Properties

Label 2-425-85.4-c1-0-16
Degree 22
Conductor 425425
Sign 0.8690.494i0.869 - 0.494i
Analytic cond. 3.393643.39364
Root an. cond. 1.842181.84218
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.08·2-s + (1.31 + 1.31i)3-s + 2.34·4-s + (2.73 + 2.73i)6-s + (0.971 − 0.971i)7-s + 0.713·8-s + 0.435i·9-s + (−0.384 − 0.384i)11-s + (3.07 + 3.07i)12-s + 5.39i·13-s + (2.02 − 2.02i)14-s − 3.19·16-s + (−3.38 − 2.36i)17-s + 0.907i·18-s − 4.86i·19-s + ⋯
L(s)  = 1  + 1.47·2-s + (0.756 + 0.756i)3-s + 1.17·4-s + (1.11 + 1.11i)6-s + (0.367 − 0.367i)7-s + 0.252·8-s + 0.145i·9-s + (−0.116 − 0.116i)11-s + (0.886 + 0.886i)12-s + 1.49i·13-s + (0.541 − 0.541i)14-s − 0.799·16-s + (−0.819 − 0.572i)17-s + 0.213i·18-s − 1.11i·19-s + ⋯

Functional equation

Λ(s)=(425s/2ΓC(s)L(s)=((0.8690.494i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.869 - 0.494i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(425s/2ΓC(s+1/2)L(s)=((0.8690.494i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.869 - 0.494i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 425425    =    52175^{2} \cdot 17
Sign: 0.8690.494i0.869 - 0.494i
Analytic conductor: 3.393643.39364
Root analytic conductor: 1.842181.84218
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ425(174,)\chi_{425} (174, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 425, ( :1/2), 0.8690.494i)(2,\ 425,\ (\ :1/2),\ 0.869 - 0.494i)

Particular Values

L(1)L(1) \approx 3.40001+0.899242i3.40001 + 0.899242i
L(12)L(\frac12) \approx 3.40001+0.899242i3.40001 + 0.899242i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1 1
17 1+(3.38+2.36i)T 1 + (3.38 + 2.36i)T
good2 12.08T+2T2 1 - 2.08T + 2T^{2}
3 1+(1.311.31i)T+3iT2 1 + (-1.31 - 1.31i)T + 3iT^{2}
7 1+(0.971+0.971i)T7iT2 1 + (-0.971 + 0.971i)T - 7iT^{2}
11 1+(0.384+0.384i)T+11iT2 1 + (0.384 + 0.384i)T + 11iT^{2}
13 15.39iT13T2 1 - 5.39iT - 13T^{2}
19 1+4.86iT19T2 1 + 4.86iT - 19T^{2}
23 1+(1.26+1.26i)T23iT2 1 + (-1.26 + 1.26i)T - 23iT^{2}
29 1+(1.291.29i)T29iT2 1 + (1.29 - 1.29i)T - 29iT^{2}
31 1+(5.735.73i)T31iT2 1 + (5.73 - 5.73i)T - 31iT^{2}
37 1+(4.224.22i)T+37iT2 1 + (-4.22 - 4.22i)T + 37iT^{2}
41 1+(2.70+2.70i)T+41iT2 1 + (2.70 + 2.70i)T + 41iT^{2}
43 13.66T+43T2 1 - 3.66T + 43T^{2}
47 1+9.07iT47T2 1 + 9.07iT - 47T^{2}
53 110.5T+53T2 1 - 10.5T + 53T^{2}
59 16.52iT59T2 1 - 6.52iT - 59T^{2}
61 1+(10.9+10.9i)T+61iT2 1 + (10.9 + 10.9i)T + 61iT^{2}
67 15.68iT67T2 1 - 5.68iT - 67T^{2}
71 1+(0.749+0.749i)T71iT2 1 + (-0.749 + 0.749i)T - 71iT^{2}
73 1+(10.3+10.3i)T+73iT2 1 + (10.3 + 10.3i)T + 73iT^{2}
79 1+(0.8780.878i)T+79iT2 1 + (-0.878 - 0.878i)T + 79iT^{2}
83 113.5T+83T2 1 - 13.5T + 83T^{2}
89 10.989T+89T2 1 - 0.989T + 89T^{2}
97 1+(8.058.05i)T+97iT2 1 + (-8.05 - 8.05i)T + 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.43298746781267548964061735943, −10.59836423784515693373421750544, −9.141813569127662224332021373323, −8.925853909970098537672238257347, −7.21127928498020536871309903646, −6.44917140543163931611320772518, −4.96962827011359248733870219314, −4.40306697893599544764131823076, −3.49519872253261796584709807914, −2.36571111800565000415472227211, 2.00676258610101639636567116562, 2.99112591469537480019549339482, 4.12446143213451351825118637143, 5.38489501076848187278286785769, 6.06627068763835988397042766777, 7.39469997429934234590145393688, 8.082833390055605139890840500259, 9.081108984291045723129052624262, 10.49803016406350202512746994576, 11.41123189110714874994576540397

Graph of the ZZ-function along the critical line