L(s) = 1 | − 1.68·2-s + (1.27 + 1.27i)3-s + 0.830·4-s + (−2.14 − 2.14i)6-s + (−1.92 + 1.92i)7-s + 1.96·8-s + 0.249i·9-s + (−0.0173 − 0.0173i)11-s + (1.05 + 1.05i)12-s + 3.62i·13-s + (3.24 − 3.24i)14-s − 4.97·16-s + (−1.33 + 3.90i)17-s − 0.419i·18-s + 0.603i·19-s + ⋯ |
L(s) = 1 | − 1.18·2-s + (0.735 + 0.735i)3-s + 0.415·4-s + (−0.875 − 0.875i)6-s + (−0.728 + 0.728i)7-s + 0.695·8-s + 0.0830i·9-s + (−0.00524 − 0.00524i)11-s + (0.305 + 0.305i)12-s + 1.00i·13-s + (0.866 − 0.866i)14-s − 1.24·16-s + (−0.323 + 0.946i)17-s − 0.0987i·18-s + 0.138i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.715 - 0.698i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.715 - 0.698i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.233471 + 0.573405i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.233471 + 0.573405i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (1.33 - 3.90i)T \) |
good | 2 | \( 1 + 1.68T + 2T^{2} \) |
| 3 | \( 1 + (-1.27 - 1.27i)T + 3iT^{2} \) |
| 7 | \( 1 + (1.92 - 1.92i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.0173 + 0.0173i)T + 11iT^{2} \) |
| 13 | \( 1 - 3.62iT - 13T^{2} \) |
| 19 | \( 1 - 0.603iT - 19T^{2} \) |
| 23 | \( 1 + (1.94 - 1.94i)T - 23iT^{2} \) |
| 29 | \( 1 + (3.01 - 3.01i)T - 29iT^{2} \) |
| 31 | \( 1 + (0.422 - 0.422i)T - 31iT^{2} \) |
| 37 | \( 1 + (7.50 + 7.50i)T + 37iT^{2} \) |
| 41 | \( 1 + (-5.07 - 5.07i)T + 41iT^{2} \) |
| 43 | \( 1 + 12.0T + 43T^{2} \) |
| 47 | \( 1 - 11.0iT - 47T^{2} \) |
| 53 | \( 1 - 2.05T + 53T^{2} \) |
| 59 | \( 1 + 0.926iT - 59T^{2} \) |
| 61 | \( 1 + (-8.41 - 8.41i)T + 61iT^{2} \) |
| 67 | \( 1 + 5.79iT - 67T^{2} \) |
| 71 | \( 1 + (3.84 - 3.84i)T - 71iT^{2} \) |
| 73 | \( 1 + (-2.88 - 2.88i)T + 73iT^{2} \) |
| 79 | \( 1 + (9.68 + 9.68i)T + 79iT^{2} \) |
| 83 | \( 1 - 12.1T + 83T^{2} \) |
| 89 | \( 1 - 7.11T + 89T^{2} \) |
| 97 | \( 1 + (5.01 + 5.01i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.15956476697695540022633386476, −10.19537635428840320173251963409, −9.494522155686347926731682150226, −8.965466542297976072982805391049, −8.349501080403954467205771602382, −7.13615552717680897001821013228, −6.04237622672347235279336625531, −4.48098740347292942916305487124, −3.43625946485627262445773308856, −1.93712779623282061614410557531,
0.52843140716334150758935829914, 2.12058401482233122779805431959, 3.47204119304761635433977328086, 5.03390830400647121201246554304, 6.73819892357824997323041796519, 7.35138843831418212795018926836, 8.179649407880813526829423000880, 8.849273127314369142942803102058, 9.951319354447672089714541935819, 10.38353123398178002369810481202