L(s) = 1 | − 1.12·2-s + (1.75 + 1.75i)3-s − 0.729·4-s + (−1.97 − 1.97i)6-s + (1.72 − 1.72i)7-s + 3.07·8-s + 3.16i·9-s + (2.57 + 2.57i)11-s + (−1.28 − 1.28i)12-s − 3.64i·13-s + (−1.94 + 1.94i)14-s − 2.00·16-s + (2.79 + 3.03i)17-s − 3.56i·18-s + 2.61i·19-s + ⋯ |
L(s) = 1 | − 0.796·2-s + (1.01 + 1.01i)3-s − 0.364·4-s + (−0.807 − 0.807i)6-s + (0.652 − 0.652i)7-s + 1.08·8-s + 1.05i·9-s + (0.775 + 0.775i)11-s + (−0.369 − 0.369i)12-s − 1.01i·13-s + (−0.520 + 0.520i)14-s − 0.502·16-s + (0.677 + 0.735i)17-s − 0.840i·18-s + 0.599i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.587 - 0.809i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.587 - 0.809i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.13632 + 0.579471i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.13632 + 0.579471i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 17 | \( 1 + (-2.79 - 3.03i)T \) |
good | 2 | \( 1 + 1.12T + 2T^{2} \) |
| 3 | \( 1 + (-1.75 - 1.75i)T + 3iT^{2} \) |
| 7 | \( 1 + (-1.72 + 1.72i)T - 7iT^{2} \) |
| 11 | \( 1 + (-2.57 - 2.57i)T + 11iT^{2} \) |
| 13 | \( 1 + 3.64iT - 13T^{2} \) |
| 19 | \( 1 - 2.61iT - 19T^{2} \) |
| 23 | \( 1 + (-0.993 + 0.993i)T - 23iT^{2} \) |
| 29 | \( 1 + (0.601 - 0.601i)T - 29iT^{2} \) |
| 31 | \( 1 + (6.67 - 6.67i)T - 31iT^{2} \) |
| 37 | \( 1 + (-7.78 - 7.78i)T + 37iT^{2} \) |
| 41 | \( 1 + (6.74 + 6.74i)T + 41iT^{2} \) |
| 43 | \( 1 + 7.47T + 43T^{2} \) |
| 47 | \( 1 + 5.42iT - 47T^{2} \) |
| 53 | \( 1 - 12.9T + 53T^{2} \) |
| 59 | \( 1 - 1.40iT - 59T^{2} \) |
| 61 | \( 1 + (-0.804 - 0.804i)T + 61iT^{2} \) |
| 67 | \( 1 + 2.07iT - 67T^{2} \) |
| 71 | \( 1 + (-8.69 + 8.69i)T - 71iT^{2} \) |
| 73 | \( 1 + (1.04 + 1.04i)T + 73iT^{2} \) |
| 79 | \( 1 + (6.34 + 6.34i)T + 79iT^{2} \) |
| 83 | \( 1 + 2.52T + 83T^{2} \) |
| 89 | \( 1 - 1.66T + 89T^{2} \) |
| 97 | \( 1 + (8.67 + 8.67i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.66233092643000456334175405511, −10.23476905696706962649722815907, −9.549152981250602679063676154243, −8.581017875013666177869256372232, −8.093679424519897464697996450570, −7.10846361215202124584124110375, −5.23725311522524925381536554277, −4.25305704806141476845566387557, −3.46295834246923675864236430135, −1.52469581997684026580208538731,
1.21466502385630849746773851360, 2.36863978652721378554944774354, 3.91189440311182328895623022895, 5.33215637939031244556350617931, 6.78250995675399693756444793003, 7.65093500335397419028579149146, 8.392348322412645083146524810534, 9.075924835090840917970591137403, 9.594061649081853944558351596640, 11.19401428807679805022700740138