L(s) = 1 | + 2.08·2-s + (1.31 + 1.31i)3-s + 2.34·4-s + (2.73 + 2.73i)6-s + (0.971 − 0.971i)7-s + 0.713·8-s + 0.435i·9-s + (−0.384 − 0.384i)11-s + (3.07 + 3.07i)12-s + 5.39i·13-s + (2.02 − 2.02i)14-s − 3.19·16-s + (−3.38 − 2.36i)17-s + 0.907i·18-s − 4.86i·19-s + ⋯ |
L(s) = 1 | + 1.47·2-s + (0.756 + 0.756i)3-s + 1.17·4-s + (1.11 + 1.11i)6-s + (0.367 − 0.367i)7-s + 0.252·8-s + 0.145i·9-s + (−0.116 − 0.116i)11-s + (0.886 + 0.886i)12-s + 1.49i·13-s + (0.541 − 0.541i)14-s − 0.799·16-s + (−0.819 − 0.572i)17-s + 0.213i·18-s − 1.11i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.869 - 0.494i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.869 - 0.494i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.40001 + 0.899242i\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.40001 + 0.899242i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (3.38 + 2.36i)T \) |
good | 2 | \( 1 - 2.08T + 2T^{2} \) |
| 3 | \( 1 + (-1.31 - 1.31i)T + 3iT^{2} \) |
| 7 | \( 1 + (-0.971 + 0.971i)T - 7iT^{2} \) |
| 11 | \( 1 + (0.384 + 0.384i)T + 11iT^{2} \) |
| 13 | \( 1 - 5.39iT - 13T^{2} \) |
| 19 | \( 1 + 4.86iT - 19T^{2} \) |
| 23 | \( 1 + (-1.26 + 1.26i)T - 23iT^{2} \) |
| 29 | \( 1 + (1.29 - 1.29i)T - 29iT^{2} \) |
| 31 | \( 1 + (5.73 - 5.73i)T - 31iT^{2} \) |
| 37 | \( 1 + (-4.22 - 4.22i)T + 37iT^{2} \) |
| 41 | \( 1 + (2.70 + 2.70i)T + 41iT^{2} \) |
| 43 | \( 1 - 3.66T + 43T^{2} \) |
| 47 | \( 1 + 9.07iT - 47T^{2} \) |
| 53 | \( 1 - 10.5T + 53T^{2} \) |
| 59 | \( 1 - 6.52iT - 59T^{2} \) |
| 61 | \( 1 + (10.9 + 10.9i)T + 61iT^{2} \) |
| 67 | \( 1 - 5.68iT - 67T^{2} \) |
| 71 | \( 1 + (-0.749 + 0.749i)T - 71iT^{2} \) |
| 73 | \( 1 + (10.3 + 10.3i)T + 73iT^{2} \) |
| 79 | \( 1 + (-0.878 - 0.878i)T + 79iT^{2} \) |
| 83 | \( 1 - 13.5T + 83T^{2} \) |
| 89 | \( 1 - 0.989T + 89T^{2} \) |
| 97 | \( 1 + (-8.05 - 8.05i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.43298746781267548964061735943, −10.59836423784515693373421750544, −9.141813569127662224332021373323, −8.925853909970098537672238257347, −7.21127928498020536871309903646, −6.44917140543163931611320772518, −4.96962827011359248733870219314, −4.40306697893599544764131823076, −3.49519872253261796584709807914, −2.36571111800565000415472227211,
2.00676258610101639636567116562, 2.99112591469537480019549339482, 4.12446143213451351825118637143, 5.38489501076848187278286785769, 6.06627068763835988397042766777, 7.39469997429934234590145393688, 8.082833390055605139890840500259, 9.081108984291045723129052624262, 10.49803016406350202512746994576, 11.41123189110714874994576540397