Properties

Label 2-425-25.6-c1-0-20
Degree 22
Conductor 425425
Sign 0.968+0.248i0.968 + 0.248i
Analytic cond. 3.393643.39364
Root an. cond. 1.842181.84218
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.118 − 0.363i)2-s + (0.809 − 0.587i)3-s + (1.5 − 1.08i)4-s + (−0.690 + 2.12i)5-s + (−0.309 − 0.224i)6-s + 4.61·7-s + (−1.19 − 0.865i)8-s + (−0.618 + 1.90i)9-s + 0.854·10-s + (1 + 3.07i)11-s + (0.572 − 1.76i)12-s + (−0.572 + 1.76i)13-s + (−0.545 − 1.67i)14-s + (0.690 + 2.12i)15-s + (0.972 − 2.99i)16-s + (−0.809 − 0.587i)17-s + ⋯
L(s)  = 1  + (−0.0834 − 0.256i)2-s + (0.467 − 0.339i)3-s + (0.750 − 0.544i)4-s + (−0.309 + 0.951i)5-s + (−0.126 − 0.0916i)6-s + 1.74·7-s + (−0.421 − 0.305i)8-s + (−0.206 + 0.634i)9-s + 0.270·10-s + (0.301 + 0.927i)11-s + (0.165 − 0.509i)12-s + (−0.158 + 0.489i)13-s + (−0.145 − 0.448i)14-s + (0.178 + 0.549i)15-s + (0.243 − 0.747i)16-s + (−0.196 − 0.142i)17-s + ⋯

Functional equation

Λ(s)=(425s/2ΓC(s)L(s)=((0.968+0.248i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.968 + 0.248i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(425s/2ΓC(s+1/2)L(s)=((0.968+0.248i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.968 + 0.248i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 425425    =    52175^{2} \cdot 17
Sign: 0.968+0.248i0.968 + 0.248i
Analytic conductor: 3.393643.39364
Root analytic conductor: 1.842181.84218
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ425(256,)\chi_{425} (256, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 425, ( :1/2), 0.968+0.248i)(2,\ 425,\ (\ :1/2),\ 0.968 + 0.248i)

Particular Values

L(1)L(1) \approx 1.918330.242341i1.91833 - 0.242341i
L(12)L(\frac12) \approx 1.918330.242341i1.91833 - 0.242341i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad5 1+(0.6902.12i)T 1 + (0.690 - 2.12i)T
17 1+(0.809+0.587i)T 1 + (0.809 + 0.587i)T
good2 1+(0.118+0.363i)T+(1.61+1.17i)T2 1 + (0.118 + 0.363i)T + (-1.61 + 1.17i)T^{2}
3 1+(0.809+0.587i)T+(0.9272.85i)T2 1 + (-0.809 + 0.587i)T + (0.927 - 2.85i)T^{2}
7 14.61T+7T2 1 - 4.61T + 7T^{2}
11 1+(13.07i)T+(8.89+6.46i)T2 1 + (-1 - 3.07i)T + (-8.89 + 6.46i)T^{2}
13 1+(0.5721.76i)T+(10.57.64i)T2 1 + (0.572 - 1.76i)T + (-10.5 - 7.64i)T^{2}
19 1+(3.92+2.85i)T+(5.87+18.0i)T2 1 + (3.92 + 2.85i)T + (5.87 + 18.0i)T^{2}
23 1+(0.6902.12i)T+(18.6+13.5i)T2 1 + (-0.690 - 2.12i)T + (-18.6 + 13.5i)T^{2}
29 1+(5.16+3.75i)T+(8.9627.5i)T2 1 + (-5.16 + 3.75i)T + (8.96 - 27.5i)T^{2}
31 1+(8.28+6.01i)T+(9.57+29.4i)T2 1 + (8.28 + 6.01i)T + (9.57 + 29.4i)T^{2}
37 1+(3.07+9.45i)T+(29.921.7i)T2 1 + (-3.07 + 9.45i)T + (-29.9 - 21.7i)T^{2}
41 1+(0.763+2.35i)T+(33.124.0i)T2 1 + (-0.763 + 2.35i)T + (-33.1 - 24.0i)T^{2}
43 1+6.85T+43T2 1 + 6.85T + 43T^{2}
47 1+(2.111.53i)T+(14.544.6i)T2 1 + (2.11 - 1.53i)T + (14.5 - 44.6i)T^{2}
53 1+(3.042.21i)T+(16.350.4i)T2 1 + (3.04 - 2.21i)T + (16.3 - 50.4i)T^{2}
59 1+(3.59+11.0i)T+(47.734.6i)T2 1 + (-3.59 + 11.0i)T + (-47.7 - 34.6i)T^{2}
61 1+(1.54+4.75i)T+(49.3+35.8i)T2 1 + (1.54 + 4.75i)T + (-49.3 + 35.8i)T^{2}
67 1+(12.49.06i)T+(20.7+63.7i)T2 1 + (-12.4 - 9.06i)T + (20.7 + 63.7i)T^{2}
71 1+(6.354.61i)T+(21.967.5i)T2 1 + (6.35 - 4.61i)T + (21.9 - 67.5i)T^{2}
73 1+(2.788.55i)T+(59.0+42.9i)T2 1 + (-2.78 - 8.55i)T + (-59.0 + 42.9i)T^{2}
79 1+(1.691.22i)T+(24.475.1i)T2 1 + (1.69 - 1.22i)T + (24.4 - 75.1i)T^{2}
83 1+(4.80+3.49i)T+(25.6+78.9i)T2 1 + (4.80 + 3.49i)T + (25.6 + 78.9i)T^{2}
89 1+(0.3811.17i)T+(72.0+52.3i)T2 1 + (-0.381 - 1.17i)T + (-72.0 + 52.3i)T^{2}
97 1+(6.594.78i)T+(29.992.2i)T2 1 + (6.59 - 4.78i)T + (29.9 - 92.2i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.30375080407499869769801319498, −10.53665178133288090665144739302, −9.420353559993133362300863585213, −8.178728959117295928757251029530, −7.42370891199279964747260988454, −6.75913636821039501952811659279, −5.36188699107157834427828212602, −4.20554004691893689590226961450, −2.38564587474365176566553644526, −1.91424830938483051107285895508, 1.53693611815392051877520411391, 3.18369492812314544036078451150, 4.30702943756398238644774227301, 5.39597174991071528412393606003, 6.58859596811431470209221721653, 7.956282765369217086522941160195, 8.414935570239989674862560741040, 8.880432449792546806275317287137, 10.47903319387965773966219176906, 11.34042304215695423963877103995

Graph of the ZZ-function along the critical line