Properties

Label 1445.2.d.g.866.12
Level $1445$
Weight $2$
Character 1445.866
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(866,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.866");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 83x^{8} + 152x^{6} + 111x^{4} + 22x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 866.12
Root \(-1.19804i\) of defining polynomial
Character \(\chi\) \(=\) 1445.866
Dual form 1445.2.d.g.866.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.24891 q^{2} +0.198035i q^{3} +3.05761 q^{4} -1.00000i q^{5} +0.445364i q^{6} -1.89231i q^{7} +2.37848 q^{8} +2.96078 q^{9} -2.24891i q^{10} -3.52898i q^{11} +0.605515i q^{12} -1.27324 q^{13} -4.25565i q^{14} +0.198035 q^{15} -0.766231 q^{16} +6.65854 q^{18} +4.69149 q^{19} -3.05761i q^{20} +0.374744 q^{21} -7.93637i q^{22} +0.574930i q^{23} +0.471022i q^{24} -1.00000 q^{25} -2.86340 q^{26} +1.18044i q^{27} -5.78596i q^{28} +5.39821i q^{29} +0.445364 q^{30} -6.21652i q^{31} -6.48015 q^{32} +0.698861 q^{33} -1.89231 q^{35} +9.05292 q^{36} -8.48642i q^{37} +10.5508 q^{38} -0.252146i q^{39} -2.37848i q^{40} +6.06547i q^{41} +0.842768 q^{42} -9.16040 q^{43} -10.7902i q^{44} -2.96078i q^{45} +1.29297i q^{46} +10.7932 q^{47} -0.151741i q^{48} +3.41915 q^{49} -2.24891 q^{50} -3.89307 q^{52} +9.90174 q^{53} +2.65472i q^{54} -3.52898 q^{55} -4.50083i q^{56} +0.929079i q^{57} +12.1401i q^{58} +3.15903 q^{59} +0.605515 q^{60} +5.14302i q^{61} -13.9804i q^{62} -5.60273i q^{63} -13.0408 q^{64} +1.27324i q^{65} +1.57168 q^{66} +0.281859 q^{67} -0.113856 q^{69} -4.25565 q^{70} +11.7434i q^{71} +7.04216 q^{72} +9.83451i q^{73} -19.0852i q^{74} -0.198035i q^{75} +14.3448 q^{76} -6.67793 q^{77} -0.567054i q^{78} +16.9407i q^{79} +0.766231i q^{80} +8.64858 q^{81} +13.6407i q^{82} -8.51139 q^{83} +1.14582 q^{84} -20.6010 q^{86} -1.06903 q^{87} -8.39360i q^{88} -16.7227 q^{89} -6.65854i q^{90} +2.40937i q^{91} +1.75791i q^{92} +1.23109 q^{93} +24.2729 q^{94} -4.69149i q^{95} -1.28330i q^{96} -5.91282i q^{97} +7.68938 q^{98} -10.4485i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 12 q^{4} - 12 q^{8} - 4 q^{9} - 8 q^{15} + 4 q^{16} + 28 q^{18} + 24 q^{19} + 16 q^{21} - 12 q^{25} + 24 q^{26} + 8 q^{30} + 12 q^{32} - 16 q^{33} + 16 q^{35} + 20 q^{36} - 24 q^{38} + 16 q^{42}+ \cdots - 44 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1445\mathbb{Z}\right)^\times\).

\(n\) \(581\) \(1157\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.24891 1.59022 0.795111 0.606464i \(-0.207413\pi\)
0.795111 + 0.606464i \(0.207413\pi\)
\(3\) 0.198035i 0.114336i 0.998365 + 0.0571678i \(0.0182070\pi\)
−0.998365 + 0.0571678i \(0.981793\pi\)
\(4\) 3.05761 1.52881
\(5\) − 1.00000i − 0.447214i
\(6\) 0.445364i 0.181819i
\(7\) − 1.89231i − 0.715227i −0.933870 0.357613i \(-0.883591\pi\)
0.933870 0.357613i \(-0.116409\pi\)
\(8\) 2.37848 0.840919
\(9\) 2.96078 0.986927
\(10\) − 2.24891i − 0.711169i
\(11\) − 3.52898i − 1.06403i −0.846736 0.532013i \(-0.821436\pi\)
0.846736 0.532013i \(-0.178564\pi\)
\(12\) 0.605515i 0.174797i
\(13\) −1.27324 −0.353133 −0.176566 0.984289i \(-0.556499\pi\)
−0.176566 + 0.984289i \(0.556499\pi\)
\(14\) − 4.25565i − 1.13737i
\(15\) 0.198035 0.0511324
\(16\) −0.766231 −0.191558
\(17\) 0 0
\(18\) 6.65854 1.56943
\(19\) 4.69149 1.07630 0.538151 0.842849i \(-0.319123\pi\)
0.538151 + 0.842849i \(0.319123\pi\)
\(20\) − 3.05761i − 0.683703i
\(21\) 0.374744 0.0817759
\(22\) − 7.93637i − 1.69204i
\(23\) 0.574930i 0.119881i 0.998202 + 0.0599405i \(0.0190911\pi\)
−0.998202 + 0.0599405i \(0.980909\pi\)
\(24\) 0.471022i 0.0961470i
\(25\) −1.00000 −0.200000
\(26\) −2.86340 −0.561560
\(27\) 1.18044i 0.227177i
\(28\) − 5.78596i − 1.09344i
\(29\) 5.39821i 1.00242i 0.865325 + 0.501211i \(0.167112\pi\)
−0.865325 + 0.501211i \(0.832888\pi\)
\(30\) 0.445364 0.0813119
\(31\) − 6.21652i − 1.11652i −0.829666 0.558260i \(-0.811469\pi\)
0.829666 0.558260i \(-0.188531\pi\)
\(32\) −6.48015 −1.14554
\(33\) 0.698861 0.121656
\(34\) 0 0
\(35\) −1.89231 −0.319859
\(36\) 9.05292 1.50882
\(37\) − 8.48642i − 1.39516i −0.716508 0.697579i \(-0.754261\pi\)
0.716508 0.697579i \(-0.245739\pi\)
\(38\) 10.5508 1.71156
\(39\) − 0.252146i − 0.0403757i
\(40\) − 2.37848i − 0.376071i
\(41\) 6.06547i 0.947267i 0.880722 + 0.473634i \(0.157058\pi\)
−0.880722 + 0.473634i \(0.842942\pi\)
\(42\) 0.842768 0.130042
\(43\) −9.16040 −1.39695 −0.698474 0.715635i \(-0.746137\pi\)
−0.698474 + 0.715635i \(0.746137\pi\)
\(44\) − 10.7902i − 1.62669i
\(45\) − 2.96078i − 0.441367i
\(46\) 1.29297i 0.190638i
\(47\) 10.7932 1.57434 0.787172 0.616734i \(-0.211545\pi\)
0.787172 + 0.616734i \(0.211545\pi\)
\(48\) − 0.151741i − 0.0219019i
\(49\) 3.41915 0.488450
\(50\) −2.24891 −0.318044
\(51\) 0 0
\(52\) −3.89307 −0.539872
\(53\) 9.90174 1.36011 0.680054 0.733162i \(-0.261956\pi\)
0.680054 + 0.733162i \(0.261956\pi\)
\(54\) 2.65472i 0.361261i
\(55\) −3.52898 −0.475847
\(56\) − 4.50083i − 0.601448i
\(57\) 0.929079i 0.123060i
\(58\) 12.1401i 1.59407i
\(59\) 3.15903 0.411270 0.205635 0.978629i \(-0.434074\pi\)
0.205635 + 0.978629i \(0.434074\pi\)
\(60\) 0.605515 0.0781716
\(61\) 5.14302i 0.658496i 0.944243 + 0.329248i \(0.106795\pi\)
−0.944243 + 0.329248i \(0.893205\pi\)
\(62\) − 13.9804i − 1.77551i
\(63\) − 5.60273i − 0.705877i
\(64\) −13.0408 −1.63010
\(65\) 1.27324i 0.157926i
\(66\) 1.57168 0.193460
\(67\) 0.281859 0.0344345 0.0172173 0.999852i \(-0.494519\pi\)
0.0172173 + 0.999852i \(0.494519\pi\)
\(68\) 0 0
\(69\) −0.113856 −0.0137067
\(70\) −4.25565 −0.508647
\(71\) 11.7434i 1.39369i 0.717223 + 0.696844i \(0.245413\pi\)
−0.717223 + 0.696844i \(0.754587\pi\)
\(72\) 7.04216 0.829926
\(73\) 9.83451i 1.15104i 0.817787 + 0.575521i \(0.195201\pi\)
−0.817787 + 0.575521i \(0.804799\pi\)
\(74\) − 19.0852i − 2.21861i
\(75\) − 0.198035i − 0.0228671i
\(76\) 14.3448 1.64546
\(77\) −6.67793 −0.761021
\(78\) − 0.567054i − 0.0642063i
\(79\) 16.9407i 1.90597i 0.303014 + 0.952986i \(0.402007\pi\)
−0.303014 + 0.952986i \(0.597993\pi\)
\(80\) 0.766231i 0.0856672i
\(81\) 8.64858 0.960953
\(82\) 13.6407i 1.50637i
\(83\) −8.51139 −0.934246 −0.467123 0.884192i \(-0.654709\pi\)
−0.467123 + 0.884192i \(0.654709\pi\)
\(84\) 1.14582 0.125020
\(85\) 0 0
\(86\) −20.6010 −2.22146
\(87\) −1.06903 −0.114613
\(88\) − 8.39360i − 0.894761i
\(89\) −16.7227 −1.77260 −0.886300 0.463112i \(-0.846733\pi\)
−0.886300 + 0.463112i \(0.846733\pi\)
\(90\) − 6.65854i − 0.701872i
\(91\) 2.40937i 0.252570i
\(92\) 1.75791i 0.183275i
\(93\) 1.23109 0.127658
\(94\) 24.2729 2.50356
\(95\) − 4.69149i − 0.481337i
\(96\) − 1.28330i − 0.130976i
\(97\) − 5.91282i − 0.600356i −0.953883 0.300178i \(-0.902954\pi\)
0.953883 0.300178i \(-0.0970461\pi\)
\(98\) 7.68938 0.776745
\(99\) − 10.4485i − 1.05012i
\(100\) −3.05761 −0.305761
\(101\) 10.0971 1.00470 0.502348 0.864666i \(-0.332470\pi\)
0.502348 + 0.864666i \(0.332470\pi\)
\(102\) 0 0
\(103\) −1.07322 −0.105747 −0.0528736 0.998601i \(-0.516838\pi\)
−0.0528736 + 0.998601i \(0.516838\pi\)
\(104\) −3.02837 −0.296956
\(105\) − 0.374744i − 0.0365713i
\(106\) 22.2681 2.16287
\(107\) − 6.34844i − 0.613727i −0.951754 0.306864i \(-0.900720\pi\)
0.951754 0.306864i \(-0.0992795\pi\)
\(108\) 3.60934i 0.347309i
\(109\) 10.0856i 0.966027i 0.875613 + 0.483014i \(0.160458\pi\)
−0.875613 + 0.483014i \(0.839542\pi\)
\(110\) −7.93637 −0.756703
\(111\) 1.68061 0.159516
\(112\) 1.44995i 0.137007i
\(113\) 3.74391i 0.352197i 0.984373 + 0.176099i \(0.0563478\pi\)
−0.984373 + 0.176099i \(0.943652\pi\)
\(114\) 2.08942i 0.195692i
\(115\) 0.574930 0.0536125
\(116\) 16.5056i 1.53251i
\(117\) −3.76978 −0.348516
\(118\) 7.10438 0.654011
\(119\) 0 0
\(120\) 0.471022 0.0429983
\(121\) −1.45368 −0.132153
\(122\) 11.5662i 1.04716i
\(123\) −1.20118 −0.108306
\(124\) − 19.0077i − 1.70694i
\(125\) 1.00000i 0.0894427i
\(126\) − 12.6000i − 1.12250i
\(127\) −12.8352 −1.13894 −0.569470 0.822012i \(-0.692852\pi\)
−0.569470 + 0.822012i \(0.692852\pi\)
\(128\) −16.3674 −1.44669
\(129\) − 1.81408i − 0.159721i
\(130\) 2.86340i 0.251137i
\(131\) − 7.02467i − 0.613748i −0.951750 0.306874i \(-0.900717\pi\)
0.951750 0.306874i \(-0.0992830\pi\)
\(132\) 2.13685 0.185989
\(133\) − 8.87776i − 0.769800i
\(134\) 0.633876 0.0547585
\(135\) 1.18044 0.101596
\(136\) 0 0
\(137\) −15.1475 −1.29414 −0.647071 0.762430i \(-0.724006\pi\)
−0.647071 + 0.762430i \(0.724006\pi\)
\(138\) −0.256053 −0.0217967
\(139\) − 12.4333i − 1.05458i −0.849686 0.527289i \(-0.823208\pi\)
0.849686 0.527289i \(-0.176792\pi\)
\(140\) −5.78596 −0.489003
\(141\) 2.13742i 0.180004i
\(142\) 26.4099i 2.21627i
\(143\) 4.49323i 0.375743i
\(144\) −2.26864 −0.189053
\(145\) 5.39821 0.448297
\(146\) 22.1170i 1.83041i
\(147\) 0.677112i 0.0558473i
\(148\) − 25.9482i − 2.13293i
\(149\) −11.6094 −0.951076 −0.475538 0.879695i \(-0.657747\pi\)
−0.475538 + 0.879695i \(0.657747\pi\)
\(150\) − 0.445364i − 0.0363638i
\(151\) 1.31768 0.107231 0.0536156 0.998562i \(-0.482925\pi\)
0.0536156 + 0.998562i \(0.482925\pi\)
\(152\) 11.1586 0.905083
\(153\) 0 0
\(154\) −15.0181 −1.21019
\(155\) −6.21652 −0.499323
\(156\) − 0.770965i − 0.0617266i
\(157\) 0.183886 0.0146757 0.00733783 0.999973i \(-0.497664\pi\)
0.00733783 + 0.999973i \(0.497664\pi\)
\(158\) 38.0981i 3.03092i
\(159\) 1.96089i 0.155509i
\(160\) 6.48015i 0.512300i
\(161\) 1.08795 0.0857422
\(162\) 19.4499 1.52813
\(163\) 18.0504i 1.41381i 0.707306 + 0.706907i \(0.249910\pi\)
−0.707306 + 0.706907i \(0.750090\pi\)
\(164\) 18.5459i 1.44819i
\(165\) − 0.698861i − 0.0544063i
\(166\) −19.1414 −1.48566
\(167\) − 7.57518i − 0.586185i −0.956084 0.293093i \(-0.905316\pi\)
0.956084 0.293093i \(-0.0946844\pi\)
\(168\) 0.891322 0.0687670
\(169\) −11.3789 −0.875297
\(170\) 0 0
\(171\) 13.8905 1.06223
\(172\) −28.0090 −2.13566
\(173\) − 6.92236i − 0.526298i −0.964755 0.263149i \(-0.915239\pi\)
0.964755 0.263149i \(-0.0847610\pi\)
\(174\) −2.40417 −0.182259
\(175\) 1.89231i 0.143045i
\(176\) 2.70401i 0.203822i
\(177\) 0.625598i 0.0470228i
\(178\) −37.6078 −2.81883
\(179\) 10.2788 0.768274 0.384137 0.923276i \(-0.374499\pi\)
0.384137 + 0.923276i \(0.374499\pi\)
\(180\) − 9.05292i − 0.674765i
\(181\) 20.0601i 1.49105i 0.666475 + 0.745527i \(0.267802\pi\)
−0.666475 + 0.745527i \(0.732198\pi\)
\(182\) 5.41845i 0.401643i
\(183\) −1.01850 −0.0752896
\(184\) 1.36746i 0.100810i
\(185\) −8.48642 −0.623934
\(186\) 2.76861 0.203005
\(187\) 0 0
\(188\) 33.0013 2.40687
\(189\) 2.23377 0.162483
\(190\) − 10.5508i − 0.765432i
\(191\) −4.11140 −0.297491 −0.148745 0.988876i \(-0.547523\pi\)
−0.148745 + 0.988876i \(0.547523\pi\)
\(192\) − 2.58254i − 0.186379i
\(193\) 14.2986i 1.02923i 0.857420 + 0.514617i \(0.172066\pi\)
−0.857420 + 0.514617i \(0.827934\pi\)
\(194\) − 13.2974i − 0.954700i
\(195\) −0.252146 −0.0180565
\(196\) 10.4544 0.746746
\(197\) 5.35126i 0.381262i 0.981662 + 0.190631i \(0.0610533\pi\)
−0.981662 + 0.190631i \(0.938947\pi\)
\(198\) − 23.4978i − 1.66992i
\(199\) − 3.37450i − 0.239212i −0.992821 0.119606i \(-0.961837\pi\)
0.992821 0.119606i \(-0.0381631\pi\)
\(200\) −2.37848 −0.168184
\(201\) 0.0558179i 0.00393709i
\(202\) 22.7074 1.59769
\(203\) 10.2151 0.716959
\(204\) 0 0
\(205\) 6.06547 0.423631
\(206\) −2.41357 −0.168162
\(207\) 1.70224i 0.118314i
\(208\) 0.975594 0.0676453
\(209\) − 16.5562i − 1.14521i
\(210\) − 0.842768i − 0.0581565i
\(211\) − 2.35346i − 0.162019i −0.996713 0.0810094i \(-0.974186\pi\)
0.996713 0.0810094i \(-0.0258144\pi\)
\(212\) 30.2757 2.07934
\(213\) −2.32561 −0.159348
\(214\) − 14.2771i − 0.975962i
\(215\) 9.16040i 0.624734i
\(216\) 2.80766i 0.191037i
\(217\) −11.7636 −0.798565
\(218\) 22.6817i 1.53620i
\(219\) −1.94758 −0.131605
\(220\) −10.7902 −0.727478
\(221\) 0 0
\(222\) 3.77954 0.253666
\(223\) −3.45702 −0.231499 −0.115750 0.993278i \(-0.536927\pi\)
−0.115750 + 0.993278i \(0.536927\pi\)
\(224\) 12.2625i 0.819320i
\(225\) −2.96078 −0.197385
\(226\) 8.41973i 0.560072i
\(227\) − 21.7164i − 1.44137i −0.693264 0.720684i \(-0.743828\pi\)
0.693264 0.720684i \(-0.256172\pi\)
\(228\) 2.84076i 0.188134i
\(229\) −8.59173 −0.567757 −0.283879 0.958860i \(-0.591621\pi\)
−0.283879 + 0.958860i \(0.591621\pi\)
\(230\) 1.29297 0.0852557
\(231\) − 1.32246i − 0.0870118i
\(232\) 12.8395i 0.842956i
\(233\) − 8.90817i − 0.583594i −0.956480 0.291797i \(-0.905747\pi\)
0.956480 0.291797i \(-0.0942531\pi\)
\(234\) −8.47791 −0.554219
\(235\) − 10.7932i − 0.704068i
\(236\) 9.65908 0.628753
\(237\) −3.35484 −0.217921
\(238\) 0 0
\(239\) −12.3246 −0.797212 −0.398606 0.917122i \(-0.630506\pi\)
−0.398606 + 0.917122i \(0.630506\pi\)
\(240\) −0.151741 −0.00979481
\(241\) 2.67257i 0.172155i 0.996288 + 0.0860777i \(0.0274333\pi\)
−0.996288 + 0.0860777i \(0.972567\pi\)
\(242\) −3.26921 −0.210153
\(243\) 5.25405i 0.337048i
\(244\) 15.7254i 1.00671i
\(245\) − 3.41915i − 0.218442i
\(246\) −2.70134 −0.172231
\(247\) −5.97338 −0.380077
\(248\) − 14.7859i − 0.938903i
\(249\) − 1.68555i − 0.106818i
\(250\) 2.24891i 0.142234i
\(251\) 27.4415 1.73209 0.866046 0.499964i \(-0.166653\pi\)
0.866046 + 0.499964i \(0.166653\pi\)
\(252\) − 17.1310i − 1.07915i
\(253\) 2.02891 0.127557
\(254\) −28.8653 −1.81117
\(255\) 0 0
\(256\) −10.7272 −0.670451
\(257\) 22.8819 1.42734 0.713668 0.700484i \(-0.247032\pi\)
0.713668 + 0.700484i \(0.247032\pi\)
\(258\) − 4.07971i − 0.253992i
\(259\) −16.0590 −0.997855
\(260\) 3.89307i 0.241438i
\(261\) 15.9829i 0.989318i
\(262\) − 15.7979i − 0.975996i
\(263\) 9.48703 0.584995 0.292498 0.956266i \(-0.405514\pi\)
0.292498 + 0.956266i \(0.405514\pi\)
\(264\) 1.66223 0.102303
\(265\) − 9.90174i − 0.608259i
\(266\) − 19.9653i − 1.22415i
\(267\) − 3.31168i − 0.202671i
\(268\) 0.861814 0.0526437
\(269\) 6.08811i 0.371198i 0.982626 + 0.185599i \(0.0594226\pi\)
−0.982626 + 0.185599i \(0.940577\pi\)
\(270\) 2.65472 0.161561
\(271\) 23.6580 1.43712 0.718562 0.695463i \(-0.244801\pi\)
0.718562 + 0.695463i \(0.244801\pi\)
\(272\) 0 0
\(273\) −0.477139 −0.0288778
\(274\) −34.0655 −2.05797
\(275\) 3.52898i 0.212805i
\(276\) −0.348128 −0.0209549
\(277\) 8.23746i 0.494941i 0.968895 + 0.247471i \(0.0795994\pi\)
−0.968895 + 0.247471i \(0.920401\pi\)
\(278\) − 27.9614i − 1.67701i
\(279\) − 18.4058i − 1.10192i
\(280\) −4.50083 −0.268976
\(281\) −15.0835 −0.899808 −0.449904 0.893077i \(-0.648542\pi\)
−0.449904 + 0.893077i \(0.648542\pi\)
\(282\) 4.80688i 0.286246i
\(283\) − 17.7506i − 1.05517i −0.849503 0.527583i \(-0.823098\pi\)
0.849503 0.527583i \(-0.176902\pi\)
\(284\) 35.9068i 2.13068i
\(285\) 0.929079 0.0550339
\(286\) 10.1049i 0.597515i
\(287\) 11.4778 0.677511
\(288\) −19.1863 −1.13056
\(289\) 0 0
\(290\) 12.1401 0.712891
\(291\) 1.17095 0.0686421
\(292\) 30.0701i 1.75972i
\(293\) −10.9192 −0.637907 −0.318953 0.947770i \(-0.603331\pi\)
−0.318953 + 0.947770i \(0.603331\pi\)
\(294\) 1.52277i 0.0888096i
\(295\) − 3.15903i − 0.183926i
\(296\) − 20.1848i − 1.17322i
\(297\) 4.16576 0.241722
\(298\) −26.1084 −1.51242
\(299\) − 0.732022i − 0.0423340i
\(300\) − 0.605515i − 0.0349594i
\(301\) 17.3343i 0.999135i
\(302\) 2.96335 0.170522
\(303\) 1.99957i 0.114873i
\(304\) −3.59476 −0.206174
\(305\) 5.14302 0.294489
\(306\) 0 0
\(307\) 6.82894 0.389748 0.194874 0.980828i \(-0.437570\pi\)
0.194874 + 0.980828i \(0.437570\pi\)
\(308\) −20.4185 −1.16345
\(309\) − 0.212535i − 0.0120907i
\(310\) −13.9804 −0.794034
\(311\) − 0.661015i − 0.0374827i −0.999824 0.0187414i \(-0.994034\pi\)
0.999824 0.0187414i \(-0.00596591\pi\)
\(312\) − 0.599724i − 0.0339527i
\(313\) − 4.19329i − 0.237019i −0.992953 0.118510i \(-0.962188\pi\)
0.992953 0.118510i \(-0.0378116\pi\)
\(314\) 0.413543 0.0233376
\(315\) −5.60273 −0.315678
\(316\) 51.7980i 2.91386i
\(317\) 21.2656i 1.19439i 0.802094 + 0.597197i \(0.203719\pi\)
−0.802094 + 0.597197i \(0.796281\pi\)
\(318\) 4.40988i 0.247294i
\(319\) 19.0502 1.06660
\(320\) 13.0408i 0.729004i
\(321\) 1.25721 0.0701709
\(322\) 2.44670 0.136349
\(323\) 0 0
\(324\) 26.4440 1.46911
\(325\) 1.27324 0.0706266
\(326\) 40.5937i 2.24828i
\(327\) −1.99731 −0.110451
\(328\) 14.4266i 0.796575i
\(329\) − 20.4240i − 1.12601i
\(330\) − 1.57168i − 0.0865181i
\(331\) 27.7582 1.52573 0.762864 0.646559i \(-0.223793\pi\)
0.762864 + 0.646559i \(0.223793\pi\)
\(332\) −26.0245 −1.42828
\(333\) − 25.1264i − 1.37692i
\(334\) − 17.0359i − 0.932164i
\(335\) − 0.281859i − 0.0153996i
\(336\) −0.287141 −0.0156648
\(337\) 8.77964i 0.478257i 0.970988 + 0.239129i \(0.0768618\pi\)
−0.970988 + 0.239129i \(0.923138\pi\)
\(338\) −25.5901 −1.39192
\(339\) −0.741426 −0.0402687
\(340\) 0 0
\(341\) −21.9380 −1.18801
\(342\) 31.2385 1.68918
\(343\) − 19.7163i − 1.06458i
\(344\) −21.7878 −1.17472
\(345\) 0.113856i 0.00612981i
\(346\) − 15.5678i − 0.836930i
\(347\) 5.27026i 0.282922i 0.989944 + 0.141461i \(0.0451800\pi\)
−0.989944 + 0.141461i \(0.954820\pi\)
\(348\) −3.26869 −0.175220
\(349\) −10.8634 −0.581504 −0.290752 0.956799i \(-0.593905\pi\)
−0.290752 + 0.956799i \(0.593905\pi\)
\(350\) 4.25565i 0.227474i
\(351\) − 1.50299i − 0.0802235i
\(352\) 22.8683i 1.21888i
\(353\) 27.2304 1.44933 0.724664 0.689102i \(-0.241995\pi\)
0.724664 + 0.689102i \(0.241995\pi\)
\(354\) 1.40692i 0.0747768i
\(355\) 11.7434 0.623276
\(356\) −51.1314 −2.70996
\(357\) 0 0
\(358\) 23.1161 1.22173
\(359\) −13.0217 −0.687258 −0.343629 0.939105i \(-0.611656\pi\)
−0.343629 + 0.939105i \(0.611656\pi\)
\(360\) − 7.04216i − 0.371154i
\(361\) 3.01006 0.158424
\(362\) 45.1134i 2.37111i
\(363\) − 0.287880i − 0.0151098i
\(364\) 7.36691i 0.386131i
\(365\) 9.83451 0.514762
\(366\) −2.29052 −0.119727
\(367\) 16.7636i 0.875051i 0.899206 + 0.437526i \(0.144145\pi\)
−0.899206 + 0.437526i \(0.855855\pi\)
\(368\) − 0.440529i − 0.0229641i
\(369\) 17.9585i 0.934884i
\(370\) −19.0852 −0.992193
\(371\) − 18.7372i − 0.972786i
\(372\) 3.76419 0.195164
\(373\) 1.14057 0.0590567 0.0295283 0.999564i \(-0.490599\pi\)
0.0295283 + 0.999564i \(0.490599\pi\)
\(374\) 0 0
\(375\) −0.198035 −0.0102265
\(376\) 25.6713 1.32390
\(377\) − 6.87321i − 0.353988i
\(378\) 5.02355 0.258384
\(379\) − 8.76900i − 0.450433i −0.974309 0.225217i \(-0.927691\pi\)
0.974309 0.225217i \(-0.0723090\pi\)
\(380\) − 14.3448i − 0.735870i
\(381\) − 2.54182i − 0.130221i
\(382\) −9.24619 −0.473076
\(383\) −11.9977 −0.613053 −0.306526 0.951862i \(-0.599167\pi\)
−0.306526 + 0.951862i \(0.599167\pi\)
\(384\) − 3.24132i − 0.165408i
\(385\) 6.67793i 0.340339i
\(386\) 32.1563i 1.63671i
\(387\) −27.1220 −1.37869
\(388\) − 18.0791i − 0.917828i
\(389\) 0.165600 0.00839627 0.00419813 0.999991i \(-0.498664\pi\)
0.00419813 + 0.999991i \(0.498664\pi\)
\(390\) −0.567054 −0.0287139
\(391\) 0 0
\(392\) 8.13238 0.410747
\(393\) 1.39113 0.0701733
\(394\) 12.0345i 0.606291i
\(395\) 16.9407 0.852377
\(396\) − 31.9476i − 1.60543i
\(397\) − 30.4455i − 1.52802i −0.645206 0.764009i \(-0.723228\pi\)
0.645206 0.764009i \(-0.276772\pi\)
\(398\) − 7.58895i − 0.380400i
\(399\) 1.75811 0.0880155
\(400\) 0.766231 0.0383115
\(401\) − 36.7998i − 1.83769i −0.394613 0.918847i \(-0.629121\pi\)
0.394613 0.918847i \(-0.370879\pi\)
\(402\) 0.125530i 0.00626085i
\(403\) 7.91511i 0.394280i
\(404\) 30.8729 1.53599
\(405\) − 8.64858i − 0.429751i
\(406\) 22.9729 1.14012
\(407\) −29.9484 −1.48449
\(408\) 0 0
\(409\) 7.05575 0.348885 0.174442 0.984667i \(-0.444188\pi\)
0.174442 + 0.984667i \(0.444188\pi\)
\(410\) 13.6407 0.673667
\(411\) − 2.99975i − 0.147967i
\(412\) −3.28148 −0.161667
\(413\) − 5.97787i − 0.294152i
\(414\) 3.82819i 0.188145i
\(415\) 8.51139i 0.417808i
\(416\) 8.25077 0.404527
\(417\) 2.46223 0.120576
\(418\) − 37.2334i − 1.82114i
\(419\) − 13.4854i − 0.658803i −0.944190 0.329402i \(-0.893153\pi\)
0.944190 0.329402i \(-0.106847\pi\)
\(420\) − 1.14582i − 0.0559104i
\(421\) −11.9003 −0.579984 −0.289992 0.957029i \(-0.593653\pi\)
−0.289992 + 0.957029i \(0.593653\pi\)
\(422\) − 5.29273i − 0.257646i
\(423\) 31.9562 1.55376
\(424\) 23.5511 1.14374
\(425\) 0 0
\(426\) −5.23010 −0.253399
\(427\) 9.73220 0.470974
\(428\) − 19.4111i − 0.938270i
\(429\) −0.889817 −0.0429608
\(430\) 20.6010i 0.993466i
\(431\) 11.9863i 0.577362i 0.957425 + 0.288681i \(0.0932167\pi\)
−0.957425 + 0.288681i \(0.906783\pi\)
\(432\) − 0.904492i − 0.0435174i
\(433\) −7.39430 −0.355347 −0.177674 0.984089i \(-0.556857\pi\)
−0.177674 + 0.984089i \(0.556857\pi\)
\(434\) −26.4553 −1.26990
\(435\) 1.06903i 0.0512563i
\(436\) 30.8379i 1.47687i
\(437\) 2.69728i 0.129028i
\(438\) −4.37994 −0.209281
\(439\) 31.6430i 1.51024i 0.655588 + 0.755119i \(0.272421\pi\)
−0.655588 + 0.755119i \(0.727579\pi\)
\(440\) −8.39360 −0.400149
\(441\) 10.1234 0.482065
\(442\) 0 0
\(443\) 35.6597 1.69424 0.847121 0.531401i \(-0.178334\pi\)
0.847121 + 0.531401i \(0.178334\pi\)
\(444\) 5.13865 0.243870
\(445\) 16.7227i 0.792730i
\(446\) −7.77454 −0.368135
\(447\) − 2.29906i − 0.108742i
\(448\) 24.6773i 1.16589i
\(449\) − 1.16655i − 0.0550529i −0.999621 0.0275265i \(-0.991237\pi\)
0.999621 0.0275265i \(-0.00876305\pi\)
\(450\) −6.65854 −0.313887
\(451\) 21.4049 1.00792
\(452\) 11.4474i 0.538442i
\(453\) 0.260947i 0.0122604i
\(454\) − 48.8383i − 2.29209i
\(455\) 2.40937 0.112953
\(456\) 2.20980i 0.103483i
\(457\) −37.6351 −1.76050 −0.880248 0.474514i \(-0.842624\pi\)
−0.880248 + 0.474514i \(0.842624\pi\)
\(458\) −19.3221 −0.902860
\(459\) 0 0
\(460\) 1.75791 0.0819631
\(461\) −22.0741 −1.02809 −0.514046 0.857763i \(-0.671854\pi\)
−0.514046 + 0.857763i \(0.671854\pi\)
\(462\) − 2.97411i − 0.138368i
\(463\) −11.0361 −0.512893 −0.256447 0.966558i \(-0.582552\pi\)
−0.256447 + 0.966558i \(0.582552\pi\)
\(464\) − 4.13627i − 0.192022i
\(465\) − 1.23109i − 0.0570904i
\(466\) − 20.0337i − 0.928044i
\(467\) 22.0407 1.01992 0.509960 0.860198i \(-0.329660\pi\)
0.509960 + 0.860198i \(0.329660\pi\)
\(468\) −11.5265 −0.532814
\(469\) − 0.533365i − 0.0246285i
\(470\) − 24.2729i − 1.11962i
\(471\) 0.0364158i 0.00167795i
\(472\) 7.51368 0.345845
\(473\) 32.3269i 1.48639i
\(474\) −7.54475 −0.346542
\(475\) −4.69149 −0.215260
\(476\) 0 0
\(477\) 29.3169 1.34233
\(478\) −27.7170 −1.26774
\(479\) − 31.3474i − 1.43230i −0.697947 0.716149i \(-0.745903\pi\)
0.697947 0.716149i \(-0.254097\pi\)
\(480\) −1.28330 −0.0585742
\(481\) 10.8052i 0.492676i
\(482\) 6.01038i 0.273765i
\(483\) 0.215452i 0.00980339i
\(484\) −4.44480 −0.202036
\(485\) −5.91282 −0.268487
\(486\) 11.8159i 0.535981i
\(487\) 2.67826i 0.121364i 0.998157 + 0.0606818i \(0.0193275\pi\)
−0.998157 + 0.0606818i \(0.980673\pi\)
\(488\) 12.2326i 0.553742i
\(489\) −3.57461 −0.161649
\(490\) − 7.68938i − 0.347371i
\(491\) 19.7985 0.893496 0.446748 0.894660i \(-0.352582\pi\)
0.446748 + 0.894660i \(0.352582\pi\)
\(492\) −3.67273 −0.165580
\(493\) 0 0
\(494\) −13.4336 −0.604407
\(495\) −10.4485 −0.469627
\(496\) 4.76329i 0.213878i
\(497\) 22.2222 0.996803
\(498\) − 3.79066i − 0.169864i
\(499\) 27.7102i 1.24048i 0.784412 + 0.620240i \(0.212965\pi\)
−0.784412 + 0.620240i \(0.787035\pi\)
\(500\) 3.05761i 0.136741i
\(501\) 1.50015 0.0670218
\(502\) 61.7136 2.75441
\(503\) 4.11047i 0.183277i 0.995792 + 0.0916384i \(0.0292104\pi\)
−0.995792 + 0.0916384i \(0.970790\pi\)
\(504\) − 13.3260i − 0.593586i
\(505\) − 10.0971i − 0.449314i
\(506\) 4.56285 0.202843
\(507\) − 2.25341i − 0.100078i
\(508\) −39.2451 −1.74122
\(509\) 41.9347 1.85872 0.929362 0.369169i \(-0.120358\pi\)
0.929362 + 0.369169i \(0.120358\pi\)
\(510\) 0 0
\(511\) 18.6100 0.823256
\(512\) 8.61021 0.380521
\(513\) 5.53804i 0.244510i
\(514\) 51.4595 2.26978
\(515\) 1.07322i 0.0472916i
\(516\) − 5.54676i − 0.244182i
\(517\) − 38.0888i − 1.67514i
\(518\) −36.1152 −1.58681
\(519\) 1.37087 0.0601746
\(520\) 3.02837i 0.132803i
\(521\) − 35.4127i − 1.55146i −0.631066 0.775729i \(-0.717382\pi\)
0.631066 0.775729i \(-0.282618\pi\)
\(522\) 35.9442i 1.57323i
\(523\) −6.37043 −0.278560 −0.139280 0.990253i \(-0.544479\pi\)
−0.139280 + 0.990253i \(0.544479\pi\)
\(524\) − 21.4787i − 0.938302i
\(525\) −0.374744 −0.0163552
\(526\) 21.3355 0.930273
\(527\) 0 0
\(528\) −0.535489 −0.0233042
\(529\) 22.6695 0.985629
\(530\) − 22.2681i − 0.967267i
\(531\) 9.35319 0.405894
\(532\) − 27.1448i − 1.17687i
\(533\) − 7.72279i − 0.334511i
\(534\) − 7.44767i − 0.322292i
\(535\) −6.34844 −0.274467
\(536\) 0.670395 0.0289566
\(537\) 2.03556i 0.0878411i
\(538\) 13.6916i 0.590288i
\(539\) − 12.0661i − 0.519724i
\(540\) 3.60934 0.155321
\(541\) − 16.3452i − 0.702735i −0.936238 0.351367i \(-0.885717\pi\)
0.936238 0.351367i \(-0.114283\pi\)
\(542\) 53.2049 2.28535
\(543\) −3.97260 −0.170481
\(544\) 0 0
\(545\) 10.0856 0.432021
\(546\) −1.07304 −0.0459221
\(547\) − 1.28671i − 0.0550156i −0.999622 0.0275078i \(-0.991243\pi\)
0.999622 0.0275078i \(-0.00875711\pi\)
\(548\) −46.3153 −1.97849
\(549\) 15.2274i 0.649888i
\(550\) 7.93637i 0.338408i
\(551\) 25.3256i 1.07891i
\(552\) −0.270805 −0.0115262
\(553\) 32.0570 1.36320
\(554\) 18.5253i 0.787066i
\(555\) − 1.68061i − 0.0713379i
\(556\) − 38.0162i − 1.61225i
\(557\) −35.2859 −1.49511 −0.747555 0.664200i \(-0.768773\pi\)
−0.747555 + 0.664200i \(0.768773\pi\)
\(558\) − 41.3930i − 1.75230i
\(559\) 11.6634 0.493308
\(560\) 1.44995 0.0612715
\(561\) 0 0
\(562\) −33.9216 −1.43089
\(563\) −0.931153 −0.0392434 −0.0196217 0.999807i \(-0.506246\pi\)
−0.0196217 + 0.999807i \(0.506246\pi\)
\(564\) 6.53541i 0.275191i
\(565\) 3.74391 0.157507
\(566\) − 39.9197i − 1.67795i
\(567\) − 16.3658i − 0.687299i
\(568\) 27.9315i 1.17198i
\(569\) 17.5921 0.737498 0.368749 0.929529i \(-0.379786\pi\)
0.368749 + 0.929529i \(0.379786\pi\)
\(570\) 2.08942 0.0875161
\(571\) − 17.2534i − 0.722032i −0.932560 0.361016i \(-0.882430\pi\)
0.932560 0.361016i \(-0.117570\pi\)
\(572\) 13.7386i 0.574438i
\(573\) − 0.814202i − 0.0340138i
\(574\) 25.8125 1.07739
\(575\) − 0.574930i − 0.0239762i
\(576\) −38.6110 −1.60879
\(577\) 8.50534 0.354082 0.177041 0.984203i \(-0.443347\pi\)
0.177041 + 0.984203i \(0.443347\pi\)
\(578\) 0 0
\(579\) −2.83162 −0.117678
\(580\) 16.5056 0.685359
\(581\) 16.1062i 0.668198i
\(582\) 2.63336 0.109156
\(583\) − 34.9430i − 1.44719i
\(584\) 23.3912i 0.967934i
\(585\) 3.76978i 0.155861i
\(586\) −24.5563 −1.01441
\(587\) −1.55649 −0.0642433 −0.0321217 0.999484i \(-0.510226\pi\)
−0.0321217 + 0.999484i \(0.510226\pi\)
\(588\) 2.07035i 0.0853797i
\(589\) − 29.1647i − 1.20171i
\(590\) − 7.10438i − 0.292483i
\(591\) −1.05974 −0.0435918
\(592\) 6.50255i 0.267253i
\(593\) −19.6862 −0.808415 −0.404207 0.914667i \(-0.632453\pi\)
−0.404207 + 0.914667i \(0.632453\pi\)
\(594\) 9.36844 0.384392
\(595\) 0 0
\(596\) −35.4969 −1.45401
\(597\) 0.668269 0.0273504
\(598\) − 1.64626i − 0.0673204i
\(599\) 24.7552 1.01147 0.505735 0.862689i \(-0.331221\pi\)
0.505735 + 0.862689i \(0.331221\pi\)
\(600\) − 0.471022i − 0.0192294i
\(601\) 28.3317i 1.15568i 0.816152 + 0.577838i \(0.196103\pi\)
−0.816152 + 0.577838i \(0.803897\pi\)
\(602\) 38.9834i 1.58885i
\(603\) 0.834522 0.0339844
\(604\) 4.02895 0.163936
\(605\) 1.45368i 0.0591006i
\(606\) 4.49687i 0.182673i
\(607\) − 46.5969i − 1.89131i −0.325169 0.945656i \(-0.605421\pi\)
0.325169 0.945656i \(-0.394579\pi\)
\(608\) −30.4015 −1.23294
\(609\) 2.02295i 0.0819740i
\(610\) 11.5662 0.468302
\(611\) −13.7423 −0.555952
\(612\) 0 0
\(613\) −42.0358 −1.69781 −0.848905 0.528546i \(-0.822737\pi\)
−0.848905 + 0.528546i \(0.822737\pi\)
\(614\) 15.3577 0.619786
\(615\) 1.20118i 0.0484361i
\(616\) −15.8833 −0.639957
\(617\) − 18.2061i − 0.732951i −0.930428 0.366476i \(-0.880564\pi\)
0.930428 0.366476i \(-0.119436\pi\)
\(618\) − 0.477972i − 0.0192269i
\(619\) − 13.7770i − 0.553746i −0.960907 0.276873i \(-0.910702\pi\)
0.960907 0.276873i \(-0.0892981\pi\)
\(620\) −19.0077 −0.763368
\(621\) −0.678672 −0.0272342
\(622\) − 1.48657i − 0.0596058i
\(623\) 31.6445i 1.26781i
\(624\) 0.193202i 0.00773427i
\(625\) 1.00000 0.0400000
\(626\) − 9.43036i − 0.376913i
\(627\) 3.27870 0.130939
\(628\) 0.562251 0.0224362
\(629\) 0 0
\(630\) −12.6000 −0.501998
\(631\) −20.2307 −0.805372 −0.402686 0.915338i \(-0.631923\pi\)
−0.402686 + 0.915338i \(0.631923\pi\)
\(632\) 40.2930i 1.60277i
\(633\) 0.466068 0.0185245
\(634\) 47.8245i 1.89935i
\(635\) 12.8352i 0.509350i
\(636\) 5.99565i 0.237743i
\(637\) −4.35340 −0.172488
\(638\) 42.8421 1.69614
\(639\) 34.7697i 1.37547i
\(640\) 16.3674i 0.646978i
\(641\) 4.77563i 0.188626i 0.995543 + 0.0943131i \(0.0300655\pi\)
−0.995543 + 0.0943131i \(0.969935\pi\)
\(642\) 2.82737 0.111587
\(643\) − 9.85730i − 0.388734i −0.980929 0.194367i \(-0.937735\pi\)
0.980929 0.194367i \(-0.0622652\pi\)
\(644\) 3.32652 0.131083
\(645\) −1.81408 −0.0714294
\(646\) 0 0
\(647\) −36.4555 −1.43321 −0.716607 0.697477i \(-0.754306\pi\)
−0.716607 + 0.697477i \(0.754306\pi\)
\(648\) 20.5705 0.808084
\(649\) − 11.1481i − 0.437603i
\(650\) 2.86340 0.112312
\(651\) − 2.32961i − 0.0913045i
\(652\) 55.1910i 2.16145i
\(653\) 18.0074i 0.704686i 0.935871 + 0.352343i \(0.114615\pi\)
−0.935871 + 0.352343i \(0.885385\pi\)
\(654\) −4.49177 −0.175642
\(655\) −7.02467 −0.274476
\(656\) − 4.64755i − 0.181456i
\(657\) 29.1178i 1.13600i
\(658\) − 45.9319i − 1.79061i
\(659\) 0.175710 0.00684470 0.00342235 0.999994i \(-0.498911\pi\)
0.00342235 + 0.999994i \(0.498911\pi\)
\(660\) − 2.13685i − 0.0831767i
\(661\) −4.14751 −0.161319 −0.0806597 0.996742i \(-0.525703\pi\)
−0.0806597 + 0.996742i \(0.525703\pi\)
\(662\) 62.4258 2.42625
\(663\) 0 0
\(664\) −20.2442 −0.785626
\(665\) −8.87776 −0.344265
\(666\) − 56.5072i − 2.18961i
\(667\) −3.10359 −0.120171
\(668\) − 23.1620i − 0.896163i
\(669\) − 0.684612i − 0.0264686i
\(670\) − 0.633876i − 0.0244888i
\(671\) 18.1496 0.700658
\(672\) −2.42840 −0.0936775
\(673\) − 8.74027i − 0.336913i −0.985709 0.168456i \(-0.946122\pi\)
0.985709 0.168456i \(-0.0538782\pi\)
\(674\) 19.7446i 0.760535i
\(675\) − 1.18044i − 0.0454353i
\(676\) −34.7922 −1.33816
\(677\) 9.37205i 0.360197i 0.983649 + 0.180099i \(0.0576417\pi\)
−0.983649 + 0.180099i \(0.942358\pi\)
\(678\) −1.66740 −0.0640362
\(679\) −11.1889 −0.429391
\(680\) 0 0
\(681\) 4.30061 0.164800
\(682\) −49.3366 −1.88920
\(683\) − 37.4610i − 1.43340i −0.697379 0.716702i \(-0.745651\pi\)
0.697379 0.716702i \(-0.254349\pi\)
\(684\) 42.4717 1.62395
\(685\) 15.1475i 0.578758i
\(686\) − 44.3402i − 1.69292i
\(687\) − 1.70146i − 0.0649149i
\(688\) 7.01898 0.267596
\(689\) −12.6073 −0.480299
\(690\) 0.256053i 0.00974776i
\(691\) 44.6752i 1.69952i 0.527166 + 0.849762i \(0.323255\pi\)
−0.527166 + 0.849762i \(0.676745\pi\)
\(692\) − 21.1659i − 0.804607i
\(693\) −19.7719 −0.751072
\(694\) 11.8524i 0.449909i
\(695\) −12.4333 −0.471622
\(696\) −2.54268 −0.0963799
\(697\) 0 0
\(698\) −24.4308 −0.924720
\(699\) 1.76413 0.0667256
\(700\) 5.78596i 0.218689i
\(701\) 18.7355 0.707630 0.353815 0.935315i \(-0.384884\pi\)
0.353815 + 0.935315i \(0.384884\pi\)
\(702\) − 3.38009i − 0.127573i
\(703\) − 39.8139i − 1.50161i
\(704\) 46.0208i 1.73447i
\(705\) 2.13742 0.0805000
\(706\) 61.2388 2.30475
\(707\) − 19.1068i − 0.718586i
\(708\) 1.91284i 0.0718888i
\(709\) − 5.72933i − 0.215169i −0.994196 0.107585i \(-0.965688\pi\)
0.994196 0.107585i \(-0.0343117\pi\)
\(710\) 26.4099 0.991147
\(711\) 50.1576i 1.88106i
\(712\) −39.7745 −1.49061
\(713\) 3.57406 0.133850
\(714\) 0 0
\(715\) 4.49323 0.168037
\(716\) 31.4286 1.17454
\(717\) − 2.44070i − 0.0911498i
\(718\) −29.2846 −1.09289
\(719\) 29.3658i 1.09516i 0.836754 + 0.547579i \(0.184450\pi\)
−0.836754 + 0.547579i \(0.815550\pi\)
\(720\) 2.26864i 0.0845473i
\(721\) 2.03086i 0.0756333i
\(722\) 6.76937 0.251930
\(723\) −0.529263 −0.0196835
\(724\) 61.3360i 2.27953i
\(725\) − 5.39821i − 0.200484i
\(726\) − 0.647418i − 0.0240279i
\(727\) 48.1662 1.78639 0.893193 0.449674i \(-0.148460\pi\)
0.893193 + 0.449674i \(0.148460\pi\)
\(728\) 5.73063i 0.212391i
\(729\) 24.9052 0.922416
\(730\) 22.1170 0.818585
\(731\) 0 0
\(732\) −3.11417 −0.115103
\(733\) −14.3419 −0.529731 −0.264866 0.964285i \(-0.585328\pi\)
−0.264866 + 0.964285i \(0.585328\pi\)
\(734\) 37.6998i 1.39153i
\(735\) 0.677112 0.0249757
\(736\) − 3.72563i − 0.137328i
\(737\) − 0.994673i − 0.0366392i
\(738\) 40.3872i 1.48667i
\(739\) −9.73758 −0.358203 −0.179101 0.983831i \(-0.557319\pi\)
−0.179101 + 0.983831i \(0.557319\pi\)
\(740\) −25.9482 −0.953874
\(741\) − 1.18294i − 0.0434564i
\(742\) − 42.1383i − 1.54695i
\(743\) 24.0030i 0.880585i 0.897854 + 0.440292i \(0.145125\pi\)
−0.897854 + 0.440292i \(0.854875\pi\)
\(744\) 2.92812 0.107350
\(745\) 11.6094i 0.425334i
\(746\) 2.56505 0.0939133
\(747\) −25.2004 −0.922033
\(748\) 0 0
\(749\) −12.0132 −0.438954
\(750\) −0.445364 −0.0162624
\(751\) 47.9548i 1.74990i 0.484217 + 0.874948i \(0.339105\pi\)
−0.484217 + 0.874948i \(0.660895\pi\)
\(752\) −8.27004 −0.301578
\(753\) 5.43438i 0.198040i
\(754\) − 15.4572i − 0.562920i
\(755\) − 1.31768i − 0.0479553i
\(756\) 6.83000 0.248405
\(757\) −18.5200 −0.673119 −0.336560 0.941662i \(-0.609263\pi\)
−0.336560 + 0.941662i \(0.609263\pi\)
\(758\) − 19.7207i − 0.716289i
\(759\) 0.401796i 0.0145843i
\(760\) − 11.1586i − 0.404765i
\(761\) −35.9145 −1.30190 −0.650950 0.759120i \(-0.725629\pi\)
−0.650950 + 0.759120i \(0.725629\pi\)
\(762\) − 5.71634i − 0.207081i
\(763\) 19.0851 0.690929
\(764\) −12.5711 −0.454806
\(765\) 0 0
\(766\) −26.9818 −0.974890
\(767\) −4.02220 −0.145233
\(768\) − 2.12437i − 0.0766564i
\(769\) −17.7831 −0.641276 −0.320638 0.947202i \(-0.603897\pi\)
−0.320638 + 0.947202i \(0.603897\pi\)
\(770\) 15.0181i 0.541214i
\(771\) 4.53143i 0.163195i
\(772\) 43.7195i 1.57350i
\(773\) −7.33018 −0.263648 −0.131824 0.991273i \(-0.542083\pi\)
−0.131824 + 0.991273i \(0.542083\pi\)
\(774\) −60.9949 −2.19242
\(775\) 6.21652i 0.223304i
\(776\) − 14.0635i − 0.504851i
\(777\) − 3.18024i − 0.114090i
\(778\) 0.372421 0.0133519
\(779\) 28.4561i 1.01954i
\(780\) −0.770965 −0.0276050
\(781\) 41.4423 1.48292
\(782\) 0 0
\(783\) −6.37228 −0.227727
\(784\) −2.61986 −0.0935664
\(785\) − 0.183886i − 0.00656316i
\(786\) 3.12853 0.111591
\(787\) − 38.7949i − 1.38289i −0.722429 0.691445i \(-0.756975\pi\)
0.722429 0.691445i \(-0.243025\pi\)
\(788\) 16.3621i 0.582875i
\(789\) 1.87877i 0.0668858i
\(790\) 38.0981 1.35547
\(791\) 7.08465 0.251901
\(792\) − 24.8516i − 0.883064i
\(793\) − 6.54829i − 0.232537i
\(794\) − 68.4694i − 2.42989i
\(795\) 1.96089 0.0695457
\(796\) − 10.3179i − 0.365708i
\(797\) −36.6386 −1.29780 −0.648902 0.760872i \(-0.724772\pi\)
−0.648902 + 0.760872i \(0.724772\pi\)
\(798\) 3.95383 0.139964
\(799\) 0 0
\(800\) 6.48015 0.229108
\(801\) −49.5122 −1.74943
\(802\) − 82.7596i − 2.92234i
\(803\) 34.7058 1.22474
\(804\) 0.170670i 0.00601905i
\(805\) − 1.08795i − 0.0383451i
\(806\) 17.8004i 0.626993i
\(807\) −1.20566 −0.0424412
\(808\) 24.0157 0.844868
\(809\) − 15.6748i − 0.551098i −0.961287 0.275549i \(-0.911140\pi\)
0.961287 0.275549i \(-0.0888596\pi\)
\(810\) − 19.4499i − 0.683400i
\(811\) − 7.89645i − 0.277282i −0.990343 0.138641i \(-0.955727\pi\)
0.990343 0.138641i \(-0.0442734\pi\)
\(812\) 31.2338 1.09609
\(813\) 4.68512i 0.164314i
\(814\) −67.3513 −2.36066
\(815\) 18.0504 0.632277
\(816\) 0 0
\(817\) −42.9759 −1.50354
\(818\) 15.8678 0.554804
\(819\) 7.13361i 0.249268i
\(820\) 18.5459 0.647649
\(821\) − 23.6001i − 0.823649i −0.911263 0.411824i \(-0.864892\pi\)
0.911263 0.411824i \(-0.135108\pi\)
\(822\) − 6.74617i − 0.235300i
\(823\) − 14.1914i − 0.494680i −0.968929 0.247340i \(-0.920444\pi\)
0.968929 0.247340i \(-0.0795565\pi\)
\(824\) −2.55263 −0.0889250
\(825\) −0.698861 −0.0243312
\(826\) − 13.4437i − 0.467766i
\(827\) − 37.9599i − 1.32000i −0.751268 0.659998i \(-0.770557\pi\)
0.751268 0.659998i \(-0.229443\pi\)
\(828\) 5.20479i 0.180879i
\(829\) −4.91163 −0.170588 −0.0852939 0.996356i \(-0.527183\pi\)
−0.0852939 + 0.996356i \(0.527183\pi\)
\(830\) 19.1414i 0.664407i
\(831\) −1.63131 −0.0565894
\(832\) 16.6041 0.575643
\(833\) 0 0
\(834\) 5.53734 0.191743
\(835\) −7.57518 −0.262150
\(836\) − 50.6223i − 1.75081i
\(837\) 7.33826 0.253647
\(838\) − 30.3274i − 1.04764i
\(839\) − 11.0386i − 0.381094i −0.981678 0.190547i \(-0.938974\pi\)
0.981678 0.190547i \(-0.0610262\pi\)
\(840\) − 0.891322i − 0.0307535i
\(841\) −0.140644 −0.00484980
\(842\) −26.7627 −0.922303
\(843\) − 2.98707i − 0.102880i
\(844\) − 7.19597i − 0.247695i
\(845\) 11.3789i 0.391445i
\(846\) 71.8667 2.47083
\(847\) 2.75082i 0.0945194i
\(848\) −7.58701 −0.260539
\(849\) 3.51525 0.120643
\(850\) 0 0
\(851\) 4.87909 0.167253
\(852\) −7.11081 −0.243612
\(853\) 40.7976i 1.39688i 0.715667 + 0.698442i \(0.246123\pi\)
−0.715667 + 0.698442i \(0.753877\pi\)
\(854\) 21.8869 0.748954
\(855\) − 13.8905i − 0.475044i
\(856\) − 15.0996i − 0.516095i
\(857\) − 4.12864i − 0.141032i −0.997511 0.0705158i \(-0.977535\pi\)
0.997511 0.0705158i \(-0.0224645\pi\)
\(858\) −2.00112 −0.0683172
\(859\) 8.53800 0.291313 0.145656 0.989335i \(-0.453471\pi\)
0.145656 + 0.989335i \(0.453471\pi\)
\(860\) 28.0090i 0.955098i
\(861\) 2.27300i 0.0774637i
\(862\) 26.9563i 0.918134i
\(863\) −3.08921 −0.105158 −0.0525790 0.998617i \(-0.516744\pi\)
−0.0525790 + 0.998617i \(0.516744\pi\)
\(864\) − 7.64945i − 0.260240i
\(865\) −6.92236 −0.235367
\(866\) −16.6291 −0.565081
\(867\) 0 0
\(868\) −35.9685 −1.22085
\(869\) 59.7832 2.02801
\(870\) 2.40417i 0.0815089i
\(871\) −0.358873 −0.0121600
\(872\) 23.9884i 0.812351i
\(873\) − 17.5066i − 0.592508i
\(874\) 6.06594i 0.205183i
\(875\) 1.89231 0.0639718
\(876\) −5.95494 −0.201199
\(877\) − 30.7103i − 1.03701i −0.855074 0.518506i \(-0.826488\pi\)
0.855074 0.518506i \(-0.173512\pi\)
\(878\) 71.1623i 2.40161i
\(879\) − 2.16239i − 0.0729354i
\(880\) 2.70401 0.0911522
\(881\) − 8.75043i − 0.294809i −0.989076 0.147405i \(-0.952908\pi\)
0.989076 0.147405i \(-0.0470920\pi\)
\(882\) 22.7666 0.766591
\(883\) −29.5875 −0.995698 −0.497849 0.867264i \(-0.665877\pi\)
−0.497849 + 0.867264i \(0.665877\pi\)
\(884\) 0 0
\(885\) 0.625598 0.0210293
\(886\) 80.1955 2.69422
\(887\) 8.37625i 0.281247i 0.990063 + 0.140623i \(0.0449107\pi\)
−0.990063 + 0.140623i \(0.955089\pi\)
\(888\) 3.99729 0.134140
\(889\) 24.2882i 0.814601i
\(890\) 37.6078i 1.26062i
\(891\) − 30.5206i − 1.02248i
\(892\) −10.5702 −0.353917
\(893\) 50.6360 1.69447
\(894\) − 5.17039i − 0.172924i
\(895\) − 10.2788i − 0.343583i
\(896\) 30.9722i 1.03471i
\(897\) 0.144966 0.00484028
\(898\) − 2.62347i − 0.0875464i
\(899\) 33.5581 1.11922
\(900\) −9.05292 −0.301764
\(901\) 0 0
\(902\) 48.1378 1.60281
\(903\) −3.43281 −0.114237
\(904\) 8.90481i 0.296170i
\(905\) 20.0601 0.666820
\(906\) 0.586847i 0.0194967i
\(907\) − 20.1257i − 0.668264i −0.942526 0.334132i \(-0.891557\pi\)
0.942526 0.334132i \(-0.108443\pi\)
\(908\) − 66.4003i − 2.20357i
\(909\) 29.8952 0.991562
\(910\) 5.41845 0.179620
\(911\) 8.02227i 0.265790i 0.991130 + 0.132895i \(0.0424273\pi\)
−0.991130 + 0.132895i \(0.957573\pi\)
\(912\) − 0.711889i − 0.0235730i
\(913\) 30.0365i 0.994063i
\(914\) −84.6381 −2.79958
\(915\) 1.01850i 0.0336705i
\(916\) −26.2702 −0.867991
\(917\) −13.2929 −0.438969
\(918\) 0 0
\(919\) 30.7678 1.01494 0.507468 0.861671i \(-0.330582\pi\)
0.507468 + 0.861671i \(0.330582\pi\)
\(920\) 1.36746 0.0450838
\(921\) 1.35237i 0.0445621i
\(922\) −49.6427 −1.63489
\(923\) − 14.9522i − 0.492157i
\(924\) − 4.04358i − 0.133024i
\(925\) 8.48642i 0.279032i
\(926\) −24.8193 −0.815614
\(927\) −3.17756 −0.104365
\(928\) − 34.9812i − 1.14831i
\(929\) − 36.1110i − 1.18476i −0.805657 0.592382i \(-0.798188\pi\)
0.805657 0.592382i \(-0.201812\pi\)
\(930\) − 2.76861i − 0.0907864i
\(931\) 16.0409 0.525720
\(932\) − 27.2377i − 0.892202i
\(933\) 0.130904 0.00428561
\(934\) 49.5675 1.62190
\(935\) 0 0
\(936\) −8.96635 −0.293074
\(937\) −36.7492 −1.20054 −0.600272 0.799796i \(-0.704941\pi\)
−0.600272 + 0.799796i \(0.704941\pi\)
\(938\) − 1.19949i − 0.0391648i
\(939\) 0.830420 0.0270997
\(940\) − 33.0013i − 1.07638i
\(941\) 11.6655i 0.380283i 0.981757 + 0.190142i \(0.0608947\pi\)
−0.981757 + 0.190142i \(0.939105\pi\)
\(942\) 0.0818960i 0.00266832i
\(943\) −3.48722 −0.113559
\(944\) −2.42054 −0.0787820
\(945\) − 2.23377i − 0.0726645i
\(946\) 72.7003i 2.36369i
\(947\) − 46.6305i − 1.51529i −0.652669 0.757644i \(-0.726351\pi\)
0.652669 0.757644i \(-0.273649\pi\)
\(948\) −10.2578 −0.333158
\(949\) − 12.5217i − 0.406471i
\(950\) −10.5508 −0.342312
\(951\) −4.21133 −0.136562
\(952\) 0 0
\(953\) 15.8298 0.512778 0.256389 0.966574i \(-0.417467\pi\)
0.256389 + 0.966574i \(0.417467\pi\)
\(954\) 65.9311 2.13460
\(955\) 4.11140i 0.133042i
\(956\) −37.6839 −1.21878
\(957\) 3.77260i 0.121951i
\(958\) − 70.4975i − 2.27767i
\(959\) 28.6639i 0.925605i
\(960\) −2.58254 −0.0833512
\(961\) −7.64513 −0.246617
\(962\) 24.3000i 0.783465i
\(963\) − 18.7964i − 0.605704i
\(964\) 8.17169i 0.263192i
\(965\) 14.2986 0.460288
\(966\) 0.484532i 0.0155896i
\(967\) −18.4139 −0.592152 −0.296076 0.955164i \(-0.595678\pi\)
−0.296076 + 0.955164i \(0.595678\pi\)
\(968\) −3.45755 −0.111130
\(969\) 0 0
\(970\) −13.2974 −0.426955
\(971\) −16.3118 −0.523470 −0.261735 0.965140i \(-0.584295\pi\)
−0.261735 + 0.965140i \(0.584295\pi\)
\(972\) 16.0649i 0.515281i
\(973\) −23.5277 −0.754263
\(974\) 6.02318i 0.192995i
\(975\) 0.252146i 0.00807513i
\(976\) − 3.94074i − 0.126140i
\(977\) −52.7849 −1.68874 −0.844369 0.535762i \(-0.820024\pi\)
−0.844369 + 0.535762i \(0.820024\pi\)
\(978\) −8.03898 −0.257058
\(979\) 59.0139i 1.88609i
\(980\) − 10.4544i − 0.333955i
\(981\) 29.8613i 0.953399i
\(982\) 44.5252 1.42086
\(983\) − 33.3291i − 1.06303i −0.847048 0.531516i \(-0.821622\pi\)
0.847048 0.531516i \(-0.178378\pi\)
\(984\) −2.85697 −0.0910770
\(985\) 5.35126 0.170505
\(986\) 0 0
\(987\) 4.04467 0.128743
\(988\) −18.2643 −0.581065
\(989\) − 5.26659i − 0.167468i
\(990\) −23.4978 −0.746811
\(991\) 39.4944i 1.25458i 0.778786 + 0.627290i \(0.215836\pi\)
−0.778786 + 0.627290i \(0.784164\pi\)
\(992\) 40.2840i 1.27902i
\(993\) 5.49710i 0.174445i
\(994\) 49.9759 1.58514
\(995\) −3.37450 −0.106979
\(996\) − 5.15377i − 0.163303i
\(997\) − 26.6781i − 0.844904i −0.906385 0.422452i \(-0.861170\pi\)
0.906385 0.422452i \(-0.138830\pi\)
\(998\) 62.3179i 1.97264i
\(999\) 10.0177 0.316947
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.d.g.866.12 12
17.2 even 8 85.2.e.a.81.6 yes 12
17.4 even 4 1445.2.a.n.1.1 6
17.8 even 8 85.2.e.a.21.1 12
17.13 even 4 1445.2.a.o.1.1 6
17.16 even 2 inner 1445.2.d.g.866.11 12
51.2 odd 8 765.2.k.b.676.1 12
51.8 odd 8 765.2.k.b.361.6 12
68.19 odd 8 1360.2.bt.d.81.3 12
68.59 odd 8 1360.2.bt.d.1041.3 12
85.2 odd 8 425.2.j.c.149.1 12
85.4 even 4 7225.2.a.bb.1.6 6
85.8 odd 8 425.2.j.c.174.1 12
85.19 even 8 425.2.e.f.251.1 12
85.42 odd 8 425.2.j.b.174.6 12
85.53 odd 8 425.2.j.b.149.6 12
85.59 even 8 425.2.e.f.276.6 12
85.64 even 4 7225.2.a.z.1.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.e.a.21.1 12 17.8 even 8
85.2.e.a.81.6 yes 12 17.2 even 8
425.2.e.f.251.1 12 85.19 even 8
425.2.e.f.276.6 12 85.59 even 8
425.2.j.b.149.6 12 85.53 odd 8
425.2.j.b.174.6 12 85.42 odd 8
425.2.j.c.149.1 12 85.2 odd 8
425.2.j.c.174.1 12 85.8 odd 8
765.2.k.b.361.6 12 51.8 odd 8
765.2.k.b.676.1 12 51.2 odd 8
1360.2.bt.d.81.3 12 68.19 odd 8
1360.2.bt.d.1041.3 12 68.59 odd 8
1445.2.a.n.1.1 6 17.4 even 4
1445.2.a.o.1.1 6 17.13 even 4
1445.2.d.g.866.11 12 17.16 even 2 inner
1445.2.d.g.866.12 12 1.1 even 1 trivial
7225.2.a.z.1.6 6 85.64 even 4
7225.2.a.bb.1.6 6 85.4 even 4