Properties

Label 1360.2.bt.d.1041.3
Level $1360$
Weight $2$
Character 1360.1041
Analytic conductor $10.860$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1360,2,Mod(81,1360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1360, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1360.81");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1360.bt (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8596546749\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 1041.3
Root \(-1.19804i\) of defining polynomial
Character \(\chi\) \(=\) 1360.1041
Dual form 1360.2.bt.d.81.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.140032 + 0.140032i) q^{3} +(0.707107 - 0.707107i) q^{5} +(1.33807 + 1.33807i) q^{7} +2.96078i q^{9} +(-2.49536 - 2.49536i) q^{11} +1.27324 q^{13} +0.198035i q^{15} +(3.68381 + 1.85190i) q^{17} +4.69149i q^{19} -0.374744 q^{21} +(0.406537 + 0.406537i) q^{23} -1.00000i q^{25} +(-0.834700 - 0.834700i) q^{27} +(-3.81711 + 3.81711i) q^{29} +(4.39574 - 4.39574i) q^{31} +0.698861 q^{33} +1.89231 q^{35} +(-6.00080 + 6.00080i) q^{37} +(-0.178294 + 0.178294i) q^{39} +(4.28894 + 4.28894i) q^{41} +9.16040i q^{43} +(2.09359 + 2.09359i) q^{45} +10.7932 q^{47} -3.41915i q^{49} +(-0.775177 + 0.256526i) q^{51} -9.90174i q^{53} -3.52898 q^{55} +(-0.656958 - 0.656958i) q^{57} -3.15903i q^{59} +(3.63666 + 3.63666i) q^{61} +(-3.96173 + 3.96173i) q^{63} +(0.900316 - 0.900316i) q^{65} -0.281859 q^{67} -0.113856 q^{69} +(-8.30385 + 8.30385i) q^{71} +(-6.95405 + 6.95405i) q^{73} +(0.140032 + 0.140032i) q^{75} -6.67793i q^{77} +(11.9789 + 11.9789i) q^{79} -8.64858 q^{81} -8.51139i q^{83} +(3.91434 - 1.29536i) q^{85} -1.06903i q^{87} +16.7227 q^{89} +(1.70368 + 1.70368i) q^{91} +1.23109i q^{93} +(3.31738 + 3.31738i) q^{95} +(4.18100 - 4.18100i) q^{97} +(7.38823 - 7.38823i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{3} + 4 q^{11} + 12 q^{17} - 16 q^{21} - 12 q^{23} + 4 q^{27} - 12 q^{29} - 16 q^{33} - 16 q^{35} + 12 q^{37} + 20 q^{39} - 24 q^{41} + 8 q^{45} + 48 q^{47} - 32 q^{51} + 40 q^{61} - 12 q^{63}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1360\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(341\) \(511\) \(817\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.140032 + 0.140032i −0.0808475 + 0.0808475i −0.746374 0.665527i \(-0.768207\pi\)
0.665527 + 0.746374i \(0.268207\pi\)
\(4\) 0 0
\(5\) 0.707107 0.707107i 0.316228 0.316228i
\(6\) 0 0
\(7\) 1.33807 + 1.33807i 0.505742 + 0.505742i 0.913217 0.407475i \(-0.133591\pi\)
−0.407475 + 0.913217i \(0.633591\pi\)
\(8\) 0 0
\(9\) 2.96078i 0.986927i
\(10\) 0 0
\(11\) −2.49536 2.49536i −0.752381 0.752381i 0.222542 0.974923i \(-0.428564\pi\)
−0.974923 + 0.222542i \(0.928564\pi\)
\(12\) 0 0
\(13\) 1.27324 0.353133 0.176566 0.984289i \(-0.443501\pi\)
0.176566 + 0.984289i \(0.443501\pi\)
\(14\) 0 0
\(15\) 0.198035i 0.0511324i
\(16\) 0 0
\(17\) 3.68381 + 1.85190i 0.893455 + 0.449152i
\(18\) 0 0
\(19\) 4.69149i 1.07630i 0.842849 + 0.538151i \(0.180877\pi\)
−0.842849 + 0.538151i \(0.819123\pi\)
\(20\) 0 0
\(21\) −0.374744 −0.0817759
\(22\) 0 0
\(23\) 0.406537 + 0.406537i 0.0847687 + 0.0847687i 0.748220 0.663451i \(-0.230909\pi\)
−0.663451 + 0.748220i \(0.730909\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) −0.834700 0.834700i −0.160638 0.160638i
\(28\) 0 0
\(29\) −3.81711 + 3.81711i −0.708819 + 0.708819i −0.966287 0.257468i \(-0.917112\pi\)
0.257468 + 0.966287i \(0.417112\pi\)
\(30\) 0 0
\(31\) 4.39574 4.39574i 0.789499 0.789499i −0.191913 0.981412i \(-0.561469\pi\)
0.981412 + 0.191913i \(0.0614691\pi\)
\(32\) 0 0
\(33\) 0.698861 0.121656
\(34\) 0 0
\(35\) 1.89231 0.319859
\(36\) 0 0
\(37\) −6.00080 + 6.00080i −0.986526 + 0.986526i −0.999910 0.0133844i \(-0.995739\pi\)
0.0133844 + 0.999910i \(0.495739\pi\)
\(38\) 0 0
\(39\) −0.178294 + 0.178294i −0.0285499 + 0.0285499i
\(40\) 0 0
\(41\) 4.28894 + 4.28894i 0.669819 + 0.669819i 0.957674 0.287855i \(-0.0929421\pi\)
−0.287855 + 0.957674i \(0.592942\pi\)
\(42\) 0 0
\(43\) 9.16040i 1.39695i 0.715635 + 0.698474i \(0.246137\pi\)
−0.715635 + 0.698474i \(0.753863\pi\)
\(44\) 0 0
\(45\) 2.09359 + 2.09359i 0.312094 + 0.312094i
\(46\) 0 0
\(47\) 10.7932 1.57434 0.787172 0.616734i \(-0.211545\pi\)
0.787172 + 0.616734i \(0.211545\pi\)
\(48\) 0 0
\(49\) 3.41915i 0.488450i
\(50\) 0 0
\(51\) −0.775177 + 0.256526i −0.108546 + 0.0359208i
\(52\) 0 0
\(53\) 9.90174i 1.36011i −0.733162 0.680054i \(-0.761956\pi\)
0.733162 0.680054i \(-0.238044\pi\)
\(54\) 0 0
\(55\) −3.52898 −0.475847
\(56\) 0 0
\(57\) −0.656958 0.656958i −0.0870163 0.0870163i
\(58\) 0 0
\(59\) 3.15903i 0.411270i −0.978629 0.205635i \(-0.934074\pi\)
0.978629 0.205635i \(-0.0659260\pi\)
\(60\) 0 0
\(61\) 3.63666 + 3.63666i 0.465627 + 0.465627i 0.900495 0.434867i \(-0.143205\pi\)
−0.434867 + 0.900495i \(0.643205\pi\)
\(62\) 0 0
\(63\) −3.96173 + 3.96173i −0.499130 + 0.499130i
\(64\) 0 0
\(65\) 0.900316 0.900316i 0.111670 0.111670i
\(66\) 0 0
\(67\) −0.281859 −0.0344345 −0.0172173 0.999852i \(-0.505481\pi\)
−0.0172173 + 0.999852i \(0.505481\pi\)
\(68\) 0 0
\(69\) −0.113856 −0.0137067
\(70\) 0 0
\(71\) −8.30385 + 8.30385i −0.985486 + 0.985486i −0.999896 0.0144101i \(-0.995413\pi\)
0.0144101 + 0.999896i \(0.495413\pi\)
\(72\) 0 0
\(73\) −6.95405 + 6.95405i −0.813910 + 0.813910i −0.985218 0.171308i \(-0.945201\pi\)
0.171308 + 0.985218i \(0.445201\pi\)
\(74\) 0 0
\(75\) 0.140032 + 0.140032i 0.0161695 + 0.0161695i
\(76\) 0 0
\(77\) 6.67793i 0.761021i
\(78\) 0 0
\(79\) 11.9789 + 11.9789i 1.34773 + 1.34773i 0.888126 + 0.459600i \(0.152007\pi\)
0.459600 + 0.888126i \(0.347993\pi\)
\(80\) 0 0
\(81\) −8.64858 −0.960953
\(82\) 0 0
\(83\) 8.51139i 0.934246i −0.884192 0.467123i \(-0.845291\pi\)
0.884192 0.467123i \(-0.154709\pi\)
\(84\) 0 0
\(85\) 3.91434 1.29536i 0.424570 0.140501i
\(86\) 0 0
\(87\) 1.06903i 0.114613i
\(88\) 0 0
\(89\) 16.7227 1.77260 0.886300 0.463112i \(-0.153267\pi\)
0.886300 + 0.463112i \(0.153267\pi\)
\(90\) 0 0
\(91\) 1.70368 + 1.70368i 0.178594 + 0.178594i
\(92\) 0 0
\(93\) 1.23109i 0.127658i
\(94\) 0 0
\(95\) 3.31738 + 3.31738i 0.340356 + 0.340356i
\(96\) 0 0
\(97\) 4.18100 4.18100i 0.424516 0.424516i −0.462239 0.886755i \(-0.652954\pi\)
0.886755 + 0.462239i \(0.152954\pi\)
\(98\) 0 0
\(99\) 7.38823 7.38823i 0.742545 0.742545i
\(100\) 0 0
\(101\) 10.0971 1.00470 0.502348 0.864666i \(-0.332470\pi\)
0.502348 + 0.864666i \(0.332470\pi\)
\(102\) 0 0
\(103\) 1.07322 0.105747 0.0528736 0.998601i \(-0.483162\pi\)
0.0528736 + 0.998601i \(0.483162\pi\)
\(104\) 0 0
\(105\) −0.264984 + 0.264984i −0.0258598 + 0.0258598i
\(106\) 0 0
\(107\) −4.48903 + 4.48903i −0.433971 + 0.433971i −0.889977 0.456006i \(-0.849280\pi\)
0.456006 + 0.889977i \(0.349280\pi\)
\(108\) 0 0
\(109\) 7.13161 + 7.13161i 0.683085 + 0.683085i 0.960694 0.277609i \(-0.0895421\pi\)
−0.277609 + 0.960694i \(0.589542\pi\)
\(110\) 0 0
\(111\) 1.68061i 0.159516i
\(112\) 0 0
\(113\) −2.64734 2.64734i −0.249041 0.249041i 0.571536 0.820577i \(-0.306348\pi\)
−0.820577 + 0.571536i \(0.806348\pi\)
\(114\) 0 0
\(115\) 0.574930 0.0536125
\(116\) 0 0
\(117\) 3.76978i 0.348516i
\(118\) 0 0
\(119\) 2.45122 + 7.40715i 0.224703 + 0.679013i
\(120\) 0 0
\(121\) 1.45368i 0.132153i
\(122\) 0 0
\(123\) −1.20118 −0.108306
\(124\) 0 0
\(125\) −0.707107 0.707107i −0.0632456 0.0632456i
\(126\) 0 0
\(127\) 12.8352i 1.13894i 0.822012 + 0.569470i \(0.192852\pi\)
−0.822012 + 0.569470i \(0.807148\pi\)
\(128\) 0 0
\(129\) −1.28275 1.28275i −0.112940 0.112940i
\(130\) 0 0
\(131\) −4.96719 + 4.96719i −0.433985 + 0.433985i −0.889982 0.455996i \(-0.849283\pi\)
0.455996 + 0.889982i \(0.349283\pi\)
\(132\) 0 0
\(133\) −6.27753 + 6.27753i −0.544331 + 0.544331i
\(134\) 0 0
\(135\) −1.18044 −0.101596
\(136\) 0 0
\(137\) −15.1475 −1.29414 −0.647071 0.762430i \(-0.724006\pi\)
−0.647071 + 0.762430i \(0.724006\pi\)
\(138\) 0 0
\(139\) 8.79167 8.79167i 0.745700 0.745700i −0.227969 0.973668i \(-0.573208\pi\)
0.973668 + 0.227969i \(0.0732083\pi\)
\(140\) 0 0
\(141\) −1.51139 + 1.51139i −0.127282 + 0.127282i
\(142\) 0 0
\(143\) −3.17719 3.17719i −0.265690 0.265690i
\(144\) 0 0
\(145\) 5.39821i 0.448297i
\(146\) 0 0
\(147\) 0.478791 + 0.478791i 0.0394900 + 0.0394900i
\(148\) 0 0
\(149\) 11.6094 0.951076 0.475538 0.879695i \(-0.342253\pi\)
0.475538 + 0.879695i \(0.342253\pi\)
\(150\) 0 0
\(151\) 1.31768i 0.107231i 0.998562 + 0.0536156i \(0.0170746\pi\)
−0.998562 + 0.0536156i \(0.982925\pi\)
\(152\) 0 0
\(153\) −5.48307 + 10.9070i −0.443280 + 0.881776i
\(154\) 0 0
\(155\) 6.21652i 0.499323i
\(156\) 0 0
\(157\) −0.183886 −0.0146757 −0.00733783 0.999973i \(-0.502336\pi\)
−0.00733783 + 0.999973i \(0.502336\pi\)
\(158\) 0 0
\(159\) 1.38656 + 1.38656i 0.109961 + 0.109961i
\(160\) 0 0
\(161\) 1.08795i 0.0857422i
\(162\) 0 0
\(163\) −12.7635 12.7635i −0.999718 0.999718i 0.000282311 1.00000i \(-0.499910\pi\)
−1.00000 0.000282311i \(0.999910\pi\)
\(164\) 0 0
\(165\) 0.494170 0.494170i 0.0384711 0.0384711i
\(166\) 0 0
\(167\) 5.35646 5.35646i 0.414495 0.414495i −0.468806 0.883301i \(-0.655316\pi\)
0.883301 + 0.468806i \(0.155316\pi\)
\(168\) 0 0
\(169\) −11.3789 −0.875297
\(170\) 0 0
\(171\) −13.8905 −1.06223
\(172\) 0 0
\(173\) −4.89485 + 4.89485i −0.372149 + 0.372149i −0.868259 0.496111i \(-0.834761\pi\)
0.496111 + 0.868259i \(0.334761\pi\)
\(174\) 0 0
\(175\) 1.33807 1.33807i 0.101148 0.101148i
\(176\) 0 0
\(177\) 0.442365 + 0.442365i 0.0332502 + 0.0332502i
\(178\) 0 0
\(179\) 10.2788i 0.768274i −0.923276 0.384137i \(-0.874499\pi\)
0.923276 0.384137i \(-0.125501\pi\)
\(180\) 0 0
\(181\) −14.1846 14.1846i −1.05434 1.05434i −0.998436 0.0558986i \(-0.982198\pi\)
−0.0558986 0.998436i \(-0.517802\pi\)
\(182\) 0 0
\(183\) −1.01850 −0.0752896
\(184\) 0 0
\(185\) 8.48642i 0.623934i
\(186\) 0 0
\(187\) −4.57128 13.8136i −0.334285 1.01015i
\(188\) 0 0
\(189\) 2.23377i 0.162483i
\(190\) 0 0
\(191\) −4.11140 −0.297491 −0.148745 0.988876i \(-0.547523\pi\)
−0.148745 + 0.988876i \(0.547523\pi\)
\(192\) 0 0
\(193\) −10.1106 10.1106i −0.727779 0.727779i 0.242398 0.970177i \(-0.422066\pi\)
−0.970177 + 0.242398i \(0.922066\pi\)
\(194\) 0 0
\(195\) 0.252146i 0.0180565i
\(196\) 0 0
\(197\) 3.78391 + 3.78391i 0.269593 + 0.269593i 0.828936 0.559343i \(-0.188947\pi\)
−0.559343 + 0.828936i \(0.688947\pi\)
\(198\) 0 0
\(199\) −2.38613 + 2.38613i −0.169148 + 0.169148i −0.786605 0.617457i \(-0.788163\pi\)
0.617457 + 0.786605i \(0.288163\pi\)
\(200\) 0 0
\(201\) 0.0394692 0.0394692i 0.00278394 0.00278394i
\(202\) 0 0
\(203\) −10.2151 −0.716959
\(204\) 0 0
\(205\) 6.06547 0.423631
\(206\) 0 0
\(207\) −1.20367 + 1.20367i −0.0836606 + 0.0836606i
\(208\) 0 0
\(209\) 11.7070 11.7070i 0.809788 0.809788i
\(210\) 0 0
\(211\) 1.66415 + 1.66415i 0.114565 + 0.114565i 0.762065 0.647500i \(-0.224186\pi\)
−0.647500 + 0.762065i \(0.724186\pi\)
\(212\) 0 0
\(213\) 2.32561i 0.159348i
\(214\) 0 0
\(215\) 6.47738 + 6.47738i 0.441754 + 0.441754i
\(216\) 0 0
\(217\) 11.7636 0.798565
\(218\) 0 0
\(219\) 1.94758i 0.131605i
\(220\) 0 0
\(221\) 4.69037 + 2.35791i 0.315508 + 0.158610i
\(222\) 0 0
\(223\) 3.45702i 0.231499i −0.993278 0.115750i \(-0.963073\pi\)
0.993278 0.115750i \(-0.0369270\pi\)
\(224\) 0 0
\(225\) 2.96078 0.197385
\(226\) 0 0
\(227\) −15.3558 15.3558i −1.01920 1.01920i −0.999812 0.0193889i \(-0.993828\pi\)
−0.0193889 0.999812i \(-0.506172\pi\)
\(228\) 0 0
\(229\) 8.59173i 0.567757i −0.958860 0.283879i \(-0.908379\pi\)
0.958860 0.283879i \(-0.0916213\pi\)
\(230\) 0 0
\(231\) 0.935124 + 0.935124i 0.0615266 + 0.0615266i
\(232\) 0 0
\(233\) 6.29903 6.29903i 0.412663 0.412663i −0.470002 0.882665i \(-0.655747\pi\)
0.882665 + 0.470002i \(0.155747\pi\)
\(234\) 0 0
\(235\) 7.63191 7.63191i 0.497851 0.497851i
\(236\) 0 0
\(237\) −3.35484 −0.217921
\(238\) 0 0
\(239\) 12.3246 0.797212 0.398606 0.917122i \(-0.369494\pi\)
0.398606 + 0.917122i \(0.369494\pi\)
\(240\) 0 0
\(241\) 1.88979 1.88979i 0.121732 0.121732i −0.643616 0.765348i \(-0.722567\pi\)
0.765348 + 0.643616i \(0.222567\pi\)
\(242\) 0 0
\(243\) 3.71518 3.71518i 0.238329 0.238329i
\(244\) 0 0
\(245\) −2.41771 2.41771i −0.154462 0.154462i
\(246\) 0 0
\(247\) 5.97338i 0.380077i
\(248\) 0 0
\(249\) 1.19187 + 1.19187i 0.0755315 + 0.0755315i
\(250\) 0 0
\(251\) 27.4415 1.73209 0.866046 0.499964i \(-0.166653\pi\)
0.866046 + 0.499964i \(0.166653\pi\)
\(252\) 0 0
\(253\) 2.02891i 0.127557i
\(254\) 0 0
\(255\) −0.366741 + 0.729524i −0.0229662 + 0.0456846i
\(256\) 0 0
\(257\) 22.8819i 1.42734i −0.700484 0.713668i \(-0.747032\pi\)
0.700484 0.713668i \(-0.252968\pi\)
\(258\) 0 0
\(259\) −16.0590 −0.997855
\(260\) 0 0
\(261\) −11.3016 11.3016i −0.699553 0.699553i
\(262\) 0 0
\(263\) 9.48703i 0.584995i −0.956266 0.292498i \(-0.905514\pi\)
0.956266 0.292498i \(-0.0944864\pi\)
\(264\) 0 0
\(265\) −7.00158 7.00158i −0.430104 0.430104i
\(266\) 0 0
\(267\) −2.34171 + 2.34171i −0.143310 + 0.143310i
\(268\) 0 0
\(269\) 4.30494 4.30494i 0.262477 0.262477i −0.563583 0.826060i \(-0.690577\pi\)
0.826060 + 0.563583i \(0.190577\pi\)
\(270\) 0 0
\(271\) −23.6580 −1.43712 −0.718562 0.695463i \(-0.755199\pi\)
−0.718562 + 0.695463i \(0.755199\pi\)
\(272\) 0 0
\(273\) −0.477139 −0.0288778
\(274\) 0 0
\(275\) −2.49536 + 2.49536i −0.150476 + 0.150476i
\(276\) 0 0
\(277\) −5.82477 + 5.82477i −0.349976 + 0.349976i −0.860101 0.510124i \(-0.829599\pi\)
0.510124 + 0.860101i \(0.329599\pi\)
\(278\) 0 0
\(279\) 13.0148 + 13.0148i 0.779178 + 0.779178i
\(280\) 0 0
\(281\) 15.0835i 0.899808i −0.893077 0.449904i \(-0.851458\pi\)
0.893077 0.449904i \(-0.148542\pi\)
\(282\) 0 0
\(283\) −12.5516 12.5516i −0.746115 0.746115i 0.227632 0.973747i \(-0.426902\pi\)
−0.973747 + 0.227632i \(0.926902\pi\)
\(284\) 0 0
\(285\) −0.929079 −0.0550339
\(286\) 0 0
\(287\) 11.4778i 0.677511i
\(288\) 0 0
\(289\) 10.1409 + 13.6441i 0.596525 + 0.802594i
\(290\) 0 0
\(291\) 1.17095i 0.0686421i
\(292\) 0 0
\(293\) 10.9192 0.637907 0.318953 0.947770i \(-0.396669\pi\)
0.318953 + 0.947770i \(0.396669\pi\)
\(294\) 0 0
\(295\) −2.23377 2.23377i −0.130055 0.130055i
\(296\) 0 0
\(297\) 4.16576i 0.241722i
\(298\) 0 0
\(299\) 0.517618 + 0.517618i 0.0299346 + 0.0299346i
\(300\) 0 0
\(301\) −12.2572 + 12.2572i −0.706495 + 0.706495i
\(302\) 0 0
\(303\) −1.41391 + 1.41391i −0.0812272 + 0.0812272i
\(304\) 0 0
\(305\) 5.14302 0.294489
\(306\) 0 0
\(307\) −6.82894 −0.389748 −0.194874 0.980828i \(-0.562430\pi\)
−0.194874 + 0.980828i \(0.562430\pi\)
\(308\) 0 0
\(309\) −0.150285 + 0.150285i −0.00854940 + 0.00854940i
\(310\) 0 0
\(311\) −0.467408 + 0.467408i −0.0265043 + 0.0265043i −0.720235 0.693730i \(-0.755966\pi\)
0.693730 + 0.720235i \(0.255966\pi\)
\(312\) 0 0
\(313\) −2.96511 2.96511i −0.167598 0.167598i 0.618325 0.785923i \(-0.287812\pi\)
−0.785923 + 0.618325i \(0.787812\pi\)
\(314\) 0 0
\(315\) 5.60273i 0.315678i
\(316\) 0 0
\(317\) −15.0370 15.0370i −0.844564 0.844564i 0.144884 0.989449i \(-0.453719\pi\)
−0.989449 + 0.144884i \(0.953719\pi\)
\(318\) 0 0
\(319\) 19.0502 1.06660
\(320\) 0 0
\(321\) 1.25721i 0.0701709i
\(322\) 0 0
\(323\) −8.68817 + 17.2826i −0.483423 + 0.961627i
\(324\) 0 0
\(325\) 1.27324i 0.0706266i
\(326\) 0 0
\(327\) −1.99731 −0.110451
\(328\) 0 0
\(329\) 14.4420 + 14.4420i 0.796211 + 0.796211i
\(330\) 0 0
\(331\) 27.7582i 1.52573i −0.646559 0.762864i \(-0.723793\pi\)
0.646559 0.762864i \(-0.276207\pi\)
\(332\) 0 0
\(333\) −17.7671 17.7671i −0.973630 0.973630i
\(334\) 0 0
\(335\) −0.199304 + 0.199304i −0.0108891 + 0.0108891i
\(336\) 0 0
\(337\) 6.20814 6.20814i 0.338179 0.338179i −0.517503 0.855682i \(-0.673138\pi\)
0.855682 + 0.517503i \(0.173138\pi\)
\(338\) 0 0
\(339\) 0.741426 0.0402687
\(340\) 0 0
\(341\) −21.9380 −1.18801
\(342\) 0 0
\(343\) 13.9415 13.9415i 0.752772 0.752772i
\(344\) 0 0
\(345\) −0.0805085 + 0.0805085i −0.00433443 + 0.00433443i
\(346\) 0 0
\(347\) −3.72663 3.72663i −0.200056 0.200056i 0.599968 0.800024i \(-0.295180\pi\)
−0.800024 + 0.599968i \(0.795180\pi\)
\(348\) 0 0
\(349\) 10.8634i 0.581504i −0.956799 0.290752i \(-0.906095\pi\)
0.956799 0.290752i \(-0.0939054\pi\)
\(350\) 0 0
\(351\) −1.06277 1.06277i −0.0567266 0.0567266i
\(352\) 0 0
\(353\) −27.2304 −1.44933 −0.724664 0.689102i \(-0.758005\pi\)
−0.724664 + 0.689102i \(0.758005\pi\)
\(354\) 0 0
\(355\) 11.7434i 0.623276i
\(356\) 0 0
\(357\) −1.38049 0.693989i −0.0730631 0.0367298i
\(358\) 0 0
\(359\) 13.0217i 0.687258i −0.939105 0.343629i \(-0.888344\pi\)
0.939105 0.343629i \(-0.111656\pi\)
\(360\) 0 0
\(361\) −3.01006 −0.158424
\(362\) 0 0
\(363\) −0.203562 0.203562i −0.0106842 0.0106842i
\(364\) 0 0
\(365\) 9.83451i 0.514762i
\(366\) 0 0
\(367\) −11.8536 11.8536i −0.618755 0.618755i 0.326457 0.945212i \(-0.394145\pi\)
−0.945212 + 0.326457i \(0.894145\pi\)
\(368\) 0 0
\(369\) −12.6986 + 12.6986i −0.661063 + 0.661063i
\(370\) 0 0
\(371\) 13.2492 13.2492i 0.687864 0.687864i
\(372\) 0 0
\(373\) 1.14057 0.0590567 0.0295283 0.999564i \(-0.490599\pi\)
0.0295283 + 0.999564i \(0.490599\pi\)
\(374\) 0 0
\(375\) 0.198035 0.0102265
\(376\) 0 0
\(377\) −4.86009 + 4.86009i −0.250307 + 0.250307i
\(378\) 0 0
\(379\) −6.20062 + 6.20062i −0.318504 + 0.318504i −0.848192 0.529688i \(-0.822309\pi\)
0.529688 + 0.848192i \(0.322309\pi\)
\(380\) 0 0
\(381\) −1.79734 1.79734i −0.0920805 0.0920805i
\(382\) 0 0
\(383\) 11.9977i 0.613053i 0.951862 + 0.306526i \(0.0991668\pi\)
−0.951862 + 0.306526i \(0.900833\pi\)
\(384\) 0 0
\(385\) −4.72201 4.72201i −0.240656 0.240656i
\(386\) 0 0
\(387\) −27.1220 −1.37869
\(388\) 0 0
\(389\) 0.165600i 0.00839627i −0.999991 0.00419813i \(-0.998664\pi\)
0.999991 0.00419813i \(-0.00133631\pi\)
\(390\) 0 0
\(391\) 0.744739 + 2.25047i 0.0376631 + 0.113811i
\(392\) 0 0
\(393\) 1.39113i 0.0701733i
\(394\) 0 0
\(395\) 16.9407 0.852377
\(396\) 0 0
\(397\) 21.5282 + 21.5282i 1.08047 + 1.08047i 0.996465 + 0.0840060i \(0.0267715\pi\)
0.0840060 + 0.996465i \(0.473228\pi\)
\(398\) 0 0
\(399\) 1.75811i 0.0880155i
\(400\) 0 0
\(401\) −26.0214 26.0214i −1.29945 1.29945i −0.928757 0.370690i \(-0.879121\pi\)
−0.370690 0.928757i \(-0.620879\pi\)
\(402\) 0 0
\(403\) 5.59683 5.59683i 0.278798 0.278798i
\(404\) 0 0
\(405\) −6.11547 + 6.11547i −0.303880 + 0.303880i
\(406\) 0 0
\(407\) 29.9484 1.48449
\(408\) 0 0
\(409\) 7.05575 0.348885 0.174442 0.984667i \(-0.444188\pi\)
0.174442 + 0.984667i \(0.444188\pi\)
\(410\) 0 0
\(411\) 2.12114 2.12114i 0.104628 0.104628i
\(412\) 0 0
\(413\) 4.22699 4.22699i 0.207997 0.207997i
\(414\) 0 0
\(415\) −6.01846 6.01846i −0.295435 0.295435i
\(416\) 0 0
\(417\) 2.46223i 0.120576i
\(418\) 0 0
\(419\) −9.53560 9.53560i −0.465844 0.465844i 0.434721 0.900565i \(-0.356847\pi\)
−0.900565 + 0.434721i \(0.856847\pi\)
\(420\) 0 0
\(421\) 11.9003 0.579984 0.289992 0.957029i \(-0.406347\pi\)
0.289992 + 0.957029i \(0.406347\pi\)
\(422\) 0 0
\(423\) 31.9562i 1.55376i
\(424\) 0 0
\(425\) 1.85190 3.68381i 0.0898304 0.178691i
\(426\) 0 0
\(427\) 9.73220i 0.470974i
\(428\) 0 0
\(429\) 0.889817 0.0429608
\(430\) 0 0
\(431\) 8.47563 + 8.47563i 0.408257 + 0.408257i 0.881130 0.472874i \(-0.156783\pi\)
−0.472874 + 0.881130i \(0.656783\pi\)
\(432\) 0 0
\(433\) 7.39430i 0.355347i −0.984089 0.177674i \(-0.943143\pi\)
0.984089 0.177674i \(-0.0568572\pi\)
\(434\) 0 0
\(435\) −0.755922 0.755922i −0.0362437 0.0362437i
\(436\) 0 0
\(437\) −1.90726 + 1.90726i −0.0912367 + 0.0912367i
\(438\) 0 0
\(439\) −22.3750 + 22.3750i −1.06790 + 1.06790i −0.0703785 + 0.997520i \(0.522421\pi\)
−0.997520 + 0.0703785i \(0.977579\pi\)
\(440\) 0 0
\(441\) 10.1234 0.482065
\(442\) 0 0
\(443\) −35.6597 −1.69424 −0.847121 0.531401i \(-0.821666\pi\)
−0.847121 + 0.531401i \(0.821666\pi\)
\(444\) 0 0
\(445\) 11.8247 11.8247i 0.560545 0.560545i
\(446\) 0 0
\(447\) −1.62568 + 1.62568i −0.0768921 + 0.0768921i
\(448\) 0 0
\(449\) −0.824876 0.824876i −0.0389283 0.0389283i 0.687375 0.726303i \(-0.258763\pi\)
−0.726303 + 0.687375i \(0.758763\pi\)
\(450\) 0 0
\(451\) 21.4049i 1.00792i
\(452\) 0 0
\(453\) −0.184517 0.184517i −0.00866938 0.00866938i
\(454\) 0 0
\(455\) 2.40937 0.112953
\(456\) 0 0
\(457\) 37.6351i 1.76050i 0.474514 + 0.880248i \(0.342624\pi\)
−0.474514 + 0.880248i \(0.657376\pi\)
\(458\) 0 0
\(459\) −1.52910 4.62066i −0.0713721 0.215674i
\(460\) 0 0
\(461\) 22.0741i 1.02809i 0.857763 + 0.514046i \(0.171854\pi\)
−0.857763 + 0.514046i \(0.828146\pi\)
\(462\) 0 0
\(463\) −11.0361 −0.512893 −0.256447 0.966558i \(-0.582552\pi\)
−0.256447 + 0.966558i \(0.582552\pi\)
\(464\) 0 0
\(465\) 0.870512 + 0.870512i 0.0403690 + 0.0403690i
\(466\) 0 0
\(467\) 22.0407i 1.01992i −0.860198 0.509960i \(-0.829660\pi\)
0.860198 0.509960i \(-0.170340\pi\)
\(468\) 0 0
\(469\) −0.377146 0.377146i −0.0174150 0.0174150i
\(470\) 0 0
\(471\) 0.0257499 0.0257499i 0.00118649 0.00118649i
\(472\) 0 0
\(473\) 22.8585 22.8585i 1.05104 1.05104i
\(474\) 0 0
\(475\) 4.69149 0.215260
\(476\) 0 0
\(477\) 29.3169 1.34233
\(478\) 0 0
\(479\) 22.1659 22.1659i 1.01279 1.01279i 0.0128704 0.999917i \(-0.495903\pi\)
0.999917 0.0128704i \(-0.00409688\pi\)
\(480\) 0 0
\(481\) −7.64045 + 7.64045i −0.348375 + 0.348375i
\(482\) 0 0
\(483\) −0.152347 0.152347i −0.00693204 0.00693204i
\(484\) 0 0
\(485\) 5.91282i 0.268487i
\(486\) 0 0
\(487\) 1.89382 + 1.89382i 0.0858170 + 0.0858170i 0.748712 0.662895i \(-0.230673\pi\)
−0.662895 + 0.748712i \(0.730673\pi\)
\(488\) 0 0
\(489\) 3.57461 0.161649
\(490\) 0 0
\(491\) 19.7985i 0.893496i 0.894660 + 0.446748i \(0.147418\pi\)
−0.894660 + 0.446748i \(0.852582\pi\)
\(492\) 0 0
\(493\) −21.1304 + 6.99260i −0.951666 + 0.314931i
\(494\) 0 0
\(495\) 10.4485i 0.469627i
\(496\) 0 0
\(497\) −22.2222 −0.996803
\(498\) 0 0
\(499\) 19.5941 + 19.5941i 0.877152 + 0.877152i 0.993239 0.116087i \(-0.0370351\pi\)
−0.116087 + 0.993239i \(0.537035\pi\)
\(500\) 0 0
\(501\) 1.50015i 0.0670218i
\(502\) 0 0
\(503\) −2.90654 2.90654i −0.129596 0.129596i 0.639333 0.768930i \(-0.279210\pi\)
−0.768930 + 0.639333i \(0.779210\pi\)
\(504\) 0 0
\(505\) 7.13971 7.13971i 0.317713 0.317713i
\(506\) 0 0
\(507\) 1.59340 1.59340i 0.0707656 0.0707656i
\(508\) 0 0
\(509\) 41.9347 1.85872 0.929362 0.369169i \(-0.120358\pi\)
0.929362 + 0.369169i \(0.120358\pi\)
\(510\) 0 0
\(511\) −18.6100 −0.823256
\(512\) 0 0
\(513\) 3.91599 3.91599i 0.172895 0.172895i
\(514\) 0 0
\(515\) 0.758880 0.758880i 0.0334402 0.0334402i
\(516\) 0 0
\(517\) −26.9328 26.9328i −1.18451 1.18451i
\(518\) 0 0
\(519\) 1.37087i 0.0601746i
\(520\) 0 0
\(521\) 25.0405 + 25.0405i 1.09705 + 1.09705i 0.994754 + 0.102292i \(0.0326176\pi\)
0.102292 + 0.994754i \(0.467382\pi\)
\(522\) 0 0
\(523\) −6.37043 −0.278560 −0.139280 0.990253i \(-0.544479\pi\)
−0.139280 + 0.990253i \(0.544479\pi\)
\(524\) 0 0
\(525\) 0.374744i 0.0163552i
\(526\) 0 0
\(527\) 24.3336 8.05261i 1.05999 0.350777i
\(528\) 0 0
\(529\) 22.6695i 0.985629i
\(530\) 0 0
\(531\) 9.35319 0.405894
\(532\) 0 0
\(533\) 5.46084 + 5.46084i 0.236535 + 0.236535i
\(534\) 0 0
\(535\) 6.34844i 0.274467i
\(536\) 0 0
\(537\) 1.43936 + 1.43936i 0.0621130 + 0.0621130i
\(538\) 0 0
\(539\) −8.53203 + 8.53203i −0.367501 + 0.367501i
\(540\) 0 0
\(541\) −11.5578 + 11.5578i −0.496908 + 0.496908i −0.910474 0.413566i \(-0.864283\pi\)
0.413566 + 0.910474i \(0.364283\pi\)
\(542\) 0 0
\(543\) 3.97260 0.170481
\(544\) 0 0
\(545\) 10.0856 0.432021
\(546\) 0 0
\(547\) 0.909839 0.909839i 0.0389019 0.0389019i −0.687388 0.726290i \(-0.741243\pi\)
0.726290 + 0.687388i \(0.241243\pi\)
\(548\) 0 0
\(549\) −10.7674 + 10.7674i −0.459540 + 0.459540i
\(550\) 0 0
\(551\) −17.9079 17.9079i −0.762903 0.762903i
\(552\) 0 0
\(553\) 32.0570i 1.36320i
\(554\) 0 0
\(555\) −1.18837 1.18837i −0.0504435 0.0504435i
\(556\) 0 0
\(557\) 35.2859 1.49511 0.747555 0.664200i \(-0.231227\pi\)
0.747555 + 0.664200i \(0.231227\pi\)
\(558\) 0 0
\(559\) 11.6634i 0.493308i
\(560\) 0 0
\(561\) 2.57447 + 1.29422i 0.108694 + 0.0546421i
\(562\) 0 0
\(563\) 0.931153i 0.0392434i −0.999807 0.0196217i \(-0.993754\pi\)
0.999807 0.0196217i \(-0.00624618\pi\)
\(564\) 0 0
\(565\) −3.74391 −0.157507
\(566\) 0 0
\(567\) −11.5724 11.5724i −0.485994 0.485994i
\(568\) 0 0
\(569\) 17.5921i 0.737498i 0.929529 + 0.368749i \(0.120214\pi\)
−0.929529 + 0.368749i \(0.879786\pi\)
\(570\) 0 0
\(571\) 12.2000 + 12.2000i 0.510554 + 0.510554i 0.914696 0.404142i \(-0.132430\pi\)
−0.404142 + 0.914696i \(0.632430\pi\)
\(572\) 0 0
\(573\) 0.575728 0.575728i 0.0240514 0.0240514i
\(574\) 0 0
\(575\) 0.406537 0.406537i 0.0169537 0.0169537i
\(576\) 0 0
\(577\) 8.50534 0.354082 0.177041 0.984203i \(-0.443347\pi\)
0.177041 + 0.984203i \(0.443347\pi\)
\(578\) 0 0
\(579\) 2.83162 0.117678
\(580\) 0 0
\(581\) 11.3888 11.3888i 0.472487 0.472487i
\(582\) 0 0
\(583\) −24.7084 + 24.7084i −1.02332 + 1.02332i
\(584\) 0 0
\(585\) 2.66564 + 2.66564i 0.110211 + 0.110211i
\(586\) 0 0
\(587\) 1.55649i 0.0642433i 0.999484 + 0.0321217i \(0.0102264\pi\)
−0.999484 + 0.0321217i \(0.989774\pi\)
\(588\) 0 0
\(589\) 20.6226 + 20.6226i 0.849739 + 0.849739i
\(590\) 0 0
\(591\) −1.05974 −0.0435918
\(592\) 0 0
\(593\) 19.6862i 0.808415i 0.914667 + 0.404207i \(0.132453\pi\)
−0.914667 + 0.404207i \(0.867547\pi\)
\(594\) 0 0
\(595\) 6.97092 + 3.50437i 0.285780 + 0.143665i
\(596\) 0 0
\(597\) 0.668269i 0.0273504i
\(598\) 0 0
\(599\) 24.7552 1.01147 0.505735 0.862689i \(-0.331221\pi\)
0.505735 + 0.862689i \(0.331221\pi\)
\(600\) 0 0
\(601\) −20.0336 20.0336i −0.817186 0.817186i 0.168513 0.985699i \(-0.446103\pi\)
−0.985699 + 0.168513i \(0.946103\pi\)
\(602\) 0 0
\(603\) 0.834522i 0.0339844i
\(604\) 0 0
\(605\) 1.02791 + 1.02791i 0.0417904 + 0.0417904i
\(606\) 0 0
\(607\) −32.9490 + 32.9490i −1.33736 + 1.33736i −0.438750 + 0.898609i \(0.644579\pi\)
−0.898609 + 0.438750i \(0.855421\pi\)
\(608\) 0 0
\(609\) 1.43044 1.43044i 0.0579644 0.0579644i
\(610\) 0 0
\(611\) 13.7423 0.555952
\(612\) 0 0
\(613\) −42.0358 −1.69781 −0.848905 0.528546i \(-0.822737\pi\)
−0.848905 + 0.528546i \(0.822737\pi\)
\(614\) 0 0
\(615\) −0.849360 + 0.849360i −0.0342495 + 0.0342495i
\(616\) 0 0
\(617\) 12.8737 12.8737i 0.518275 0.518275i −0.398774 0.917049i \(-0.630564\pi\)
0.917049 + 0.398774i \(0.130564\pi\)
\(618\) 0 0
\(619\) 9.74184 + 9.74184i 0.391558 + 0.391558i 0.875242 0.483685i \(-0.160702\pi\)
−0.483685 + 0.875242i \(0.660702\pi\)
\(620\) 0 0
\(621\) 0.678672i 0.0272342i
\(622\) 0 0
\(623\) 22.3761 + 22.3761i 0.896478 + 0.896478i
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 3.27870i 0.130939i
\(628\) 0 0
\(629\) −33.2187 + 10.9929i −1.32452 + 0.438317i
\(630\) 0 0
\(631\) 20.2307i 0.805372i −0.915338 0.402686i \(-0.868077\pi\)
0.915338 0.402686i \(-0.131923\pi\)
\(632\) 0 0
\(633\) −0.466068 −0.0185245
\(634\) 0 0
\(635\) 9.07586 + 9.07586i 0.360165 + 0.360165i
\(636\) 0 0
\(637\) 4.35340i 0.172488i
\(638\) 0 0
\(639\) −24.5859 24.5859i −0.972603 0.972603i
\(640\) 0 0
\(641\) −3.37688 + 3.37688i −0.133379 + 0.133379i −0.770644 0.637266i \(-0.780065\pi\)
0.637266 + 0.770644i \(0.280065\pi\)
\(642\) 0 0
\(643\) 6.97016 6.97016i 0.274876 0.274876i −0.556183 0.831060i \(-0.687735\pi\)
0.831060 + 0.556183i \(0.187735\pi\)
\(644\) 0 0
\(645\) −1.81408 −0.0714294
\(646\) 0 0
\(647\) 36.4555 1.43321 0.716607 0.697477i \(-0.245694\pi\)
0.716607 + 0.697477i \(0.245694\pi\)
\(648\) 0 0
\(649\) −7.88292 + 7.88292i −0.309432 + 0.309432i
\(650\) 0 0
\(651\) −1.64728 + 1.64728i −0.0645620 + 0.0645620i
\(652\) 0 0
\(653\) 12.7332 + 12.7332i 0.498288 + 0.498288i 0.910905 0.412617i \(-0.135385\pi\)
−0.412617 + 0.910905i \(0.635385\pi\)
\(654\) 0 0
\(655\) 7.02467i 0.274476i
\(656\) 0 0
\(657\) −20.5894 20.5894i −0.803270 0.803270i
\(658\) 0 0
\(659\) 0.175710 0.00684470 0.00342235 0.999994i \(-0.498911\pi\)
0.00342235 + 0.999994i \(0.498911\pi\)
\(660\) 0 0
\(661\) 4.14751i 0.161319i 0.996742 + 0.0806597i \(0.0257027\pi\)
−0.996742 + 0.0806597i \(0.974297\pi\)
\(662\) 0 0
\(663\) −0.986985 + 0.326619i −0.0383313 + 0.0126848i
\(664\) 0 0
\(665\) 8.87776i 0.344265i
\(666\) 0 0
\(667\) −3.10359 −0.120171
\(668\) 0 0
\(669\) 0.484093 + 0.484093i 0.0187161 + 0.0187161i
\(670\) 0 0
\(671\) 18.1496i 0.700658i
\(672\) 0 0
\(673\) −6.18030 6.18030i −0.238233 0.238233i 0.577885 0.816118i \(-0.303878\pi\)
−0.816118 + 0.577885i \(0.803878\pi\)
\(674\) 0 0
\(675\) −0.834700 + 0.834700i −0.0321276 + 0.0321276i
\(676\) 0 0
\(677\) 6.62704 6.62704i 0.254698 0.254698i −0.568196 0.822893i \(-0.692358\pi\)
0.822893 + 0.568196i \(0.192358\pi\)
\(678\) 0 0
\(679\) 11.1889 0.429391
\(680\) 0 0
\(681\) 4.30061 0.164800
\(682\) 0 0
\(683\) 26.4889 26.4889i 1.01357 1.01357i 0.0136635 0.999907i \(-0.495651\pi\)
0.999907 0.0136635i \(-0.00434937\pi\)
\(684\) 0 0
\(685\) −10.7109 + 10.7109i −0.409244 + 0.409244i
\(686\) 0 0
\(687\) 1.20312 + 1.20312i 0.0459018 + 0.0459018i
\(688\) 0 0
\(689\) 12.6073i 0.480299i
\(690\) 0 0
\(691\) 31.5901 + 31.5901i 1.20175 + 1.20175i 0.973635 + 0.228110i \(0.0732547\pi\)
0.228110 + 0.973635i \(0.426745\pi\)
\(692\) 0 0
\(693\) 19.7719 0.751072
\(694\) 0 0
\(695\) 12.4333i 0.471622i
\(696\) 0 0
\(697\) 7.85695 + 23.7423i 0.297603 + 0.899304i
\(698\) 0 0
\(699\) 1.76413i 0.0667256i
\(700\) 0 0
\(701\) −18.7355 −0.707630 −0.353815 0.935315i \(-0.615116\pi\)
−0.353815 + 0.935315i \(0.615116\pi\)
\(702\) 0 0
\(703\) −28.1527 28.1527i −1.06180 1.06180i
\(704\) 0 0
\(705\) 2.13742i 0.0805000i
\(706\) 0 0
\(707\) 13.5106 + 13.5106i 0.508117 + 0.508117i
\(708\) 0 0
\(709\) 4.05125 4.05125i 0.152148 0.152148i −0.626929 0.779077i \(-0.715688\pi\)
0.779077 + 0.626929i \(0.215688\pi\)
\(710\) 0 0
\(711\) −35.4668 + 35.4668i −1.33011 + 1.33011i
\(712\) 0 0
\(713\) 3.57406 0.133850
\(714\) 0 0
\(715\) −4.49323 −0.168037
\(716\) 0 0
\(717\) −1.72584 + 1.72584i −0.0644526 + 0.0644526i
\(718\) 0 0
\(719\) 20.7647 20.7647i 0.774393 0.774393i −0.204478 0.978871i \(-0.565550\pi\)
0.978871 + 0.204478i \(0.0655496\pi\)
\(720\) 0 0
\(721\) 1.43604 + 1.43604i 0.0534808 + 0.0534808i
\(722\) 0 0
\(723\) 0.529263i 0.0196835i
\(724\) 0 0
\(725\) 3.81711 + 3.81711i 0.141764 + 0.141764i
\(726\) 0 0
\(727\) 48.1662 1.78639 0.893193 0.449674i \(-0.148460\pi\)
0.893193 + 0.449674i \(0.148460\pi\)
\(728\) 0 0
\(729\) 24.9052i 0.922416i
\(730\) 0 0
\(731\) −16.9642 + 33.7452i −0.627442 + 1.24811i
\(732\) 0 0
\(733\) 14.3419i 0.529731i 0.964285 + 0.264866i \(0.0853276\pi\)
−0.964285 + 0.264866i \(0.914672\pi\)
\(734\) 0 0
\(735\) 0.677112 0.0249757
\(736\) 0 0
\(737\) 0.703340 + 0.703340i 0.0259079 + 0.0259079i
\(738\) 0 0
\(739\) 9.73758i 0.358203i 0.983831 + 0.179101i \(0.0573190\pi\)
−0.983831 + 0.179101i \(0.942681\pi\)
\(740\) 0 0
\(741\) −0.836465 0.836465i −0.0307283 0.0307283i
\(742\) 0 0
\(743\) 16.9727 16.9727i 0.622667 0.622667i −0.323545 0.946213i \(-0.604875\pi\)
0.946213 + 0.323545i \(0.104875\pi\)
\(744\) 0 0
\(745\) 8.20906 8.20906i 0.300757 0.300757i
\(746\) 0 0
\(747\) 25.2004 0.922033
\(748\) 0 0
\(749\) −12.0132 −0.438954
\(750\) 0 0
\(751\) −33.9092 + 33.9092i −1.23736 + 1.23736i −0.276289 + 0.961075i \(0.589105\pi\)
−0.961075 + 0.276289i \(0.910895\pi\)
\(752\) 0 0
\(753\) −3.84269 + 3.84269i −0.140035 + 0.140035i
\(754\) 0 0
\(755\) 0.931740 + 0.931740i 0.0339095 + 0.0339095i
\(756\) 0 0
\(757\) 18.5200i 0.673119i −0.941662 0.336560i \(-0.890737\pi\)
0.941662 0.336560i \(-0.109263\pi\)
\(758\) 0 0
\(759\) 0.284113 + 0.284113i 0.0103126 + 0.0103126i
\(760\) 0 0
\(761\) 35.9145 1.30190 0.650950 0.759120i \(-0.274371\pi\)
0.650950 + 0.759120i \(0.274371\pi\)
\(762\) 0 0
\(763\) 19.0851i 0.690929i
\(764\) 0 0
\(765\) 3.83527 + 11.5895i 0.138664 + 0.419019i
\(766\) 0 0
\(767\) 4.02220i 0.145233i
\(768\) 0 0
\(769\) 17.7831 0.641276 0.320638 0.947202i \(-0.396103\pi\)
0.320638 + 0.947202i \(0.396103\pi\)
\(770\) 0 0
\(771\) 3.20420 + 3.20420i 0.115397 + 0.115397i
\(772\) 0 0
\(773\) 7.33018i 0.263648i −0.991273 0.131824i \(-0.957917\pi\)
0.991273 0.131824i \(-0.0420834\pi\)
\(774\) 0 0
\(775\) −4.39574 4.39574i −0.157900 0.157900i
\(776\) 0 0
\(777\) 2.24877 2.24877i 0.0806741 0.0806741i
\(778\) 0 0
\(779\) −20.1215 + 20.1215i −0.720927 + 0.720927i
\(780\) 0 0
\(781\) 41.4423 1.48292
\(782\) 0 0
\(783\) 6.37228 0.227727
\(784\) 0 0
\(785\) −0.130027 + 0.130027i −0.00464085 + 0.00464085i
\(786\) 0 0
\(787\) −27.4321 + 27.4321i −0.977850 + 0.977850i −0.999760 0.0219095i \(-0.993025\pi\)
0.0219095 + 0.999760i \(0.493025\pi\)
\(788\) 0 0
\(789\) 1.32849 + 1.32849i 0.0472954 + 0.0472954i
\(790\) 0 0
\(791\) 7.08465i 0.251901i
\(792\) 0 0
\(793\) 4.63034 + 4.63034i 0.164428 + 0.164428i
\(794\) 0 0
\(795\) 1.96089 0.0695457
\(796\) 0 0
\(797\) 36.6386i 1.29780i 0.760872 + 0.648902i \(0.224772\pi\)
−0.760872 + 0.648902i \(0.775228\pi\)
\(798\) 0 0
\(799\) 39.7599 + 19.9878i 1.40661 + 0.707119i
\(800\) 0 0
\(801\) 49.5122i 1.74943i
\(802\) 0 0
\(803\) 34.7058 1.22474
\(804\) 0 0
\(805\) 0.769294 + 0.769294i 0.0271141 + 0.0271141i
\(806\) 0 0
\(807\) 1.20566i 0.0424412i
\(808\) 0 0
\(809\) −11.0838 11.0838i −0.389685 0.389685i 0.484890 0.874575i \(-0.338860\pi\)
−0.874575 + 0.484890i \(0.838860\pi\)
\(810\) 0 0
\(811\) −5.58363 + 5.58363i −0.196068 + 0.196068i −0.798312 0.602244i \(-0.794273\pi\)
0.602244 + 0.798312i \(0.294273\pi\)
\(812\) 0 0
\(813\) 3.31288 3.31288i 0.116188 0.116188i
\(814\) 0 0
\(815\) −18.0504 −0.632277
\(816\) 0 0
\(817\) −42.9759 −1.50354
\(818\) 0 0
\(819\) −5.04422 + 5.04422i −0.176259 + 0.176259i
\(820\) 0 0
\(821\) 16.6878 16.6878i 0.582408 0.582408i −0.353157 0.935564i \(-0.614892\pi\)
0.935564 + 0.353157i \(0.114892\pi\)
\(822\) 0 0
\(823\) 10.0348 + 10.0348i 0.349792 + 0.349792i 0.860032 0.510240i \(-0.170444\pi\)
−0.510240 + 0.860032i \(0.670444\pi\)
\(824\) 0 0
\(825\) 0.698861i 0.0243312i
\(826\) 0 0
\(827\) −26.8417 26.8417i −0.933377 0.933377i 0.0645378 0.997915i \(-0.479443\pi\)
−0.997915 + 0.0645378i \(0.979443\pi\)
\(828\) 0 0
\(829\) 4.91163 0.170588 0.0852939 0.996356i \(-0.472817\pi\)
0.0852939 + 0.996356i \(0.472817\pi\)
\(830\) 0 0
\(831\) 1.63131i 0.0565894i
\(832\) 0 0
\(833\) 6.33193 12.5955i 0.219388 0.436409i
\(834\) 0 0
\(835\) 7.57518i 0.262150i
\(836\) 0 0
\(837\) −7.33826 −0.253647
\(838\) 0 0
\(839\) −7.80546 7.80546i −0.269474 0.269474i 0.559414 0.828888i \(-0.311026\pi\)
−0.828888 + 0.559414i \(0.811026\pi\)
\(840\) 0 0
\(841\) 0.140644i 0.00484980i
\(842\) 0 0
\(843\) 2.11218 + 2.11218i 0.0727472 + 0.0727472i
\(844\) 0 0
\(845\) −8.04607 + 8.04607i −0.276793 + 0.276793i
\(846\) 0 0
\(847\) −1.94513 + 1.94513i −0.0668353 + 0.0668353i
\(848\) 0 0
\(849\) 3.51525 0.120643
\(850\) 0 0
\(851\) −4.87909 −0.167253
\(852\) 0 0
\(853\) 28.8483 28.8483i 0.987746 0.987746i −0.0121803 0.999926i \(-0.503877\pi\)
0.999926 + 0.0121803i \(0.00387721\pi\)
\(854\) 0 0
\(855\) −9.82205 + 9.82205i −0.335907 + 0.335907i
\(856\) 0 0
\(857\) −2.91939 2.91939i −0.0997244 0.0997244i 0.655484 0.755209i \(-0.272465\pi\)
−0.755209 + 0.655484i \(0.772465\pi\)
\(858\) 0 0
\(859\) 8.53800i 0.291313i −0.989335 0.145656i \(-0.953471\pi\)
0.989335 0.145656i \(-0.0465294\pi\)
\(860\) 0 0
\(861\) −1.60725 1.60725i −0.0547751 0.0547751i
\(862\) 0 0
\(863\) −3.08921 −0.105158 −0.0525790 0.998617i \(-0.516744\pi\)
−0.0525790 + 0.998617i \(0.516744\pi\)
\(864\) 0 0
\(865\) 6.92236i 0.235367i
\(866\) 0 0
\(867\) −3.33067 0.490556i −0.113115 0.0166602i
\(868\) 0 0
\(869\) 59.7832i 2.02801i
\(870\) 0 0
\(871\) −0.358873 −0.0121600
\(872\) 0 0
\(873\) 12.3790 + 12.3790i 0.418966 + 0.418966i
\(874\) 0 0
\(875\) 1.89231i 0.0639718i
\(876\) 0 0
\(877\) −21.7154 21.7154i −0.733278 0.733278i 0.237990 0.971268i \(-0.423512\pi\)
−0.971268 + 0.237990i \(0.923512\pi\)
\(878\) 0 0
\(879\) −1.52904 + 1.52904i −0.0515731 + 0.0515731i
\(880\) 0 0
\(881\) −6.18749 + 6.18749i −0.208462 + 0.208462i −0.803613 0.595152i \(-0.797092\pi\)
0.595152 + 0.803613i \(0.297092\pi\)
\(882\) 0 0
\(883\) 29.5875 0.995698 0.497849 0.867264i \(-0.334123\pi\)
0.497849 + 0.867264i \(0.334123\pi\)
\(884\) 0 0
\(885\) 0.625598 0.0210293
\(886\) 0 0
\(887\) −5.92290 + 5.92290i −0.198872 + 0.198872i −0.799516 0.600645i \(-0.794911\pi\)
0.600645 + 0.799516i \(0.294911\pi\)
\(888\) 0 0
\(889\) −17.1744 + 17.1744i −0.576010 + 0.576010i
\(890\) 0 0
\(891\) 21.5813 + 21.5813i 0.723002 + 0.723002i
\(892\) 0 0
\(893\) 50.6360i 1.69447i
\(894\) 0 0
\(895\) −7.26821 7.26821i −0.242950 0.242950i
\(896\) 0 0
\(897\) −0.144966 −0.00484028
\(898\) 0 0
\(899\) 33.5581i 1.11922i
\(900\) 0 0
\(901\) 18.3370 36.4761i 0.610895 1.21520i
\(902\) 0 0
\(903\) 3.43281i 0.114237i
\(904\) 0 0
\(905\) −20.0601 −0.666820
\(906\) 0 0
\(907\) −14.2310 14.2310i −0.472534 0.472534i 0.430200 0.902734i \(-0.358443\pi\)
−0.902734 + 0.430200i \(0.858443\pi\)
\(908\) 0 0
\(909\) 29.8952i 0.991562i
\(910\) 0 0
\(911\) −5.67260 5.67260i −0.187942 0.187942i 0.606864 0.794806i \(-0.292427\pi\)
−0.794806 + 0.606864i \(0.792427\pi\)
\(912\) 0 0
\(913\) −21.2390 + 21.2390i −0.702909 + 0.702909i
\(914\) 0 0
\(915\) −0.720187 + 0.720187i −0.0238087 + 0.0238087i
\(916\) 0 0
\(917\) −13.2929 −0.438969
\(918\) 0 0
\(919\) −30.7678 −1.01494 −0.507468 0.861671i \(-0.669418\pi\)
−0.507468 + 0.861671i \(0.669418\pi\)
\(920\) 0 0
\(921\) 0.956270 0.956270i 0.0315102 0.0315102i
\(922\) 0 0
\(923\) −10.5728 + 10.5728i −0.348008 + 0.348008i
\(924\) 0 0
\(925\) 6.00080 + 6.00080i 0.197305 + 0.197305i
\(926\) 0 0
\(927\) 3.17756i 0.104365i
\(928\) 0 0
\(929\) 25.5343 + 25.5343i 0.837755 + 0.837755i 0.988563 0.150808i \(-0.0481876\pi\)
−0.150808 + 0.988563i \(0.548188\pi\)
\(930\) 0 0
\(931\) 16.0409 0.525720
\(932\) 0 0
\(933\) 0.130904i 0.00428561i
\(934\) 0 0
\(935\) −13.0001 6.53532i −0.425148 0.213728i
\(936\) 0 0
\(937\) 36.7492i 1.20054i 0.799796 + 0.600272i \(0.204941\pi\)
−0.799796 + 0.600272i \(0.795059\pi\)
\(938\) 0 0
\(939\) 0.830420 0.0270997
\(940\) 0 0
\(941\) −8.24873 8.24873i −0.268901 0.268901i 0.559756 0.828657i \(-0.310895\pi\)
−0.828657 + 0.559756i \(0.810895\pi\)
\(942\) 0 0
\(943\) 3.48722i 0.113559i
\(944\) 0 0
\(945\) −1.57951 1.57951i −0.0513816 0.0513816i
\(946\) 0 0
\(947\) −32.9727 + 32.9727i −1.07147 + 1.07147i −0.0742285 + 0.997241i \(0.523649\pi\)
−0.997241 + 0.0742285i \(0.976351\pi\)
\(948\) 0 0
\(949\) −8.85416 + 8.85416i −0.287418 + 0.287418i
\(950\) 0 0
\(951\) 4.21133 0.136562
\(952\) 0 0
\(953\) 15.8298 0.512778 0.256389 0.966574i \(-0.417467\pi\)
0.256389 + 0.966574i \(0.417467\pi\)
\(954\) 0 0
\(955\) −2.90720 + 2.90720i −0.0940748 + 0.0940748i
\(956\) 0 0
\(957\) −2.66763 + 2.66763i −0.0862322 + 0.0862322i
\(958\) 0 0
\(959\) −20.2684 20.2684i −0.654502 0.654502i
\(960\) 0 0
\(961\) 7.64513i 0.246617i
\(962\) 0 0
\(963\) −13.2910 13.2910i −0.428297 0.428297i
\(964\) 0 0
\(965\) −14.2986 −0.460288
\(966\) 0 0
\(967\) 18.4139i 0.592152i −0.955164 0.296076i \(-0.904322\pi\)
0.955164 0.296076i \(-0.0956781\pi\)
\(968\) 0 0
\(969\) −1.20349 3.63673i −0.0386616 0.116829i
\(970\) 0 0
\(971\) 16.3118i 0.523470i −0.965140 0.261735i \(-0.915705\pi\)
0.965140 0.261735i \(-0.0842947\pi\)
\(972\) 0 0
\(973\) 23.5277 0.754263
\(974\) 0 0
\(975\) 0.178294 + 0.178294i 0.00570998 + 0.00570998i
\(976\) 0 0
\(977\) 52.7849i 1.68874i −0.535762 0.844369i \(-0.679976\pi\)
0.535762 0.844369i \(-0.320024\pi\)
\(978\) 0 0
\(979\) −41.7291 41.7291i −1.33367 1.33367i
\(980\) 0 0
\(981\) −21.1151 + 21.1151i −0.674155 + 0.674155i
\(982\) 0 0
\(983\) 23.5672 23.5672i 0.751677 0.751677i −0.223115 0.974792i \(-0.571622\pi\)
0.974792 + 0.223115i \(0.0716225\pi\)
\(984\) 0 0
\(985\) 5.35126 0.170505
\(986\) 0 0
\(987\) −4.04467 −0.128743
\(988\) 0 0
\(989\) −3.72404 + 3.72404i −0.118418 + 0.118418i
\(990\) 0 0
\(991\) 27.9267 27.9267i 0.887122 0.887122i −0.107124 0.994246i \(-0.534164\pi\)
0.994246 + 0.107124i \(0.0341642\pi\)
\(992\) 0 0
\(993\) 3.88703 + 3.88703i 0.123351 + 0.123351i
\(994\) 0 0
\(995\) 3.37450i 0.106979i
\(996\) 0 0
\(997\) 18.8643 + 18.8643i 0.597437 + 0.597437i 0.939630 0.342193i \(-0.111170\pi\)
−0.342193 + 0.939630i \(0.611170\pi\)
\(998\) 0 0
\(999\) 10.0177 0.316947
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1360.2.bt.d.1041.3 12
4.3 odd 2 85.2.e.a.21.1 12
12.11 even 2 765.2.k.b.361.6 12
17.13 even 4 inner 1360.2.bt.d.81.3 12
20.3 even 4 425.2.j.c.174.1 12
20.7 even 4 425.2.j.b.174.6 12
20.19 odd 2 425.2.e.f.276.6 12
68.15 odd 8 1445.2.d.g.866.12 12
68.19 odd 8 1445.2.d.g.866.11 12
68.43 odd 8 1445.2.a.n.1.1 6
68.47 odd 4 85.2.e.a.81.6 yes 12
68.59 odd 8 1445.2.a.o.1.1 6
204.47 even 4 765.2.k.b.676.1 12
340.47 even 4 425.2.j.c.149.1 12
340.59 odd 8 7225.2.a.z.1.6 6
340.179 odd 8 7225.2.a.bb.1.6 6
340.183 even 4 425.2.j.b.149.6 12
340.319 odd 4 425.2.e.f.251.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.1 12 4.3 odd 2
85.2.e.a.81.6 yes 12 68.47 odd 4
425.2.e.f.251.1 12 340.319 odd 4
425.2.e.f.276.6 12 20.19 odd 2
425.2.j.b.149.6 12 340.183 even 4
425.2.j.b.174.6 12 20.7 even 4
425.2.j.c.149.1 12 340.47 even 4
425.2.j.c.174.1 12 20.3 even 4
765.2.k.b.361.6 12 12.11 even 2
765.2.k.b.676.1 12 204.47 even 4
1360.2.bt.d.81.3 12 17.13 even 4 inner
1360.2.bt.d.1041.3 12 1.1 even 1 trivial
1445.2.a.n.1.1 6 68.43 odd 8
1445.2.a.o.1.1 6 68.59 odd 8
1445.2.d.g.866.11 12 68.19 odd 8
1445.2.d.g.866.12 12 68.15 odd 8
7225.2.a.z.1.6 6 340.59 odd 8
7225.2.a.bb.1.6 6 340.179 odd 8