L(s) = 1 | + (−0.118 − 0.363i)2-s + (0.809 − 0.587i)3-s + (1.5 − 1.08i)4-s + (−0.690 + 2.12i)5-s + (−0.309 − 0.224i)6-s + 4.61·7-s + (−1.19 − 0.865i)8-s + (−0.618 + 1.90i)9-s + 0.854·10-s + (1 + 3.07i)11-s + (0.572 − 1.76i)12-s + (−0.572 + 1.76i)13-s + (−0.545 − 1.67i)14-s + (0.690 + 2.12i)15-s + (0.972 − 2.99i)16-s + (−0.809 − 0.587i)17-s + ⋯ |
L(s) = 1 | + (−0.0834 − 0.256i)2-s + (0.467 − 0.339i)3-s + (0.750 − 0.544i)4-s + (−0.309 + 0.951i)5-s + (−0.126 − 0.0916i)6-s + 1.74·7-s + (−0.421 − 0.305i)8-s + (−0.206 + 0.634i)9-s + 0.270·10-s + (0.301 + 0.927i)11-s + (0.165 − 0.509i)12-s + (−0.158 + 0.489i)13-s + (−0.145 − 0.448i)14-s + (0.178 + 0.549i)15-s + (0.243 − 0.747i)16-s + (−0.196 − 0.142i)17-s + ⋯ |
Λ(s)=(=(425s/2ΓC(s)L(s)(0.968+0.248i)Λ(2−s)
Λ(s)=(=(425s/2ΓC(s+1/2)L(s)(0.968+0.248i)Λ(1−s)
Degree: |
2 |
Conductor: |
425
= 52⋅17
|
Sign: |
0.968+0.248i
|
Analytic conductor: |
3.39364 |
Root analytic conductor: |
1.84218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ425(256,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 425, ( :1/2), 0.968+0.248i)
|
Particular Values
L(1) |
≈ |
1.91833−0.242341i |
L(21) |
≈ |
1.91833−0.242341i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+(0.690−2.12i)T |
| 17 | 1+(0.809+0.587i)T |
good | 2 | 1+(0.118+0.363i)T+(−1.61+1.17i)T2 |
| 3 | 1+(−0.809+0.587i)T+(0.927−2.85i)T2 |
| 7 | 1−4.61T+7T2 |
| 11 | 1+(−1−3.07i)T+(−8.89+6.46i)T2 |
| 13 | 1+(0.572−1.76i)T+(−10.5−7.64i)T2 |
| 19 | 1+(3.92+2.85i)T+(5.87+18.0i)T2 |
| 23 | 1+(−0.690−2.12i)T+(−18.6+13.5i)T2 |
| 29 | 1+(−5.16+3.75i)T+(8.96−27.5i)T2 |
| 31 | 1+(8.28+6.01i)T+(9.57+29.4i)T2 |
| 37 | 1+(−3.07+9.45i)T+(−29.9−21.7i)T2 |
| 41 | 1+(−0.763+2.35i)T+(−33.1−24.0i)T2 |
| 43 | 1+6.85T+43T2 |
| 47 | 1+(2.11−1.53i)T+(14.5−44.6i)T2 |
| 53 | 1+(3.04−2.21i)T+(16.3−50.4i)T2 |
| 59 | 1+(−3.59+11.0i)T+(−47.7−34.6i)T2 |
| 61 | 1+(1.54+4.75i)T+(−49.3+35.8i)T2 |
| 67 | 1+(−12.4−9.06i)T+(20.7+63.7i)T2 |
| 71 | 1+(6.35−4.61i)T+(21.9−67.5i)T2 |
| 73 | 1+(−2.78−8.55i)T+(−59.0+42.9i)T2 |
| 79 | 1+(1.69−1.22i)T+(24.4−75.1i)T2 |
| 83 | 1+(4.80+3.49i)T+(25.6+78.9i)T2 |
| 89 | 1+(−0.381−1.17i)T+(−72.0+52.3i)T2 |
| 97 | 1+(6.59−4.78i)T+(29.9−92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.30375080407499869769801319498, −10.53665178133288090665144739302, −9.420353559993133362300863585213, −8.178728959117295928757251029530, −7.42370891199279964747260988454, −6.75913636821039501952811659279, −5.36188699107157834427828212602, −4.20554004691893689590226961450, −2.38564587474365176566553644526, −1.91424830938483051107285895508,
1.53693611815392051877520411391, 3.18369492812314544036078451150, 4.30702943756398238644774227301, 5.39597174991071528412393606003, 6.58859596811431470209221721653, 7.956282765369217086522941160195, 8.414935570239989674862560741040, 8.880432449792546806275317287137, 10.47903319387965773966219176906, 11.34042304215695423963877103995