L(s) = 1 | − 1.21·2-s + (−2.23 − 2.23i)3-s − 0.520·4-s + (2.72 + 2.72i)6-s + (−0.679 + 0.679i)7-s + 3.06·8-s + 7.02i·9-s + (2.22 + 2.22i)11-s + (1.16 + 1.16i)12-s + 2.02i·13-s + (0.827 − 0.827i)14-s − 2.68·16-s + (2.07 − 3.56i)17-s − 8.54i·18-s − 5.28i·19-s + ⋯ |
L(s) = 1 | − 0.860·2-s + (−1.29 − 1.29i)3-s − 0.260·4-s + (1.11 + 1.11i)6-s + (−0.256 + 0.256i)7-s + 1.08·8-s + 2.34i·9-s + (0.669 + 0.669i)11-s + (0.336 + 0.336i)12-s + 0.561i·13-s + (0.221 − 0.221i)14-s − 0.672·16-s + (0.503 − 0.864i)17-s − 2.01i·18-s − 1.21i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.564 + 0.825i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.564 + 0.825i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.401127 - 0.211733i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.401127 - 0.211733i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-2.07 + 3.56i)T \) |
good | 2 | \( 1 + 1.21T + 2T^{2} \) |
| 3 | \( 1 + (2.23 + 2.23i)T + 3iT^{2} \) |
| 7 | \( 1 + (0.679 - 0.679i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.22 - 2.22i)T + 11iT^{2} \) |
| 13 | \( 1 - 2.02iT - 13T^{2} \) |
| 19 | \( 1 + 5.28iT - 19T^{2} \) |
| 23 | \( 1 + (6.01 - 6.01i)T - 23iT^{2} \) |
| 29 | \( 1 + (-0.857 + 0.857i)T - 29iT^{2} \) |
| 31 | \( 1 + (-3.97 + 3.97i)T - 31iT^{2} \) |
| 37 | \( 1 + (-5.84 - 5.84i)T + 37iT^{2} \) |
| 41 | \( 1 + (1.04 + 1.04i)T + 41iT^{2} \) |
| 43 | \( 1 - 7.01T + 43T^{2} \) |
| 47 | \( 1 + 10.9iT - 47T^{2} \) |
| 53 | \( 1 - 5.24T + 53T^{2} \) |
| 59 | \( 1 + 13.8iT - 59T^{2} \) |
| 61 | \( 1 + (-2.70 - 2.70i)T + 61iT^{2} \) |
| 67 | \( 1 - 2.37iT - 67T^{2} \) |
| 71 | \( 1 + (-2.82 + 2.82i)T - 71iT^{2} \) |
| 73 | \( 1 + (-5.51 - 5.51i)T + 73iT^{2} \) |
| 79 | \( 1 + (-4.74 - 4.74i)T + 79iT^{2} \) |
| 83 | \( 1 - 0.171T + 83T^{2} \) |
| 89 | \( 1 + 1.32T + 89T^{2} \) |
| 97 | \( 1 + (1.33 + 1.33i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.31095567578344952660711356979, −9.997318007073115199336794291048, −9.367170984332468593720853867386, −8.096627566742903106725562401401, −7.28924699606629992974089467739, −6.59978991715011192285217375435, −5.48475760931231231201584621079, −4.44085179156479033080725969491, −2.05209085989288399509527379781, −0.75555773254394704378902217673,
0.821562154540774647364822320444, 3.72844424417423250187669153902, 4.39754983470426262002684093203, 5.68446300726818969773868059476, 6.33829078487114492843962242509, 7.917616023563246987281411825042, 8.838559803524822770364303280112, 9.786787447725747587478663728173, 10.38709540108969963309839691362, 10.80773339914138762663958305524