L(s) = 1 | − 1.21·2-s + (−2.23 − 2.23i)3-s − 0.520·4-s + (2.72 + 2.72i)6-s + (−0.679 + 0.679i)7-s + 3.06·8-s + 7.02i·9-s + (2.22 + 2.22i)11-s + (1.16 + 1.16i)12-s + 2.02i·13-s + (0.827 − 0.827i)14-s − 2.68·16-s + (2.07 − 3.56i)17-s − 8.54i·18-s − 5.28i·19-s + ⋯ |
L(s) = 1 | − 0.860·2-s + (−1.29 − 1.29i)3-s − 0.260·4-s + (1.11 + 1.11i)6-s + (−0.256 + 0.256i)7-s + 1.08·8-s + 2.34i·9-s + (0.669 + 0.669i)11-s + (0.336 + 0.336i)12-s + 0.561i·13-s + (0.221 − 0.221i)14-s − 0.672·16-s + (0.503 − 0.864i)17-s − 2.01i·18-s − 1.21i·19-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.564+0.825i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(0.564+0.825i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.564+0.825i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(174,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), 0.564+0.825i)
|
Particular Values
L(1) |
≈ |
0.401127−0.211733i |
L(21) |
≈ |
0.401127−0.211733i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 17 | 1+(−2.07+3.56i)T |
good | 2 | 1+1.21T+2T2 |
| 3 | 1+(2.23+2.23i)T+3iT2 |
| 7 | 1+(0.679−0.679i)T−7iT2 |
| 11 | 1+(−2.22−2.22i)T+11iT2 |
| 13 | 1−2.02iT−13T2 |
| 19 | 1+5.28iT−19T2 |
| 23 | 1+(6.01−6.01i)T−23iT2 |
| 29 | 1+(−0.857+0.857i)T−29iT2 |
| 31 | 1+(−3.97+3.97i)T−31iT2 |
| 37 | 1+(−5.84−5.84i)T+37iT2 |
| 41 | 1+(1.04+1.04i)T+41iT2 |
| 43 | 1−7.01T+43T2 |
| 47 | 1+10.9iT−47T2 |
| 53 | 1−5.24T+53T2 |
| 59 | 1+13.8iT−59T2 |
| 61 | 1+(−2.70−2.70i)T+61iT2 |
| 67 | 1−2.37iT−67T2 |
| 71 | 1+(−2.82+2.82i)T−71iT2 |
| 73 | 1+(−5.51−5.51i)T+73iT2 |
| 79 | 1+(−4.74−4.74i)T+79iT2 |
| 83 | 1−0.171T+83T2 |
| 89 | 1+1.32T+89T2 |
| 97 | 1+(1.33+1.33i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.31095567578344952660711356979, −9.997318007073115199336794291048, −9.367170984332468593720853867386, −8.096627566742903106725562401401, −7.28924699606629992974089467739, −6.59978991715011192285217375435, −5.48475760931231231201584621079, −4.44085179156479033080725969491, −2.05209085989288399509527379781, −0.75555773254394704378902217673,
0.821562154540774647364822320444, 3.72844424417423250187669153902, 4.39754983470426262002684093203, 5.68446300726818969773868059476, 6.33829078487114492843962242509, 7.917616023563246987281411825042, 8.838559803524822770364303280112, 9.786787447725747587478663728173, 10.38709540108969963309839691362, 10.80773339914138762663958305524