0 0
\(606\) −3.17977 3.17977i −0.129169 0.129169i
\(607\) −32.9490 + 32.9490i −1.33736 + 1.33736i −0.438750 + 0.898609i \(0.644579\pi\)
−0.898609 + 0.438750i \(0.855421\pi\)
\(608\) −30.4015 −1.23294
\(609\) 1.43044 1.43044i 0.0579644 0.0579644i
\(610\) 0 0
\(611\) −13.7423 −0.555952
\(612\) −16.7651 + 33.3493i −0.677690 + 1.34806i
\(613\) 42.0358 1.69781 0.848905 0.528546i \(-0.177263\pi\)
0.848905 + 0.528546i \(0.177263\pi\)
\(614\) 15.3577i 0.619786i
\(615\) 0 0
\(616\) 15.8833 0.639957
\(617\) −12.8737 + 12.8737i −0.518275 + 0.518275i −0.917049 0.398774i \(-0.869436\pi\)
0.398774 + 0.917049i \(0.369436\pi\)
\(618\) −0.337978 0.337978i −0.0135955 0.0135955i
\(619\) −9.74184 9.74184i −0.391558 0.391558i 0.483685 0.875242i \(-0.339298\pi\)
−0.875242 + 0.483685i \(0.839298\pi\)
\(620\) 0 0
\(621\) 0.678672i 0.0272342i
\(622\) 1.05116 + 1.05116i 0.0421477 + 0.0421477i
\(623\) 22.3761 + 22.3761i 0.896478 + 0.896478i
\(624\) −0.136614 + 0.136614i −0.00546895 + 0.00546895i
\(625\) 0 0
\(626\) −6.66827 + 6.66827i −0.266518 + 0.266518i
\(627\) 3.27870i 0.130939i
\(628\) −0.562251 −0.0224362
\(629\) −33.2187 + 10.9929i −1.32452 + 0.438317i
\(630\) 0 0
\(631\) 20.2307i 0.805372i 0.915338 + 0.402686i \(0.131923\pi\)
−0.915338 + 0.402686i \(0.868077\pi\)
\(632\) −28.4914 + 28.4914i −1.13333 + 1.13333i
\(633\) 0.466068 0.0185245
\(634\) −33.8170 + 33.8170i −1.34304 + 1.34304i
\(635\) 0 0
\(636\) 4.23956 + 4.23956i 0.168110 + 0.168110i
\(637\) 4.35340i 0.172488i
\(638\) 42.8421i 1.69614i
\(639\) 24.5859 + 24.5859i 0.972603 + 0.972603i
\(640\) 0 0
\(641\) −3.37688 + 3.37688i −0.133379 + 0.133379i −0.770644 0.637266i \(-0.780065\pi\)
0.637266 + 0.770644i \(0.280065\pi\)
\(642\) 2.82737 0.111587
\(643\) 6.97016 6.97016i 0.274876 0.274876i −0.556183 0.831060i \(-0.687735\pi\)
0.831060 + 0.556183i \(0.187735\pi\)
\(644\) 3.32652i 0.131083i
\(645\) 0 0
\(646\) −38.8670 19.5389i −1.52920 0.768749i
\(647\) 36.4555 1.43321 0.716607 0.697477i \(-0.245694\pi\)
0.716607 + 0.697477i \(0.245694\pi\)
\(648\) 20.5705i 0.808084i
\(649\) −7.88292 + 7.88292i −0.309432 + 0.309432i
\(650\) 0 0
\(651\) 1.64728 1.64728i 0.0645620 0.0645620i
\(652\) 39.0260 + 39.0260i 1.52837 + 1.52837i
\(653\) −12.7332 12.7332i −0.498288 0.498288i 0.412617 0.910905i \(-0.364615\pi\)
−0.910905 + 0.412617i \(0.864615\pi\)
\(654\) 4.49177i 0.175642i
\(655\) 0 0
\(656\) −3.28631 3.28631i −0.128309 0.128309i
\(657\) 20.5894 + 20.5894i 0.803270 + 0.803270i
\(658\) −32.4787 + 32.4787i −1.26615 + 1.26615i
\(659\) −0.175710 −0.00684470 −0.00342235 0.999994i \(-0.501089\pi\)
−0.00342235 + 0.999994i \(0.501089\pi\)
\(660\) 0 0
\(661\) 4.14751i 0.161319i 0.996742 + 0.0806597i \(0.0257027\pi\)
−0.996742 + 0.0806597i \(0.974297\pi\)
\(662\) −62.4258 −2.42625
\(663\) −0.986985 + 0.326619i −0.0383313 + 0.0126848i
\(664\) −20.2442 −0.785626
\(665\) 0 0
\(666\) −39.9566 + 39.9566i −1.54829 + 1.54829i
\(667\) −3.10359 −0.120171
\(668\) −16.3780 + 16.3780i −0.633683 + 0.633683i
\(669\) 0.484093 + 0.484093i 0.0187161 + 0.0187161i
\(670\) 0 0
\(671\) 18.1496i 0.700658i
\(672\) 2.42840i 0.0936775i
\(673\) 6.18030 + 6.18030i 0.238233 + 0.238233i 0.816118 0.577885i \(-0.196122\pi\)
−0.577885 + 0.816118i \(0.696122\pi\)
\(674\) −13.9616 13.9616i −0.537780 0.537780i
\(675\) 0 0
\(676\) 34.7922 1.33816
\(677\) −6.62704 + 6.62704i −0.254698 + 0.254698i −0.822893 0.568196i \(-0.807642\pi\)
0.568196 + 0.822893i \(0.307642\pi\)
\(678\) 1.66740i 0.0640362i
\(679\) −11.1889 −0.429391
\(680\) 0 0
\(681\) 4.30061 0.164800
\(682\) 49.3366i 1.88920i
\(683\) 26.4889 26.4889i 1.01357 1.01357i 0.0136635 0.999907i \(-0.495651\pi\)
0.999907 0.0136635i \(-0.00434937\pi\)
\(684\) −42.4717 −1.62395
\(685\) 0 0
\(686\) 31.3533 + 31.3533i 1.19707 + 1.19707i
\(687\) 1.20312 + 1.20312i 0.0459018 + 0.0459018i
\(688\) 7.01898i 0.267596i
\(689\) 12.6073i 0.480299i
\(690\) 0 0
\(691\) −31.5901 31.5901i −1.20175 1.20175i −0.973635 0.228110i \(-0.926745\pi\)
−0.228110 0.973635i \(-0.573255\pi\)
\(692\) −14.9666 + 14.9666i −0.568943 + 0.568943i
\(693\) −19.7719 −0.751072
\(694\) 8.38088 8.38088i 0.318134 0.318134i
\(695\) 0 0
\(696\) −2.54268 −0.0963799
\(697\) −7.85695 23.7423i −0.297603 0.899304i
\(698\) 24.4308 0.924720
\(699\) 1.76413i 0.0667256i
\(700\) 0 0
\(701\) −18.7355 −0.707630 −0.353815 0.935315i \(-0.615116\pi\)
−0.353815 + 0.935315i \(0.615116\pi\)
\(702\) −2.39008 + 2.39008i −0.0902079 + 0.0902079i
\(703\) −28.1527 28.1527i −1.06180 1.06180i
\(704\) 32.5416 + 32.5416i 1.22646 + 1.22646i
\(705\) 0 0
\(706\) 61.2388i 2.30475i
\(707\) 13.5106 + 13.5106i 0.508117 + 0.508117i
\(708\) 1.35258 + 1.35258i 0.0508331 + 0.0508331i
\(709\) 4.05125 4.05125i 0.152148 0.152148i −0.626929 0.779077i \(-0.715688\pi\)
0.779077 + 0.626929i \(0.215688\pi\)
\(710\) 0 0
\(711\) 35.4668 35.4668i 1.33011 1.33011i
\(712\) 39.7745i 1.49061i
\(713\) −3.57406 −0.133850
\(714\) −1.56072 + 3.10460i −0.0584085 + 0.116187i
\(715\) 0 0
\(716\) 31.4286i 1.17454i
\(717\) 1.72584 1.72584i 0.0644526 0.0644526i
\(718\) −29.2846 −1.09289
\(719\) −20.7647 + 20.7647i −0.774393 + 0.774393i −0.978871 0.204478i \(-0.934450\pi\)
0.204478 + 0.978871i \(0.434450\pi\)
\(720\) 0 0
\(721\) 1.43604 + 1.43604i 0.0534808 + 0.0534808i
\(722\) 6.76937i 0.251930i
\(723\) 0.529263i 0.0196835i
\(724\) 43.3711 + 43.3711i 1.61187 + 1.61187i
\(725\) 0 0
\(726\) 0.457794 0.457794i 0.0169903 0.0169903i
\(727\) 48.1662 1.78639 0.893193 0.449674i \(-0.148460\pi\)
0.893193 + 0.449674i \(0.148460\pi\)
\(728\) −4.05216 + 4.05216i −0.150183 + 0.150183i
\(729\) 24.9052i 0.922416i
\(730\) 0 0
\(731\) 16.9642 33.7452i 0.627442 1.24811i
\(732\) 3.11417 0.115103
\(733\) 14.3419i 0.529731i −0.964285 0.264866i \(-0.914672\pi\)
0.964285 0.264866i \(-0.0853276\pi\)
\(734\) 26.6578 26.6578i 0.983958 0.983958i
\(735\) 0 0
\(736\) 2.63442 2.63442i 0.0971059 0.0971059i
\(737\) −0.703340 0.703340i −0.0259079 0.0259079i
\(738\) −28.5581 28.5581i −1.05124 1.05124i
\(739\) 9.73758i 0.358203i −0.983831 0.179101i \(-0.942681\pi\)
0.983831 0.179101i \(-0.0573190\pi\)
\(740\) 0 0
\(741\) −0.836465 0.836465i −0.0307283 0.0307283i
\(742\) −29.7963 29.7963i −1.09386 1.09386i
\(743\) 16.9727 16.9727i 0.622667 0.622667i −0.323545 0.946213i \(-0.604875\pi\)
0.946213 + 0.323545i \(0.104875\pi\)
\(744\) −2.92812 −0.107350
\(745\) 0 0
\(746\) 2.56505i 0.0939133i
\(747\) 25.2004 0.922033
\(748\) 13.9772 + 42.2367i 0.511058 + 1.54433i
\(749\) −12.0132 −0.438954
\(750\) 0 0
\(751\) 33.9092 33.9092i 1.23736 1.23736i 0.276289 0.961075i \(-0.410895\pi\)
0.961075 0.276289i \(-0.0891047\pi\)
\(752\) −8.27004 −0.301578
\(753\) 3.84269 3.84269i 0.140035 0.140035i
\(754\) 10.9299 + 10.9299i 0.398044 + 0.398044i
\(755\) 0 0
\(756\) 6.83000i 0.248405i
\(757\) 18.5200i 0.673119i 0.941662 + 0.336560i \(0.109263\pi\)
−0.941662 + 0.336560i \(0.890737\pi\)
\(758\) 13.9447 + 13.9447i 0.506493 + 0.506493i
\(759\) −0.284113 0.284113i −0.0103126 0.0103126i
\(760\) 0 0
\(761\) 35.9145 1.30190 0.650950 0.759120i \(-0.274371\pi\)
0.650950 + 0.759120i \(0.274371\pi\)
\(762\) 4.04206 4.04206i 0.146428 0.146428i
\(763\) 19.0851i 0.690929i
\(764\) −12.5711 −0.454806
\(765\) 0 0
\(766\) −26.9818 −0.974890
\(767\) 4.02220i 0.145233i
\(768\) 1.50215 1.50215i 0.0542043 0.0542043i
\(769\) 17.7831 0.641276 0.320638 0.947202i \(-0.396103\pi\)
0.320638 + 0.947202i \(0.396103\pi\)
\(770\) 0 0
\(771\) −3.20420 3.20420i −0.115397 0.115397i
\(772\) −30.9144 30.9144i −1.11263 1.11263i
\(773\) 7.33018i 0.263648i 0.991273 + 0.131824i \(0.0420834\pi\)
−0.991273 + 0.131824i \(0.957917\pi\)
\(774\) 60.9949i 2.19242i
\(775\) 0 0
\(776\) 9.94441 + 9.94441i 0.356984 + 0.356984i
\(777\) −2.24877 + 2.24877i −0.0806741 + 0.0806741i
\(778\) 0.372421 0.0133519
\(779\) 20.1215 20.1215i 0.720927 0.720927i
\(780\) 0 0
\(781\) 41.4423 1.48292
\(782\) 5.06111 1.67485i 0.180985 0.0598926i
\(783\) 6.37228 0.227727
\(784\) 2.61986i 0.0935664i
\(785\) 0 0
\(786\) −3.12853 −0.111591
\(787\) −27.4321 + 27.4321i −0.977850 + 0.977850i −0.999760 0.0219095i \(-0.993025\pi\)
0.0219095 + 0.999760i \(0.493025\pi\)
\(788\) 11.5697 + 11.5697i 0.412155 + 0.412155i
\(789\) 1.32849 + 1.32849i 0.0472954 + 0.0472954i
\(790\) 0 0
\(791\) 7.08465i 0.251901i
\(792\) 17.5727 + 17.5727i 0.624420 + 0.624420i
\(793\) −4.63034 4.63034i −0.164428 0.164428i
\(794\) 48.4151 48.4151i 1.71819 1.71819i
\(795\) 0 0
\(796\) −7.29586 + 7.29586i −0.258595 + 0.258595i
\(797\) 36.6386i 1.29780i −0.760872 0.648902i \(-0.775228\pi\)
0.760872 0.648902i \(-0.224772\pi\)
\(798\) −3.95383 −0.139964
\(799\) −39.7599 19.9878i −1.40661 0.707119i
\(800\) 0 0
\(801\) 49.5122i 1.74943i
\(802\) 58.5199 58.5199i 2.06641 2.06641i
\(803\) 34.7058 1.22474
\(804\) −0.120682 + 0.120682i −0.00425611 + 0.00425611i
\(805\) 0 0
\(806\) 12.5868 + 12.5868i 0.443351 + 0.443351i
\(807\) 1.20566i 0.0424412i
\(808\) 24.0157i 0.844868i
\(809\) −11.0838 11.0838i −0.389685 0.389685i 0.484890 0.874575i \(-0.338860\pi\)
−0.874575 + 0.484890i \(0.838860\pi\)
\(810\) 0 0
\(811\) 5.58363 5.58363i 0.196068 0.196068i −0.602244 0.798312i \(-0.705727\pi\)
0.798312 + 0.602244i \(0.205727\pi\)
\(812\) 31.2338 1.09609
\(813\) −3.31288 + 3.31288i −0.116188 + 0.116188i
\(814\) 67.3513i 2.36066i
\(815\) 0 0
\(816\) −0.593964 + 0.196558i −0.0207929 + 0.00688091i
\(817\) 42.9759 1.50354
\(818\) 15.8678i 0.554804i
\(819\) 5.04422 5.04422i 0.176259 0.176259i
\(820\) 0 0
\(821\) 16.6878 16.6878i 0.582408 0.582408i −0.353157 0.935564i \(-0.614892\pi\)
0.935564 + 0.353157i \(0.114892\pi\)
\(822\) −4.77026 4.77026i −0.166382 0.166382i
\(823\) 10.0348 + 10.0348i 0.349792 + 0.349792i 0.860032 0.510240i \(-0.170444\pi\)
−0.510240 + 0.860032i \(0.670444\pi\)
\(824\) 2.55263i 0.0889250i
\(825\) 0 0
\(826\) −9.50614 9.50614i −0.330761 0.330761i
\(827\) −26.8417 26.8417i −0.933377 0.933377i 0.0645378 0.997915i \(-0.479443\pi\)
−0.997915 + 0.0645378i \(0.979443\pi\)
\(828\) 3.68034 3.68034i 0.127901 0.127901i
\(829\) 4.91163 0.170588 0.0852939 0.996356i \(-0.472817\pi\)
0.0852939 + 0.996356i \(0.472817\pi\)
\(830\) 0 0
\(831\) 1.63131i 0.0565894i
\(832\) −16.6041 −0.575643
\(833\) −6.33193 + 12.5955i −0.219388 + 0.436409i
\(834\) 5.53734 0.191743
\(835\) 0 0
\(836\) −35.7954 + 35.7954i −1.23801 + 1.23801i
\(837\) 7.33826 0.253647
\(838\) −21.4447 + 21.4447i −0.740796 + 0.740796i
\(839\) 7.80546 + 7.80546i 0.269474 + 0.269474i 0.828888 0.559414i \(-0.188974\pi\)
−0.559414 + 0.828888i \(0.688974\pi\)
\(840\) 0 0
\(841\) 0.140644i 0.00484980i
\(842\) 26.7627i 0.922303i
\(843\) 2.11218 + 2.11218i 0.0727472 + 0.0727472i
\(844\) 5.08832 + 5.08832i 0.175147 + 0.175147i
\(845\) 0 0
\(846\) −71.8667 −2.47083
\(847\) −1.94513 + 1.94513i −0.0668353 + 0.0668353i
\(848\) 7.58701i 0.260539i
\(849\) 3.51525 0.120643
\(850\) 0 0
\(851\) 4.87909 0.167253
\(852\) 7.11081i 0.243612i
\(853\) −28.8483 + 28.8483i −0.987746 + 0.987746i −0.999926 0.0121803i \(-0.996123\pi\)
0.0121803 + 0.999926i \(0.496123\pi\)
\(854\) −21.8869 −0.748954
\(855\) 0 0
\(856\) 10.6771 + 10.6771i 0.364934 + 0.364934i
\(857\) 2.91939 + 2.91939i 0.0997244 + 0.0997244i 0.755209 0.655484i \(-0.227535\pi\)
−0.655484 + 0.755209i \(0.727535\pi\)
\(858\) 2.00112i 0.0683172i
\(859\) 8.53800i 0.291313i 0.989335 + 0.145656i \(0.0465294\pi\)
−0.989335 + 0.145656i \(0.953471\pi\)
\(860\) 0 0
\(861\) −1.60725 1.60725i −0.0547751 0.0547751i
\(862\) 19.0610 19.0610i 0.649219 0.649219i
\(863\) −3.08921 −0.105158 −0.0525790 0.998617i \(-0.516744\pi\)
−0.0525790 + 0.998617i \(0.516744\pi\)
\(864\) −5.40898 + 5.40898i −0.184017 + 0.184017i
\(865\) 0 0
\(866\) −16.6291 −0.565081
\(867\) −3.33067 0.490556i −0.113115 0.0166602i
\(868\) 35.9685 1.22085
\(869\) 59.7832i 2.02801i
\(870\) 0 0
\(871\) 0.358873 0.0121600
\(872\) 16.9624 16.9624i 0.574419 0.574419i
\(873\) −12.3790 12.3790i −0.418966 0.418966i
\(874\) 4.28927 + 4.28927i 0.145087 + 0.145087i
\(875\) 0 0
\(876\) 5.95494i 0.201199i
\(877\) 21.7154 + 21.7154i 0.733278 + 0.733278i 0.971268 0.237990i \(-0.0764884\pi\)
−0.237990 + 0.971268i \(0.576488\pi\)
\(878\) 50.3194 + 50.3194i 1.69820 + 1.69820i
\(879\) 1.52904 1.52904i 0.0515731 0.0515731i
\(880\) 0 0
\(881\) −6.18749 + 6.18749i −0.208462 + 0.208462i −0.803613 0.595152i \(-0.797092\pi\)
0.595152 + 0.803613i \(0.297092\pi\)
\(882\) 22.7666i 0.766591i
\(883\) 29.5875 0.995698 0.497849 0.867264i \(-0.334123\pi\)
0.497849 + 0.867264i \(0.334123\pi\)
\(884\) −14.3413 7.20958i −0.482351 0.242484i
\(885\) 0 0
\(886\) 80.1955i 2.69422i
\(887\) −5.92290 + 5.92290i −0.198872 + 0.198872i −0.799516 0.600645i \(-0.794911\pi\)
0.600645 + 0.799516i \(0.294911\pi\)
\(888\) 3.99729 0.134140
\(889\) −17.1744 + 17.1744i −0.576010 + 0.576010i
\(890\) 0 0
\(891\) −21.5813 21.5813i −0.723002 0.723002i
\(892\) 10.5702i 0.353917i
\(893\) 50.6360i 1.69447i
\(894\) −3.65602 3.65602i −0.122276 0.122276i
\(895\) 0 0
\(896\) −21.9007 + 21.9007i −0.731650 + 0.731650i
\(897\) 0.144966 0.00484028
\(898\) 1.85507 1.85507i 0.0619046 0.0619046i
\(899\) 33.5581i 1.11922i
\(900\) 0 0
\(901\) 18.3370 36.4761i 0.610895 1.21520i
\(902\) −48.1378 −1.60281
\(903\) 3.43281i 0.114237i
\(904\) 6.29665 6.29665i 0.209424 0.209424i
\(905\) 0 0
\(906\) −0.414963 + 0.414963i −0.0137862 + 0.0137862i
\(907\) −14.2310 14.2310i −0.472534 0.472534i 0.430200 0.902734i \(-0.358443\pi\)
−0.902734 + 0.430200i \(0.858443\pi\)
\(908\) 46.9521 + 46.9521i 1.55816 + 1.55816i
\(909\) 29.8952i 0.991562i
\(910\) 0 0
\(911\) 5.67260 + 5.67260i 0.187942 + 0.187942i 0.794806 0.606864i \(-0.207573\pi\)
−0.606864 + 0.794806i \(0.707573\pi\)
\(912\) −0.503382 0.503382i −0.0166686 0.0166686i
\(913\) 21.2390 21.2390i 0.702909 0.702909i
\(914\) 84.6381 2.79958
\(915\) 0 0
\(916\) 26.2702i 0.867991i
\(917\) 13.2929 0.438969
\(918\) −10.3915 + 3.43880i −0.342969 + 0.113497i
\(919\) 30.7678 1.01494 0.507468 0.861671i \(-0.330582\pi\)
0.507468 + 0.861671i \(0.330582\pi\)
\(920\) 0 0
\(921\) 0.956270 0.956270i 0.0315102 0.0315102i
\(922\) −49.6427 −1.63489
\(923\) −10.5728 + 10.5728i −0.348008 + 0.348008i
\(924\) 2.85925 + 2.85925i 0.0940623 + 0.0940623i
\(925\) 0 0
\(926\) 24.8193i 0.815614i
\(927\) 3.17756i 0.104365i
\(928\) 24.7354 + 24.7354i 0.811980 + 0.811980i
\(929\) 25.5343 + 25.5343i 0.837755 + 0.837755i 0.988563 0.150808i \(-0.0481876\pi\)
−0.150808 + 0.988563i \(0.548188\pi\)
\(930\) 0 0
\(931\) −16.0409 −0.525720
\(932\) 19.2600 19.2600i 0.630882 0.630882i
\(933\) 0.130904i 0.00428561i
\(934\) 49.5675 1.62190
\(935\) 0 0
\(936\) −8.96635 −0.293074
\(937\) 36.7492i 1.20054i −0.799796 0.600272i \(-0.795059\pi\)
0.799796 0.600272i \(-0.204941\pi\)
\(938\) 0.848168 0.848168i 0.0276937 0.0276937i
\(939\) −0.830420 −0.0270997
\(940\) 0 0
\(941\) −8.24873 8.24873i −0.268901 0.268901i 0.559756 0.828657i \(-0.310895\pi\)
−0.828657 + 0.559756i \(0.810895\pi\)
\(942\) −0.0579092 0.0579092i −0.00188678 0.00188678i
\(943\) 3.48722i 0.113559i
\(944\) 2.42054i 0.0787820i
\(945\) 0 0
\(946\) −51.4069 51.4069i −1.67138 1.67138i
\(947\) −32.9727 + 32.9727i −1.07147 + 1.07147i −0.0742285 + 0.997241i \(0.523649\pi\)
−0.997241 + 0.0742285i \(0.976351\pi\)
\(948\) −10.2578 −0.333158
\(949\) −8.85416 + 8.85416i −0.287418 + 0.287418i
\(950\) 0 0
\(951\) −4.21133 −0.136562
\(952\) −17.6178 + 5.83017i −0.570995 + 0.188957i
\(953\) −15.8298 −0.512778 −0.256389 0.966574i \(-0.582533\pi\)
−0.256389 + 0.966574i \(0.582533\pi\)
\(954\) 65.9311i 2.13460i
\(955\) 0 0
\(956\) 37.6839 1.21878
\(957\) 2.66763 2.66763i 0.0862322 0.0862322i
\(958\) −49.8493 49.8493i −1.61056 1.61056i
\(959\) 20.2684 + 20.2684i 0.654502 + 0.654502i
\(960\) 0 0
\(961\) 7.64513i 0.246617i
\(962\) −17.1827 17.1827i −0.553993 0.553993i
\(963\) −13.2910 13.2910i −0.428297 0.428297i
\(964\) −5.77825 + 5.77825i −0.186105 + 0.186105i
\(965\) 0 0
\(966\) 0.342616 0.342616i 0.0110235 0.0110235i
\(967\) 18.4139i 0.592152i −0.955164 0.296076i \(-0.904322\pi\)
0.955164 0.296076i \(-0.0956781\pi\)
\(968\) 3.45755 0.111130
\(969\) −1.20349 3.63673i −0.0386616 0.116829i
\(970\) 0 0
\(971\) 16.3118i 0.523470i 0.965140 + 0.261735i \(0.0842947\pi\)
−0.965140 + 0.261735i \(0.915705\pi\)
\(972\) −11.3596 + 11.3596i −0.364358 + 0.364358i
\(973\) −23.5277 −0.754263
\(974\) −4.25903 + 4.25903i −0.136468 + 0.136468i
\(975\) 0 0
\(976\) −2.78652 2.78652i −0.0891945 0.0891945i
\(977\) 52.7849i 1.68874i 0.535762 + 0.844369i \(0.320024\pi\)
−0.535762 + 0.844369i \(0.679976\pi\)
\(978\) 8.03898i 0.257058i
\(979\) 41.7291 + 41.7291i 1.33367 + 1.33367i
\(980\) 0 0
\(981\) −21.1151 + 21.1151i −0.674155 + 0.674155i
\(982\) 44.5252 1.42086
\(983\) 23.5672 23.5672i 0.751677 0.751677i −0.223115 0.974792i \(-0.571622\pi\)
0.974792 + 0.223115i \(0.0716225\pi\)
\(984\) 2.85697i 0.0910770i
\(985\) 0 0
\(986\) 15.7258 + 47.5205i 0.500810 + 1.51336i
\(987\) −4.04467 −0.128743
\(988\) 18.2643i 0.581065i
\(989\) −3.72404 + 3.72404i −0.118418 + 0.118418i
\(990\) 0 0
\(991\) −27.9267 + 27.9267i −0.887122 + 0.887122i −0.994246 0.107124i \(-0.965836\pi\)
0.107124 + 0.994246i \(0.465836\pi\)
\(992\) 28.4851 + 28.4851i 0.904402 + 0.904402i
\(993\) −3.88703 3.88703i −0.123351 0.123351i
\(994\) 49.9759i 1.58514i
\(995\) 0 0
\(996\) −3.64427 3.64427i −0.115473 0.115473i
\(997\) −18.8643 18.8643i −0.597437 0.597437i 0.342193 0.939630i \(-0.388830\pi\)
−0.939630 + 0.342193i \(0.888830\pi\)
\(998\) 44.0654 44.0654i 1.39487 1.39487i
\(999\) −10.0177 −0.316947
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.e.f.276.6 12
5.2 odd 4 425.2.j.c.174.1 12
5.3 odd 4 425.2.j.b.174.6 12
5.4 even 2 85.2.e.a.21.1 12
15.14 odd 2 765.2.k.b.361.6 12
17.8 even 8 7225.2.a.z.1.6 6
17.9 even 8 7225.2.a.bb.1.6 6
17.13 even 4 inner 425.2.e.f.251.1 12
20.19 odd 2 1360.2.bt.d.1041.3 12
85.9 even 8 1445.2.a.n.1.1 6
85.13 odd 4 425.2.j.c.149.1 12
85.19 even 8 1445.2.d.g.866.11 12
85.47 odd 4 425.2.j.b.149.6 12
85.49 even 8 1445.2.d.g.866.12 12
85.59 even 8 1445.2.a.o.1.1 6
85.64 even 4 85.2.e.a.81.6 yes 12
255.149 odd 4 765.2.k.b.676.1 12
340.319 odd 4 1360.2.bt.d.81.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.1 12 5.4 even 2
85.2.e.a.81.6 yes 12 85.64 even 4
425.2.e.f.251.1 12 17.13 even 4 inner
425.2.e.f.276.6 12 1.1 even 1 trivial
425.2.j.b.149.6 12 85.47 odd 4
425.2.j.b.174.6 12 5.3 odd 4
425.2.j.c.149.1 12 85.13 odd 4
425.2.j.c.174.1 12 5.2 odd 4
765.2.k.b.361.6 12 15.14 odd 2
765.2.k.b.676.1 12 255.149 odd 4
1360.2.bt.d.81.3 12 340.319 odd 4
1360.2.bt.d.1041.3 12 20.19 odd 2
1445.2.a.n.1.1 6 85.9 even 8
1445.2.a.o.1.1 6 85.59 even 8
1445.2.d.g.866.11 12 85.19 even 8
1445.2.d.g.866.12 12 85.49 even 8
7225.2.a.z.1.6 6 17.8 even 8
7225.2.a.bb.1.6 6 17.9 even 8