Properties

Label 425.2.k.a.256.1
Level $425$
Weight $2$
Character 425.256
Analytic conductor $3.394$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(86,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([8, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.86");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.k (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 256.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 425.256
Dual form 425.2.k.a.171.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.118034 - 0.363271i) q^{2} +(0.809017 - 0.587785i) q^{3} +(1.50000 - 1.08981i) q^{4} +(-0.690983 + 2.12663i) q^{5} +(-0.309017 - 0.224514i) q^{6} +4.61803 q^{7} +(-1.19098 - 0.865300i) q^{8} +(-0.618034 + 1.90211i) q^{9} +0.854102 q^{10} +(1.00000 + 3.07768i) q^{11} +(0.572949 - 1.76336i) q^{12} +(-0.572949 + 1.76336i) q^{13} +(-0.545085 - 1.67760i) q^{14} +(0.690983 + 2.12663i) q^{15} +(0.972136 - 2.99193i) q^{16} +(-0.809017 - 0.587785i) q^{17} +0.763932 q^{18} +(-3.92705 - 2.85317i) q^{19} +(1.28115 + 3.94298i) q^{20} +(3.73607 - 2.71441i) q^{21} +(1.00000 - 0.726543i) q^{22} +(0.690983 + 2.12663i) q^{23} -1.47214 q^{24} +(-4.04508 - 2.93893i) q^{25} +0.708204 q^{26} +(1.54508 + 4.75528i) q^{27} +(6.92705 - 5.03280i) q^{28} +(5.16312 - 3.75123i) q^{29} +(0.690983 - 0.502029i) q^{30} +(-8.28115 - 6.01661i) q^{31} -4.14590 q^{32} +(2.61803 + 1.90211i) q^{33} +(-0.118034 + 0.363271i) q^{34} +(-3.19098 + 9.82084i) q^{35} +(1.14590 + 3.52671i) q^{36} +(3.07295 - 9.45756i) q^{37} +(-0.572949 + 1.76336i) q^{38} +(0.572949 + 1.76336i) q^{39} +(2.66312 - 1.93487i) q^{40} +(0.763932 - 2.35114i) q^{41} +(-1.42705 - 1.03681i) q^{42} -6.85410 q^{43} +(4.85410 + 3.52671i) q^{44} +(-3.61803 - 2.62866i) q^{45} +(0.690983 - 0.502029i) q^{46} +(-2.11803 + 1.53884i) q^{47} +(-0.972136 - 2.99193i) q^{48} +14.3262 q^{49} +(-0.590170 + 1.81636i) q^{50} -1.00000 q^{51} +(1.06231 + 3.26944i) q^{52} +(-3.04508 + 2.21238i) q^{53} +(1.54508 - 1.12257i) q^{54} -7.23607 q^{55} +(-5.50000 - 3.99598i) q^{56} -4.85410 q^{57} +(-1.97214 - 1.43284i) q^{58} +(3.59017 - 11.0494i) q^{59} +(3.35410 + 2.43690i) q^{60} +(-1.54508 - 4.75528i) q^{61} +(-1.20820 + 3.71847i) q^{62} +(-2.85410 + 8.78402i) q^{63} +(-1.45492 - 4.47777i) q^{64} +(-3.35410 - 2.43690i) q^{65} +(0.381966 - 1.17557i) q^{66} +(12.4721 + 9.06154i) q^{67} -1.85410 q^{68} +(1.80902 + 1.31433i) q^{69} +3.94427 q^{70} +(-6.35410 + 4.61653i) q^{71} +(2.38197 - 1.73060i) q^{72} +(2.78115 + 8.55951i) q^{73} -3.79837 q^{74} -5.00000 q^{75} -9.00000 q^{76} +(4.61803 + 14.2128i) q^{77} +(0.572949 - 0.416272i) q^{78} +(-1.69098 + 1.22857i) q^{79} +(5.69098 + 4.13474i) q^{80} +(-0.809017 - 0.587785i) q^{81} -0.944272 q^{82} +(-4.80902 - 3.49396i) q^{83} +(2.64590 - 8.14324i) q^{84} +(1.80902 - 1.31433i) q^{85} +(0.809017 + 2.48990i) q^{86} +(1.97214 - 6.06961i) q^{87} +(1.47214 - 4.53077i) q^{88} +(0.381966 + 1.17557i) q^{89} +(-0.527864 + 1.62460i) q^{90} +(-2.64590 + 8.14324i) q^{91} +(3.35410 + 2.43690i) q^{92} -10.2361 q^{93} +(0.809017 + 0.587785i) q^{94} +(8.78115 - 6.37988i) q^{95} +(-3.35410 + 2.43690i) q^{96} +(-6.59017 + 4.78804i) q^{97} +(-1.69098 - 5.20431i) q^{98} -6.47214 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + q^{3} + 6 q^{4} - 5 q^{5} + q^{6} + 14 q^{7} - 7 q^{8} + 2 q^{9} - 10 q^{10} + 4 q^{11} + 9 q^{12} - 9 q^{13} + 9 q^{14} + 5 q^{15} - 14 q^{16} - q^{17} + 12 q^{18} - 9 q^{19} - 15 q^{20}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.118034 0.363271i −0.0834626 0.256872i 0.900613 0.434622i \(-0.143118\pi\)
−0.984076 + 0.177750i \(0.943118\pi\)
\(3\) 0.809017 0.587785i 0.467086 0.339358i −0.329218 0.944254i \(-0.606785\pi\)
0.796305 + 0.604896i \(0.206785\pi\)
\(4\) 1.50000 1.08981i 0.750000 0.544907i
\(5\) −0.690983 + 2.12663i −0.309017 + 0.951057i
\(6\) −0.309017 0.224514i −0.126156 0.0916575i
\(7\) 4.61803 1.74545 0.872726 0.488210i \(-0.162350\pi\)
0.872726 + 0.488210i \(0.162350\pi\)
\(8\) −1.19098 0.865300i −0.421076 0.305930i
\(9\) −0.618034 + 1.90211i −0.206011 + 0.634038i
\(10\) 0.854102 0.270091
\(11\) 1.00000 + 3.07768i 0.301511 + 0.927957i 0.980956 + 0.194230i \(0.0622207\pi\)
−0.679445 + 0.733727i \(0.737779\pi\)
\(12\) 0.572949 1.76336i 0.165396 0.509037i
\(13\) −0.572949 + 1.76336i −0.158907 + 0.489067i −0.998536 0.0540944i \(-0.982773\pi\)
0.839628 + 0.543161i \(0.182773\pi\)
\(14\) −0.545085 1.67760i −0.145680 0.448357i
\(15\) 0.690983 + 2.12663i 0.178411 + 0.549093i
\(16\) 0.972136 2.99193i 0.243034 0.747982i
\(17\) −0.809017 0.587785i −0.196215 0.142559i
\(18\) 0.763932 0.180061
\(19\) −3.92705 2.85317i −0.900927 0.654562i 0.0377767 0.999286i \(-0.487972\pi\)
−0.938704 + 0.344724i \(0.887972\pi\)
\(20\) 1.28115 + 3.94298i 0.286475 + 0.881678i
\(21\) 3.73607 2.71441i 0.815277 0.592333i
\(22\) 1.00000 0.726543i 0.213201 0.154899i
\(23\) 0.690983 + 2.12663i 0.144080 + 0.443432i 0.996892 0.0787863i \(-0.0251045\pi\)
−0.852812 + 0.522219i \(0.825104\pi\)
\(24\) −1.47214 −0.300498
\(25\) −4.04508 2.93893i −0.809017 0.587785i
\(26\) 0.708204 0.138890
\(27\) 1.54508 + 4.75528i 0.297352 + 0.915155i
\(28\) 6.92705 5.03280i 1.30909 0.951109i
\(29\) 5.16312 3.75123i 0.958767 0.696585i 0.00590304 0.999983i \(-0.498121\pi\)
0.952864 + 0.303397i \(0.0981210\pi\)
\(30\) 0.690983 0.502029i 0.126156 0.0916575i
\(31\) −8.28115 6.01661i −1.48734 1.08062i −0.975098 0.221773i \(-0.928816\pi\)
−0.512241 0.858842i \(-0.671184\pi\)
\(32\) −4.14590 −0.732898
\(33\) 2.61803 + 1.90211i 0.455741 + 0.331115i
\(34\) −0.118034 + 0.363271i −0.0202427 + 0.0623005i
\(35\) −3.19098 + 9.82084i −0.539375 + 1.66002i
\(36\) 1.14590 + 3.52671i 0.190983 + 0.587785i
\(37\) 3.07295 9.45756i 0.505190 1.55481i −0.295262 0.955416i \(-0.595407\pi\)
0.800451 0.599398i \(-0.204593\pi\)
\(38\) −0.572949 + 1.76336i −0.0929446 + 0.286054i
\(39\) 0.572949 + 1.76336i 0.0917453 + 0.282363i
\(40\) 2.66312 1.93487i 0.421076 0.305930i
\(41\) 0.763932 2.35114i 0.119306 0.367187i −0.873515 0.486798i \(-0.838165\pi\)
0.992821 + 0.119611i \(0.0381648\pi\)
\(42\) −1.42705 1.03681i −0.220199 0.159984i
\(43\) −6.85410 −1.04524 −0.522620 0.852566i \(-0.675045\pi\)
−0.522620 + 0.852566i \(0.675045\pi\)
\(44\) 4.85410 + 3.52671i 0.731783 + 0.531672i
\(45\) −3.61803 2.62866i −0.539345 0.391857i
\(46\) 0.690983 0.502029i 0.101880 0.0740201i
\(47\) −2.11803 + 1.53884i −0.308947 + 0.224463i −0.731445 0.681901i \(-0.761154\pi\)
0.422498 + 0.906364i \(0.361154\pi\)
\(48\) −0.972136 2.99193i −0.140316 0.431847i
\(49\) 14.3262 2.04661
\(50\) −0.590170 + 1.81636i −0.0834626 + 0.256872i
\(51\) −1.00000 −0.140028
\(52\) 1.06231 + 3.26944i 0.147315 + 0.453390i
\(53\) −3.04508 + 2.21238i −0.418275 + 0.303894i −0.776943 0.629571i \(-0.783231\pi\)
0.358669 + 0.933465i \(0.383231\pi\)
\(54\) 1.54508 1.12257i 0.210259 0.152762i
\(55\) −7.23607 −0.975711
\(56\) −5.50000 3.99598i −0.734968 0.533986i
\(57\) −4.85410 −0.642942
\(58\) −1.97214 1.43284i −0.258954 0.188141i
\(59\) 3.59017 11.0494i 0.467400 1.43851i −0.388538 0.921433i \(-0.627020\pi\)
0.855939 0.517078i \(-0.172980\pi\)
\(60\) 3.35410 + 2.43690i 0.433013 + 0.314602i
\(61\) −1.54508 4.75528i −0.197828 0.608852i −0.999932 0.0116673i \(-0.996286\pi\)
0.802104 0.597184i \(-0.203714\pi\)
\(62\) −1.20820 + 3.71847i −0.153442 + 0.472246i
\(63\) −2.85410 + 8.78402i −0.359583 + 1.10668i
\(64\) −1.45492 4.47777i −0.181864 0.559721i
\(65\) −3.35410 2.43690i −0.416025 0.302260i
\(66\) 0.381966 1.17557i 0.0470168 0.144703i
\(67\) 12.4721 + 9.06154i 1.52371 + 1.10704i 0.959608 + 0.281341i \(0.0907790\pi\)
0.564106 + 0.825702i \(0.309221\pi\)
\(68\) −1.85410 −0.224843
\(69\) 1.80902 + 1.31433i 0.217780 + 0.158226i
\(70\) 3.94427 0.471431
\(71\) −6.35410 + 4.61653i −0.754093 + 0.547881i −0.897093 0.441842i \(-0.854325\pi\)
0.143000 + 0.989723i \(0.454325\pi\)
\(72\) 2.38197 1.73060i 0.280717 0.203953i
\(73\) 2.78115 + 8.55951i 0.325509 + 1.00181i 0.971210 + 0.238224i \(0.0765653\pi\)
−0.645701 + 0.763590i \(0.723435\pi\)
\(74\) −3.79837 −0.441552
\(75\) −5.00000 −0.577350
\(76\) −9.00000 −1.03237
\(77\) 4.61803 + 14.2128i 0.526274 + 1.61970i
\(78\) 0.572949 0.416272i 0.0648737 0.0471335i
\(79\) −1.69098 + 1.22857i −0.190250 + 0.138225i −0.678833 0.734293i \(-0.737514\pi\)
0.488583 + 0.872518i \(0.337514\pi\)
\(80\) 5.69098 + 4.13474i 0.636271 + 0.462278i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) −0.944272 −0.104277
\(83\) −4.80902 3.49396i −0.527858 0.383511i 0.291698 0.956511i \(-0.405780\pi\)
−0.819556 + 0.572999i \(0.805780\pi\)
\(84\) 2.64590 8.14324i 0.288691 0.888500i
\(85\) 1.80902 1.31433i 0.196215 0.142559i
\(86\) 0.809017 + 2.48990i 0.0872385 + 0.268493i
\(87\) 1.97214 6.06961i 0.211435 0.650731i
\(88\) 1.47214 4.53077i 0.156930 0.482982i
\(89\) 0.381966 + 1.17557i 0.0404883 + 0.124610i 0.969258 0.246048i \(-0.0791321\pi\)
−0.928769 + 0.370658i \(0.879132\pi\)
\(90\) −0.527864 + 1.62460i −0.0556418 + 0.171248i
\(91\) −2.64590 + 8.14324i −0.277365 + 0.853643i
\(92\) 3.35410 + 2.43690i 0.349689 + 0.254064i
\(93\) −10.2361 −1.06143
\(94\) 0.809017 + 0.587785i 0.0834437 + 0.0606254i
\(95\) 8.78115 6.37988i 0.900927 0.654562i
\(96\) −3.35410 + 2.43690i −0.342327 + 0.248715i
\(97\) −6.59017 + 4.78804i −0.669130 + 0.486152i −0.869734 0.493521i \(-0.835710\pi\)
0.200604 + 0.979672i \(0.435710\pi\)
\(98\) −1.69098 5.20431i −0.170815 0.525715i
\(99\) −6.47214 −0.650474
\(100\) −9.27051 −0.927051
\(101\) −7.76393 −0.772540 −0.386270 0.922386i \(-0.626237\pi\)
−0.386270 + 0.922386i \(0.626237\pi\)
\(102\) 0.118034 + 0.363271i 0.0116871 + 0.0359692i
\(103\) −1.07295 + 0.779543i −0.105721 + 0.0768107i −0.639390 0.768883i \(-0.720813\pi\)
0.533669 + 0.845694i \(0.320813\pi\)
\(104\) 2.20820 1.60435i 0.216532 0.157320i
\(105\) 3.19098 + 9.82084i 0.311408 + 0.958415i
\(106\) 1.16312 + 0.845055i 0.112972 + 0.0820790i
\(107\) −0.0557281 −0.00538744 −0.00269372 0.999996i \(-0.500857\pi\)
−0.00269372 + 0.999996i \(0.500857\pi\)
\(108\) 7.50000 + 5.44907i 0.721688 + 0.524337i
\(109\) −1.76393 + 5.42882i −0.168954 + 0.519987i −0.999306 0.0372524i \(-0.988139\pi\)
0.830352 + 0.557239i \(0.188139\pi\)
\(110\) 0.854102 + 2.62866i 0.0814354 + 0.250632i
\(111\) −3.07295 9.45756i −0.291671 0.897672i
\(112\) 4.48936 13.8168i 0.424204 1.30557i
\(113\) −2.26393 + 6.96767i −0.212973 + 0.655463i 0.786318 + 0.617821i \(0.211985\pi\)
−0.999291 + 0.0376416i \(0.988015\pi\)
\(114\) 0.572949 + 1.76336i 0.0536616 + 0.165153i
\(115\) −5.00000 −0.466252
\(116\) 3.65654 11.2537i 0.339501 1.04488i
\(117\) −3.00000 2.17963i −0.277350 0.201507i
\(118\) −4.43769 −0.408523
\(119\) −3.73607 2.71441i −0.342485 0.248830i
\(120\) 1.01722 3.13068i 0.0928591 0.285791i
\(121\) 0.427051 0.310271i 0.0388228 0.0282064i
\(122\) −1.54508 + 1.12257i −0.139885 + 0.101633i
\(123\) −0.763932 2.35114i −0.0688814 0.211995i
\(124\) −18.9787 −1.70434
\(125\) 9.04508 6.57164i 0.809017 0.587785i
\(126\) 3.52786 0.314287
\(127\) 2.29180 + 7.05342i 0.203364 + 0.625890i 0.999777 + 0.0211364i \(0.00672843\pi\)
−0.796413 + 0.604754i \(0.793272\pi\)
\(128\) −8.16312 + 5.93085i −0.721525 + 0.524218i
\(129\) −5.54508 + 4.02874i −0.488218 + 0.354711i
\(130\) −0.489357 + 1.50609i −0.0429194 + 0.132092i
\(131\) −16.4443 11.9475i −1.43674 1.04385i −0.988711 0.149837i \(-0.952125\pi\)
−0.448032 0.894018i \(-0.647875\pi\)
\(132\) 6.00000 0.522233
\(133\) −18.1353 13.1760i −1.57253 1.14251i
\(134\) 1.81966 5.60034i 0.157195 0.483796i
\(135\) −11.1803 −0.962250
\(136\) 0.454915 + 1.40008i 0.0390086 + 0.120056i
\(137\) −1.36475 + 4.20025i −0.116598 + 0.358852i −0.992277 0.124042i \(-0.960414\pi\)
0.875679 + 0.482894i \(0.160414\pi\)
\(138\) 0.263932 0.812299i 0.0224674 0.0691475i
\(139\) 1.30902 + 4.02874i 0.111029 + 0.341713i 0.991098 0.133133i \(-0.0425037\pi\)
−0.880069 + 0.474846i \(0.842504\pi\)
\(140\) 5.91641 + 18.2088i 0.500028 + 1.53893i
\(141\) −0.809017 + 2.48990i −0.0681315 + 0.209687i
\(142\) 2.42705 + 1.76336i 0.203674 + 0.147978i
\(143\) −6.00000 −0.501745
\(144\) 5.09017 + 3.69822i 0.424181 + 0.308185i
\(145\) 4.40983 + 13.5721i 0.366216 + 1.12710i
\(146\) 2.78115 2.02063i 0.230170 0.167228i
\(147\) 11.5902 8.42075i 0.955941 0.694532i
\(148\) −5.69756 17.5353i −0.468337 1.44139i
\(149\) −15.1803 −1.24362 −0.621811 0.783167i \(-0.713603\pi\)
−0.621811 + 0.783167i \(0.713603\pi\)
\(150\) 0.590170 + 1.81636i 0.0481872 + 0.148305i
\(151\) 11.1459 0.907040 0.453520 0.891246i \(-0.350168\pi\)
0.453520 + 0.891246i \(0.350168\pi\)
\(152\) 2.20820 + 6.79615i 0.179109 + 0.551241i
\(153\) 1.61803 1.17557i 0.130810 0.0950392i
\(154\) 4.61803 3.35520i 0.372132 0.270370i
\(155\) 18.5172 13.4535i 1.48734 1.08062i
\(156\) 2.78115 + 2.02063i 0.222670 + 0.161780i
\(157\) 21.0000 1.67598 0.837991 0.545684i \(-0.183730\pi\)
0.837991 + 0.545684i \(0.183730\pi\)
\(158\) 0.645898 + 0.469272i 0.0513849 + 0.0373333i
\(159\) −1.16312 + 3.57971i −0.0922413 + 0.283890i
\(160\) 2.86475 8.81678i 0.226478 0.697028i
\(161\) 3.19098 + 9.82084i 0.251485 + 0.773990i
\(162\) −0.118034 + 0.363271i −0.00927363 + 0.0285413i
\(163\) −3.60081 + 11.0822i −0.282037 + 0.868022i 0.705234 + 0.708975i \(0.250842\pi\)
−0.987271 + 0.159047i \(0.949158\pi\)
\(164\) −1.41641 4.35926i −0.110603 0.340401i
\(165\) −5.85410 + 4.25325i −0.455741 + 0.331115i
\(166\) −0.701626 + 2.15938i −0.0544567 + 0.167601i
\(167\) 16.2533 + 11.8087i 1.25772 + 0.913785i 0.998643 0.0520724i \(-0.0165827\pi\)
0.259074 + 0.965857i \(0.416583\pi\)
\(168\) −6.79837 −0.524506
\(169\) 7.73607 + 5.62058i 0.595082 + 0.432352i
\(170\) −0.690983 0.502029i −0.0529960 0.0385038i
\(171\) 7.85410 5.70634i 0.600618 0.436375i
\(172\) −10.2812 + 7.46969i −0.783931 + 0.569559i
\(173\) −1.92705 5.93085i −0.146511 0.450914i 0.850691 0.525666i \(-0.176184\pi\)
−0.997202 + 0.0747513i \(0.976184\pi\)
\(174\) −2.43769 −0.184801
\(175\) −18.6803 13.5721i −1.41210 1.02595i
\(176\) 10.1803 0.767372
\(177\) −3.59017 11.0494i −0.269854 0.830524i
\(178\) 0.381966 0.277515i 0.0286296 0.0208006i
\(179\) 21.2254 15.4212i 1.58646 1.15263i 0.677685 0.735352i \(-0.262983\pi\)
0.908778 0.417280i \(-0.137017\pi\)
\(180\) −8.29180 −0.618034
\(181\) 4.38197 + 3.18368i 0.325709 + 0.236641i 0.738608 0.674136i \(-0.235484\pi\)
−0.412899 + 0.910777i \(0.635484\pi\)
\(182\) 3.27051 0.242426
\(183\) −4.04508 2.93893i −0.299021 0.217252i
\(184\) 1.01722 3.13068i 0.0749905 0.230797i
\(185\) 17.9894 + 13.0700i 1.32260 + 0.960928i
\(186\) 1.20820 + 3.71847i 0.0885898 + 0.272651i
\(187\) 1.00000 3.07768i 0.0731272 0.225063i
\(188\) −1.50000 + 4.61653i −0.109399 + 0.336695i
\(189\) 7.13525 + 21.9601i 0.519013 + 1.59736i
\(190\) −3.35410 2.43690i −0.243332 0.176791i
\(191\) −6.38197 + 19.6417i −0.461783 + 1.42122i 0.401201 + 0.915990i \(0.368593\pi\)
−0.862984 + 0.505231i \(0.831407\pi\)
\(192\) −3.80902 2.76741i −0.274892 0.199721i
\(193\) 22.9443 1.65156 0.825782 0.563989i \(-0.190734\pi\)
0.825782 + 0.563989i \(0.190734\pi\)
\(194\) 2.51722 + 1.82887i 0.180726 + 0.131305i
\(195\) −4.14590 −0.296894
\(196\) 21.4894 15.6129i 1.53495 1.11521i
\(197\) 1.76393 1.28157i 0.125675 0.0913082i −0.523172 0.852227i \(-0.675252\pi\)
0.648847 + 0.760919i \(0.275252\pi\)
\(198\) 0.763932 + 2.35114i 0.0542903 + 0.167088i
\(199\) 10.3262 0.732008 0.366004 0.930613i \(-0.380726\pi\)
0.366004 + 0.930613i \(0.380726\pi\)
\(200\) 2.27458 + 7.00042i 0.160837 + 0.495005i
\(201\) 15.4164 1.08739
\(202\) 0.916408 + 2.82041i 0.0644782 + 0.198444i
\(203\) 23.8435 17.3233i 1.67348 1.21586i
\(204\) −1.50000 + 1.08981i −0.105021 + 0.0763022i
\(205\) 4.47214 + 3.24920i 0.312348 + 0.226934i
\(206\) 0.409830 + 0.297759i 0.0285542 + 0.0207459i
\(207\) −4.47214 −0.310835
\(208\) 4.71885 + 3.42844i 0.327193 + 0.237720i
\(209\) 4.85410 14.9394i 0.335765 1.03338i
\(210\) 3.19098 2.31838i 0.220199 0.159984i
\(211\) −6.54508 20.1437i −0.450582 1.38675i −0.876244 0.481867i \(-0.839959\pi\)
0.425662 0.904882i \(-0.360041\pi\)
\(212\) −2.15654 + 6.63715i −0.148112 + 0.455841i
\(213\) −2.42705 + 7.46969i −0.166299 + 0.511815i
\(214\) 0.00657781 + 0.0202444i 0.000449650 + 0.00138388i
\(215\) 4.73607 14.5761i 0.322997 0.994083i
\(216\) 2.27458 7.00042i 0.154765 0.476318i
\(217\) −38.2426 27.7849i −2.59608 1.88616i
\(218\) 2.18034 0.147671
\(219\) 7.28115 + 5.29007i 0.492015 + 0.357470i
\(220\) −10.8541 + 7.88597i −0.731783 + 0.531672i
\(221\) 1.50000 1.08981i 0.100901 0.0733088i
\(222\) −3.07295 + 2.23263i −0.206243 + 0.149844i
\(223\) 3.00000 + 9.23305i 0.200895 + 0.618291i 0.999857 + 0.0169095i \(0.00538272\pi\)
−0.798962 + 0.601381i \(0.794617\pi\)
\(224\) −19.1459 −1.27924
\(225\) 8.09017 5.87785i 0.539345 0.391857i
\(226\) 2.79837 0.186145
\(227\) −4.14590 12.7598i −0.275173 0.846895i −0.989174 0.146750i \(-0.953119\pi\)
0.714001 0.700145i \(-0.246881\pi\)
\(228\) −7.28115 + 5.29007i −0.482206 + 0.350343i
\(229\) −4.85410 + 3.52671i −0.320768 + 0.233052i −0.736503 0.676434i \(-0.763524\pi\)
0.415735 + 0.909486i \(0.363524\pi\)
\(230\) 0.590170 + 1.81636i 0.0389147 + 0.119767i
\(231\) 12.0902 + 8.78402i 0.795475 + 0.577946i
\(232\) −9.39512 −0.616820
\(233\) −6.61803 4.80828i −0.433562 0.315001i 0.349510 0.936933i \(-0.386348\pi\)
−0.783072 + 0.621932i \(0.786348\pi\)
\(234\) −0.437694 + 1.34708i −0.0286130 + 0.0880616i
\(235\) −1.80902 5.56758i −0.118007 0.363189i
\(236\) −6.65654 20.4867i −0.433304 1.33357i
\(237\) −0.645898 + 1.98787i −0.0419556 + 0.129126i
\(238\) −0.545085 + 1.67760i −0.0353326 + 0.108743i
\(239\) 0.454915 + 1.40008i 0.0294260 + 0.0905639i 0.964691 0.263385i \(-0.0848388\pi\)
−0.935265 + 0.353949i \(0.884839\pi\)
\(240\) 7.03444 0.454071
\(241\) −4.07295 + 12.5352i −0.262362 + 0.807466i 0.729928 + 0.683524i \(0.239554\pi\)
−0.992289 + 0.123942i \(0.960446\pi\)
\(242\) −0.163119 0.118513i −0.0104857 0.00761830i
\(243\) −16.0000 −1.02640
\(244\) −7.50000 5.44907i −0.480138 0.348841i
\(245\) −9.89919 + 30.4666i −0.632436 + 1.94644i
\(246\) −0.763932 + 0.555029i −0.0487065 + 0.0353874i
\(247\) 7.28115 5.29007i 0.463289 0.336599i
\(248\) 4.65654 + 14.3314i 0.295691 + 0.910042i
\(249\) −5.94427 −0.376703
\(250\) −3.45492 2.51014i −0.218508 0.158755i
\(251\) −23.6525 −1.49293 −0.746466 0.665424i \(-0.768251\pi\)
−0.746466 + 0.665424i \(0.768251\pi\)
\(252\) 5.29180 + 16.2865i 0.333352 + 1.02595i
\(253\) −5.85410 + 4.25325i −0.368044 + 0.267400i
\(254\) 2.29180 1.66509i 0.143800 0.104477i
\(255\) 0.690983 2.12663i 0.0432710 0.133175i
\(256\) −4.50000 3.26944i −0.281250 0.204340i
\(257\) 4.85410 0.302791 0.151395 0.988473i \(-0.451623\pi\)
0.151395 + 0.988473i \(0.451623\pi\)
\(258\) 2.11803 + 1.53884i 0.131863 + 0.0958041i
\(259\) 14.1910 43.6754i 0.881785 2.71385i
\(260\) −7.68692 −0.476722
\(261\) 3.94427 + 12.1392i 0.244144 + 0.751399i
\(262\) −2.39919 + 7.38394i −0.148222 + 0.456181i
\(263\) 2.28115 7.02067i 0.140662 0.432913i −0.855766 0.517363i \(-0.826914\pi\)
0.996428 + 0.0844506i \(0.0269135\pi\)
\(264\) −1.47214 4.53077i −0.0906037 0.278850i
\(265\) −2.60081 8.00448i −0.159767 0.491711i
\(266\) −2.64590 + 8.14324i −0.162230 + 0.499294i
\(267\) 1.00000 + 0.726543i 0.0611990 + 0.0444637i
\(268\) 28.5836 1.74602
\(269\) 10.8541 + 7.88597i 0.661786 + 0.480816i 0.867266 0.497846i \(-0.165875\pi\)
−0.205479 + 0.978661i \(0.565875\pi\)
\(270\) 1.31966 + 4.06150i 0.0803120 + 0.247175i
\(271\) 12.8541 9.33905i 0.780831 0.567307i −0.124397 0.992232i \(-0.539700\pi\)
0.905228 + 0.424926i \(0.139700\pi\)
\(272\) −2.54508 + 1.84911i −0.154318 + 0.112119i
\(273\) 2.64590 + 8.14324i 0.160137 + 0.492851i
\(274\) 1.68692 0.101910
\(275\) 5.00000 15.3884i 0.301511 0.927957i
\(276\) 4.14590 0.249554
\(277\) −5.48936 16.8945i −0.329823 1.01509i −0.969216 0.246212i \(-0.920814\pi\)
0.639393 0.768880i \(-0.279186\pi\)
\(278\) 1.30902 0.951057i 0.0785096 0.0570406i
\(279\) 16.5623 12.0332i 0.991559 0.720410i
\(280\) 12.2984 8.93529i 0.734968 0.533986i
\(281\) 6.92705 + 5.03280i 0.413233 + 0.300232i 0.774909 0.632072i \(-0.217795\pi\)
−0.361676 + 0.932304i \(0.617795\pi\)
\(282\) 1.00000 0.0595491
\(283\) −2.35410 1.71036i −0.139937 0.101670i 0.515614 0.856821i \(-0.327564\pi\)
−0.655551 + 0.755151i \(0.727564\pi\)
\(284\) −4.50000 + 13.8496i −0.267026 + 0.821821i
\(285\) 3.35410 10.3229i 0.198680 0.611474i
\(286\) 0.708204 + 2.17963i 0.0418770 + 0.128884i
\(287\) 3.52786 10.8576i 0.208243 0.640907i
\(288\) 2.56231 7.88597i 0.150985 0.464685i
\(289\) 0.309017 + 0.951057i 0.0181775 + 0.0559445i
\(290\) 4.40983 3.20393i 0.258954 0.188141i
\(291\) −2.51722 + 7.74721i −0.147562 + 0.454149i
\(292\) 13.5000 + 9.80832i 0.790028 + 0.573989i
\(293\) −2.94427 −0.172006 −0.0860031 0.996295i \(-0.527409\pi\)
−0.0860031 + 0.996295i \(0.527409\pi\)
\(294\) −4.42705 3.21644i −0.258191 0.187587i
\(295\) 21.0172 + 15.2699i 1.22367 + 0.889048i
\(296\) −11.8435 + 8.60478i −0.688387 + 0.500142i
\(297\) −13.0902 + 9.51057i −0.759569 + 0.551859i
\(298\) 1.79180 + 5.51458i 0.103796 + 0.319451i
\(299\) −4.14590 −0.239763
\(300\) −7.50000 + 5.44907i −0.433013 + 0.314602i
\(301\) −31.6525 −1.82442
\(302\) −1.31559 4.04898i −0.0757040 0.232993i
\(303\) −6.28115 + 4.56352i −0.360843 + 0.262168i
\(304\) −12.3541 + 8.97578i −0.708556 + 0.514796i
\(305\) 11.1803 0.640184
\(306\) −0.618034 0.449028i −0.0353307 0.0256692i
\(307\) −1.05573 −0.0602536 −0.0301268 0.999546i \(-0.509591\pi\)
−0.0301268 + 0.999546i \(0.509591\pi\)
\(308\) 22.4164 + 16.2865i 1.27729 + 0.928008i
\(309\) −0.409830 + 1.26133i −0.0233144 + 0.0717544i
\(310\) −7.07295 5.13880i −0.401717 0.291864i
\(311\) 1.84346 + 5.67358i 0.104533 + 0.321719i 0.989621 0.143705i \(-0.0459017\pi\)
−0.885088 + 0.465424i \(0.845902\pi\)
\(312\) 0.843459 2.59590i 0.0477515 0.146964i
\(313\) 4.14590 12.7598i 0.234340 0.721224i −0.762868 0.646554i \(-0.776210\pi\)
0.997208 0.0746704i \(-0.0237905\pi\)
\(314\) −2.47871 7.62870i −0.139882 0.430512i
\(315\) −16.7082 12.1392i −0.941401 0.683968i
\(316\) −1.19756 + 3.68571i −0.0673681 + 0.207338i
\(317\) −7.19098 5.22455i −0.403886 0.293440i 0.367236 0.930128i \(-0.380304\pi\)
−0.771122 + 0.636688i \(0.780304\pi\)
\(318\) 1.43769 0.0806219
\(319\) 16.7082 + 12.1392i 0.935480 + 0.679666i
\(320\) 10.5279 0.588525
\(321\) −0.0450850 + 0.0327561i −0.00251640 + 0.00182827i
\(322\) 3.19098 2.31838i 0.177827 0.129199i
\(323\) 1.50000 + 4.61653i 0.0834622 + 0.256870i
\(324\) −1.85410 −0.103006
\(325\) 7.50000 5.44907i 0.416025 0.302260i
\(326\) 4.45085 0.246510
\(327\) 1.76393 + 5.42882i 0.0975457 + 0.300215i
\(328\) −2.94427 + 2.13914i −0.162570 + 0.118114i
\(329\) −9.78115 + 7.10642i −0.539252 + 0.391790i
\(330\) 2.23607 + 1.62460i 0.123091 + 0.0894312i
\(331\) 14.0902 + 10.2371i 0.774466 + 0.562682i 0.903313 0.428982i \(-0.141128\pi\)
−0.128847 + 0.991664i \(0.541128\pi\)
\(332\) −11.0213 −0.604872
\(333\) 16.0902 + 11.6902i 0.881736 + 0.640619i
\(334\) 2.37132 7.29818i 0.129753 0.399339i
\(335\) −27.8885 + 20.2622i −1.52371 + 1.10704i
\(336\) −4.48936 13.8168i −0.244914 0.753769i
\(337\) −4.42705 + 13.6251i −0.241157 + 0.742204i 0.755088 + 0.655623i \(0.227594\pi\)
−0.996245 + 0.0865809i \(0.972406\pi\)
\(338\) 1.12868 3.47371i 0.0613919 0.188945i
\(339\) 2.26393 + 6.96767i 0.122960 + 0.378432i
\(340\) 1.28115 3.94298i 0.0694803 0.213838i
\(341\) 10.2361 31.5034i 0.554314 1.70600i
\(342\) −3.00000 2.17963i −0.162221 0.117861i
\(343\) 33.8328 1.82680
\(344\) 8.16312 + 5.93085i 0.440126 + 0.319770i
\(345\) −4.04508 + 2.93893i −0.217780 + 0.158226i
\(346\) −1.92705 + 1.40008i −0.103599 + 0.0752690i
\(347\) −7.30902 + 5.31031i −0.392369 + 0.285072i −0.766425 0.642333i \(-0.777966\pi\)
0.374057 + 0.927406i \(0.377966\pi\)
\(348\) −3.65654 11.2537i −0.196011 0.603260i
\(349\) −6.00000 −0.321173 −0.160586 0.987022i \(-0.551338\pi\)
−0.160586 + 0.987022i \(0.551338\pi\)
\(350\) −2.72542 + 8.38800i −0.145680 + 0.448357i
\(351\) −9.27051 −0.494823
\(352\) −4.14590 12.7598i −0.220977 0.680098i
\(353\) −20.2082 + 14.6821i −1.07557 + 0.781450i −0.976906 0.213670i \(-0.931458\pi\)
−0.0986683 + 0.995120i \(0.531458\pi\)
\(354\) −3.59017 + 2.60841i −0.190815 + 0.138635i
\(355\) −5.42705 16.7027i −0.288038 0.886490i
\(356\) 1.85410 + 1.34708i 0.0982672 + 0.0713953i
\(357\) −4.61803 −0.244412
\(358\) −8.10739 5.89036i −0.428489 0.311315i
\(359\) −10.7533 + 33.0952i −0.567537 + 1.74670i 0.0927541 + 0.995689i \(0.470433\pi\)
−0.660291 + 0.751010i \(0.729567\pi\)
\(360\) 2.03444 + 6.26137i 0.107225 + 0.330003i
\(361\) 1.40983 + 4.33901i 0.0742016 + 0.228369i
\(362\) 0.639320 1.96763i 0.0336019 0.103416i
\(363\) 0.163119 0.502029i 0.00856153 0.0263497i
\(364\) 4.90576 + 15.0984i 0.257132 + 0.791371i
\(365\) −20.1246 −1.05337
\(366\) −0.590170 + 1.81636i −0.0308487 + 0.0949425i
\(367\) −27.3885 19.8989i −1.42967 1.03872i −0.990078 0.140519i \(-0.955123\pi\)
−0.439592 0.898197i \(-0.644877\pi\)
\(368\) 7.03444 0.366696
\(369\) 4.00000 + 2.90617i 0.208232 + 0.151289i
\(370\) 2.62461 8.07772i 0.136447 0.419941i
\(371\) −14.0623 + 10.2169i −0.730079 + 0.530433i
\(372\) −15.3541 + 11.1554i −0.796073 + 0.578381i
\(373\) 4.06231 + 12.5025i 0.210338 + 0.647354i 0.999452 + 0.0331072i \(0.0105403\pi\)
−0.789114 + 0.614247i \(0.789460\pi\)
\(374\) −1.23607 −0.0639156
\(375\) 3.45492 10.6331i 0.178411 0.549093i
\(376\) 3.85410 0.198760
\(377\) 3.65654 + 11.2537i 0.188321 + 0.579594i
\(378\) 7.13525 5.18407i 0.366998 0.266640i
\(379\) −18.5172 + 13.4535i −0.951166 + 0.691062i −0.951082 0.308938i \(-0.900027\pi\)
−8.34488e−5 1.00000i \(0.500027\pi\)
\(380\) 6.21885 19.1396i 0.319020 0.981843i
\(381\) 6.00000 + 4.35926i 0.307389 + 0.223331i
\(382\) 7.88854 0.403613
\(383\) −13.3713 9.71483i −0.683243 0.496405i 0.191189 0.981553i \(-0.438766\pi\)
−0.874432 + 0.485148i \(0.838766\pi\)
\(384\) −3.11803 + 9.59632i −0.159117 + 0.489710i
\(385\) −33.4164 −1.70306
\(386\) −2.70820 8.33499i −0.137844 0.424240i
\(387\) 4.23607 13.0373i 0.215331 0.662722i
\(388\) −4.66718 + 14.3641i −0.236940 + 0.729228i
\(389\) 7.21885 + 22.2173i 0.366010 + 1.12646i 0.949346 + 0.314232i \(0.101747\pi\)
−0.583336 + 0.812231i \(0.698253\pi\)
\(390\) 0.489357 + 1.50609i 0.0247795 + 0.0762636i
\(391\) 0.690983 2.12663i 0.0349445 0.107548i
\(392\) −17.0623 12.3965i −0.861777 0.626117i
\(393\) −20.3262 −1.02532
\(394\) −0.673762 0.489517i −0.0339436 0.0246615i
\(395\) −1.44427 4.44501i −0.0726692 0.223653i
\(396\) −9.70820 + 7.05342i −0.487856 + 0.354448i
\(397\) −4.78115 + 3.47371i −0.239959 + 0.174341i −0.701265 0.712901i \(-0.747381\pi\)
0.461306 + 0.887241i \(0.347381\pi\)
\(398\) −1.21885 3.75123i −0.0610953 0.188032i
\(399\) −22.4164 −1.12222
\(400\) −12.7254 + 9.24556i −0.636271 + 0.462278i
\(401\) 3.76393 0.187962 0.0939809 0.995574i \(-0.470041\pi\)
0.0939809 + 0.995574i \(0.470041\pi\)
\(402\) −1.81966 5.60034i −0.0907564 0.279319i
\(403\) 15.3541 11.1554i 0.764842 0.555690i
\(404\) −11.6459 + 8.46124i −0.579405 + 0.420962i
\(405\) 1.80902 1.31433i 0.0898908 0.0653095i
\(406\) −9.10739 6.61691i −0.451992 0.328392i
\(407\) 32.1803 1.59512
\(408\) 1.19098 + 0.865300i 0.0589624 + 0.0428387i
\(409\) 4.36475 13.4333i 0.215823 0.664234i −0.783271 0.621680i \(-0.786450\pi\)
0.999094 0.0425542i \(-0.0135495\pi\)
\(410\) 0.652476 2.00811i 0.0322235 0.0991737i
\(411\) 1.36475 + 4.20025i 0.0673179 + 0.207183i
\(412\) −0.759867 + 2.33863i −0.0374359 + 0.115216i
\(413\) 16.5795 51.0265i 0.815825 2.51085i
\(414\) 0.527864 + 1.62460i 0.0259431 + 0.0798447i
\(415\) 10.7533 7.81272i 0.527858 0.383511i
\(416\) 2.37539 7.31069i 0.116463 0.358436i
\(417\) 3.42705 + 2.48990i 0.167823 + 0.121931i
\(418\) −6.00000 −0.293470
\(419\) −30.4615 22.1316i −1.48814 1.08120i −0.974818 0.223003i \(-0.928414\pi\)
−0.513323 0.858195i \(-0.671586\pi\)
\(420\) 15.4894 + 11.2537i 0.755803 + 0.549123i
\(421\) −2.23607 + 1.62460i −0.108979 + 0.0791781i −0.640940 0.767591i \(-0.721455\pi\)
0.531961 + 0.846769i \(0.321455\pi\)
\(422\) −6.54508 + 4.75528i −0.318610 + 0.231484i
\(423\) −1.61803 4.97980i −0.0786715 0.242126i
\(424\) 5.54102 0.269096
\(425\) 1.54508 + 4.75528i 0.0749476 + 0.230665i
\(426\) 3.00000 0.145350
\(427\) −7.13525 21.9601i −0.345299 1.06272i
\(428\) −0.0835921 + 0.0607332i −0.00404058 + 0.00293565i
\(429\) −4.85410 + 3.52671i −0.234358 + 0.170271i
\(430\) −5.85410 −0.282310
\(431\) 25.3713 + 18.4333i 1.22209 + 0.887903i 0.996272 0.0862657i \(-0.0274934\pi\)
0.225821 + 0.974169i \(0.427493\pi\)
\(432\) 15.7295 0.756785
\(433\) −6.92705 5.03280i −0.332893 0.241861i 0.408764 0.912640i \(-0.365960\pi\)
−0.741657 + 0.670779i \(0.765960\pi\)
\(434\) −5.57953 + 17.1720i −0.267826 + 0.824283i
\(435\) 11.5451 + 8.38800i 0.553544 + 0.402174i
\(436\) 3.27051 + 10.0656i 0.156629 + 0.482055i
\(437\) 3.35410 10.3229i 0.160448 0.493810i
\(438\) 1.06231 3.26944i 0.0507589 0.156220i
\(439\) −2.57295 7.91872i −0.122800 0.377940i 0.870694 0.491826i \(-0.163670\pi\)
−0.993494 + 0.113886i \(0.963670\pi\)
\(440\) 8.61803 + 6.26137i 0.410849 + 0.298499i
\(441\) −8.85410 + 27.2501i −0.421624 + 1.29762i
\(442\) −0.572949 0.416272i −0.0272524 0.0198000i
\(443\) 5.47214 0.259989 0.129995 0.991515i \(-0.458504\pi\)
0.129995 + 0.991515i \(0.458504\pi\)
\(444\) −14.9164 10.8374i −0.707901 0.514320i
\(445\) −2.76393 −0.131023
\(446\) 3.00000 2.17963i 0.142054 0.103208i
\(447\) −12.2812 + 8.92278i −0.580879 + 0.422033i
\(448\) −6.71885 20.6785i −0.317436 0.976967i
\(449\) −22.0902 −1.04250 −0.521250 0.853404i \(-0.674534\pi\)
−0.521250 + 0.853404i \(0.674534\pi\)
\(450\) −3.09017 2.24514i −0.145672 0.105837i
\(451\) 8.00000 0.376705
\(452\) 4.19756 + 12.9188i 0.197437 + 0.607648i
\(453\) 9.01722 6.55139i 0.423666 0.307811i
\(454\) −4.14590 + 3.01217i −0.194577 + 0.141368i
\(455\) −15.4894 11.2537i −0.726152 0.527580i
\(456\) 5.78115 + 4.20025i 0.270727 + 0.196695i
\(457\) 24.8328 1.16163 0.580815 0.814036i \(-0.302734\pi\)
0.580815 + 0.814036i \(0.302734\pi\)
\(458\) 1.85410 + 1.34708i 0.0866365 + 0.0629451i
\(459\) 1.54508 4.75528i 0.0721184 0.221958i
\(460\) −7.50000 + 5.44907i −0.349689 + 0.254064i
\(461\) −1.39919 4.30625i −0.0651666 0.200562i 0.913172 0.407576i \(-0.133626\pi\)
−0.978338 + 0.207013i \(0.933626\pi\)
\(462\) 1.76393 5.42882i 0.0820655 0.252572i
\(463\) −6.98278 + 21.4908i −0.324517 + 0.998761i 0.647141 + 0.762371i \(0.275965\pi\)
−0.971658 + 0.236391i \(0.924035\pi\)
\(464\) −6.20414 19.0944i −0.288020 0.886434i
\(465\) 7.07295 21.7683i 0.328000 1.00948i
\(466\) −0.965558 + 2.97168i −0.0447286 + 0.137661i
\(467\) −4.11803 2.99193i −0.190560 0.138450i 0.488415 0.872612i \(-0.337575\pi\)
−0.678975 + 0.734162i \(0.737575\pi\)
\(468\) −6.87539 −0.317815
\(469\) 57.5967 + 41.8465i 2.65957 + 1.93229i
\(470\) −1.80902 + 1.31433i −0.0834437 + 0.0606254i
\(471\) 16.9894 12.3435i 0.782828 0.568758i
\(472\) −13.8369 + 10.0531i −0.636894 + 0.462731i
\(473\) −6.85410 21.0948i −0.315152 0.969938i
\(474\) 0.798374 0.0366705
\(475\) 7.50000 + 23.0826i 0.344124 + 1.05910i
\(476\) −8.56231 −0.392453
\(477\) −2.32624 7.15942i −0.106511 0.327808i
\(478\) 0.454915 0.330515i 0.0208073 0.0151174i
\(479\) −0.781153 + 0.567541i −0.0356918 + 0.0259316i −0.605488 0.795854i \(-0.707022\pi\)
0.569796 + 0.821786i \(0.307022\pi\)
\(480\) −2.86475 8.81678i −0.130757 0.402429i
\(481\) 14.9164 + 10.8374i 0.680130 + 0.494143i
\(482\) 5.03444 0.229313
\(483\) 8.35410 + 6.06961i 0.380125 + 0.276177i
\(484\) 0.302439 0.930812i 0.0137472 0.0423096i
\(485\) −5.62868 17.3233i −0.255585 0.786610i
\(486\) 1.88854 + 5.81234i 0.0856661 + 0.263653i
\(487\) 6.92705 21.3193i 0.313895 0.966068i −0.662312 0.749228i \(-0.730425\pi\)
0.976207 0.216841i \(-0.0695752\pi\)
\(488\) −2.27458 + 7.00042i −0.102965 + 0.316894i
\(489\) 3.60081 + 11.0822i 0.162834 + 0.501153i
\(490\) 12.2361 0.552769
\(491\) 4.30902 13.2618i 0.194463 0.598496i −0.805519 0.592570i \(-0.798113\pi\)
0.999982 0.00592659i \(-0.00188650\pi\)
\(492\) −3.70820 2.69417i −0.167179 0.121462i
\(493\) −6.38197 −0.287429
\(494\) −2.78115 2.02063i −0.125130 0.0909123i
\(495\) 4.47214 13.7638i 0.201008 0.618638i
\(496\) −26.0517 + 18.9276i −1.16975 + 0.849876i
\(497\) −29.3435 + 21.3193i −1.31623 + 0.956300i
\(498\) 0.701626 + 2.15938i 0.0314406 + 0.0967643i
\(499\) −22.3262 −0.999460 −0.499730 0.866181i \(-0.666567\pi\)
−0.499730 + 0.866181i \(0.666567\pi\)
\(500\) 6.40576 19.7149i 0.286475 0.881678i
\(501\) 20.0902 0.897563
\(502\) 2.79180 + 8.59226i 0.124604 + 0.383492i
\(503\) 22.5623 16.3925i 1.00600 0.730904i 0.0426364 0.999091i \(-0.486424\pi\)
0.963367 + 0.268186i \(0.0864243\pi\)
\(504\) 11.0000 7.99197i 0.489979 0.355991i
\(505\) 5.36475 16.5110i 0.238728 0.734729i
\(506\) 2.23607 + 1.62460i 0.0994053 + 0.0722222i
\(507\) 9.56231 0.424677
\(508\) 11.1246 + 8.08250i 0.493575 + 0.358603i
\(509\) −2.13525 + 6.57164i −0.0946435 + 0.291283i −0.987161 0.159731i \(-0.948937\pi\)
0.892517 + 0.451014i \(0.148937\pi\)
\(510\) −0.854102 −0.0378203
\(511\) 12.8435 + 39.5281i 0.568161 + 1.74862i
\(512\) −6.89261 + 21.2133i −0.304613 + 0.937503i
\(513\) 7.50000 23.0826i 0.331133 1.01912i
\(514\) −0.572949 1.76336i −0.0252717 0.0777783i
\(515\) −0.916408 2.82041i −0.0403818 0.124282i
\(516\) −3.92705 + 12.0862i −0.172879 + 0.532066i
\(517\) −6.85410 4.97980i −0.301443 0.219011i
\(518\) −17.5410 −0.770708
\(519\) −5.04508 3.66547i −0.221455 0.160896i
\(520\) 1.88603 + 5.80461i 0.0827079 + 0.254549i
\(521\) −1.89919 + 1.37984i −0.0832049 + 0.0604519i −0.628610 0.777721i \(-0.716376\pi\)
0.545405 + 0.838173i \(0.316376\pi\)
\(522\) 3.94427 2.86568i 0.172636 0.125427i
\(523\) 4.40983 + 13.5721i 0.192828 + 0.593465i 0.999995 + 0.00314118i \(0.000999871\pi\)
−0.807167 + 0.590324i \(0.799000\pi\)
\(524\) −37.6869 −1.64636
\(525\) −23.0902 −1.00774
\(526\) −2.81966 −0.122943
\(527\) 3.16312 + 9.73508i 0.137788 + 0.424067i
\(528\) 8.23607 5.98385i 0.358429 0.260414i
\(529\) 14.5623 10.5801i 0.633144 0.460006i
\(530\) −2.60081 + 1.88960i −0.112972 + 0.0820790i
\(531\) 18.7984 + 13.6578i 0.815780 + 0.592699i
\(532\) −41.5623 −1.80195
\(533\) 3.70820 + 2.69417i 0.160620 + 0.116697i
\(534\) 0.145898 0.449028i 0.00631363 0.0194313i
\(535\) 0.0385072 0.118513i 0.00166481 0.00512376i
\(536\) −7.01316 21.5843i −0.302922 0.932299i
\(537\) 8.10739 24.9520i 0.349860 1.07676i
\(538\) 1.58359 4.87380i 0.0682735 0.210124i
\(539\) 14.3262 + 44.0916i 0.617075 + 1.89916i
\(540\) −16.7705 + 12.1845i −0.721688 + 0.524337i
\(541\) −7.67376 + 23.6174i −0.329921 + 1.01539i 0.639249 + 0.769000i \(0.279245\pi\)
−0.969170 + 0.246392i \(0.920755\pi\)
\(542\) −4.90983 3.56720i −0.210895 0.153224i
\(543\) 5.41641 0.232440
\(544\) 3.35410 + 2.43690i 0.143806 + 0.104481i
\(545\) −10.3262 7.50245i −0.442327 0.321370i
\(546\) 2.64590 1.92236i 0.113234 0.0822693i
\(547\) 27.9894 20.3355i 1.19674 0.869481i 0.202779 0.979225i \(-0.435003\pi\)
0.993960 + 0.109743i \(0.0350029\pi\)
\(548\) 2.53038 + 7.78770i 0.108092 + 0.332674i
\(549\) 10.0000 0.426790
\(550\) −6.18034 −0.263531
\(551\) −30.9787 −1.31974
\(552\) −1.01722 3.13068i −0.0432958 0.133251i
\(553\) −7.80902 + 5.67358i −0.332073 + 0.241265i
\(554\) −5.48936 + 3.98825i −0.233220 + 0.169445i
\(555\) 22.2361 0.943869
\(556\) 6.35410 + 4.61653i 0.269474 + 0.195784i
\(557\) 44.8328 1.89963 0.949814 0.312816i \(-0.101272\pi\)
0.949814 + 0.312816i \(0.101272\pi\)
\(558\) −6.32624 4.59628i −0.267811 0.194576i
\(559\) 3.92705 12.0862i 0.166097 0.511193i
\(560\) 26.2812 + 19.0944i 1.11058 + 0.806885i
\(561\) −1.00000 3.07768i −0.0422200 0.129940i
\(562\) 1.01064 3.11044i 0.0426314 0.131206i
\(563\) −3.13525 + 9.64932i −0.132135 + 0.406670i −0.995133 0.0985366i \(-0.968584\pi\)
0.862998 + 0.505207i \(0.168584\pi\)
\(564\) 1.50000 + 4.61653i 0.0631614 + 0.194391i
\(565\) −13.2533 9.62908i −0.557570 0.405098i
\(566\) −0.343459 + 1.05706i −0.0144367 + 0.0444314i
\(567\) −3.73607 2.71441i −0.156900 0.113995i
\(568\) 11.5623 0.485144
\(569\) −34.2254 24.8662i −1.43480 1.04245i −0.989097 0.147268i \(-0.952952\pi\)
−0.445708 0.895178i \(-0.647048\pi\)
\(570\) −4.14590 −0.173653
\(571\) −1.71885 + 1.24882i −0.0719315 + 0.0522613i −0.623170 0.782086i \(-0.714155\pi\)
0.551238 + 0.834348i \(0.314155\pi\)
\(572\) −9.00000 + 6.53888i −0.376309 + 0.273404i
\(573\) 6.38197 + 19.6417i 0.266610 + 0.820543i
\(574\) −4.36068 −0.182011
\(575\) 3.45492 10.6331i 0.144080 0.443432i
\(576\) 9.41641 0.392350
\(577\) 5.65248 + 17.3965i 0.235316 + 0.724227i 0.997079 + 0.0763722i \(0.0243337\pi\)
−0.761764 + 0.647855i \(0.775666\pi\)
\(578\) 0.309017 0.224514i 0.0128534 0.00933855i
\(579\) 18.5623 13.4863i 0.771423 0.560472i
\(580\) 21.4058 + 15.5522i 0.888826 + 0.645770i
\(581\) −22.2082 16.1352i −0.921352 0.669401i
\(582\) 3.11146 0.128974
\(583\) −9.85410 7.15942i −0.408115 0.296513i
\(584\) 4.09424 12.6008i 0.169421 0.521423i
\(585\) 6.70820 4.87380i 0.277350 0.201507i
\(586\) 0.347524 + 1.06957i 0.0143561 + 0.0441835i
\(587\) 3.98278 12.2577i 0.164387 0.505931i −0.834604 0.550851i \(-0.814303\pi\)
0.998991 + 0.0449200i \(0.0143033\pi\)
\(588\) 8.20820 25.2623i 0.338501 1.04180i
\(589\) 15.3541 + 47.2551i 0.632655 + 1.94711i
\(590\) 3.06637 9.43732i 0.126241 0.388528i
\(591\) 0.673762 2.07363i 0.0277149 0.0852976i
\(592\) −25.3090 18.3881i −1.04019 0.755745i
\(593\) 37.0902 1.52311 0.761555 0.648100i \(-0.224436\pi\)
0.761555 + 0.648100i \(0.224436\pi\)
\(594\) 5.00000 + 3.63271i 0.205152 + 0.149052i
\(595\) 8.35410 6.06961i 0.342485 0.248830i
\(596\) −22.7705 + 16.5437i −0.932716 + 0.677658i
\(597\) 8.35410 6.06961i 0.341911 0.248413i
\(598\) 0.489357 + 1.50609i 0.0200113 + 0.0615884i
\(599\) −12.8197 −0.523797 −0.261899 0.965095i \(-0.584349\pi\)
−0.261899 + 0.965095i \(0.584349\pi\)
\(600\) 5.95492 + 4.32650i 0.243108 + 0.176629i
\(601\) 27.8541 1.13619 0.568096 0.822962i \(-0.307680\pi\)
0.568096 + 0.822962i \(0.307680\pi\)
\(602\) 3.73607 + 11.4984i 0.152271 + 0.468641i
\(603\) −24.9443 + 18.1231i −1.01581 + 0.738029i
\(604\) 16.7188 12.1470i 0.680280 0.494253i
\(605\) 0.364745 + 1.12257i 0.0148290 + 0.0456390i
\(606\) 2.39919 + 1.74311i 0.0974603 + 0.0708091i
\(607\) −30.6180 −1.24275 −0.621374 0.783514i \(-0.713425\pi\)
−0.621374 + 0.783514i \(0.713425\pi\)
\(608\) 16.2812 + 11.8290i 0.660288 + 0.479727i
\(609\) 9.10739 28.0297i 0.369050 1.13582i
\(610\) −1.31966 4.06150i −0.0534315 0.164445i
\(611\) −1.50000 4.61653i −0.0606835 0.186765i
\(612\) 1.14590 3.52671i 0.0463202 0.142559i
\(613\) −8.60739 + 26.4908i −0.347649 + 1.06995i 0.612501 + 0.790470i \(0.290164\pi\)
−0.960150 + 0.279485i \(0.909836\pi\)
\(614\) 0.124612 + 0.383516i 0.00502892 + 0.0154774i
\(615\) 5.52786 0.222905
\(616\) 6.79837 20.9232i 0.273914 0.843021i
\(617\) 25.8992 + 18.8169i 1.04266 + 0.757538i 0.970803 0.239877i \(-0.0771070\pi\)
0.0718586 + 0.997415i \(0.477107\pi\)
\(618\) 0.506578 0.0203775
\(619\) −24.8435 18.0498i −0.998543 0.725484i −0.0367676 0.999324i \(-0.511706\pi\)
−0.961775 + 0.273840i \(0.911706\pi\)
\(620\) 13.1140 40.3606i 0.526670 1.62092i
\(621\) −9.04508 + 6.57164i −0.362967 + 0.263711i
\(622\) 1.84346 1.33935i 0.0739160 0.0537031i
\(623\) 1.76393 + 5.42882i 0.0706704 + 0.217501i
\(624\) 5.83282 0.233500
\(625\) 7.72542 + 23.7764i 0.309017 + 0.951057i
\(626\) −5.12461 −0.204821
\(627\) −4.85410 14.9394i −0.193854 0.596622i
\(628\) 31.5000 22.8861i 1.25699 0.913254i
\(629\) −8.04508 + 5.84510i −0.320779 + 0.233059i
\(630\) −2.43769 + 7.50245i −0.0971201 + 0.298905i
\(631\) −9.80902 7.12667i −0.390491 0.283708i 0.375166 0.926958i \(-0.377586\pi\)
−0.765657 + 0.643250i \(0.777586\pi\)
\(632\) 3.07701 0.122397
\(633\) −17.1353 12.4495i −0.681065 0.494823i
\(634\) −1.04915 + 3.22895i −0.0416671 + 0.128238i
\(635\) −16.5836 −0.658100
\(636\) 2.15654 + 6.63715i 0.0855124 + 0.263180i
\(637\) −8.20820 + 25.2623i −0.325221 + 1.00093i
\(638\) 2.43769 7.50245i 0.0965092 0.297025i
\(639\) −4.85410 14.9394i −0.192025 0.590993i
\(640\) −6.97214 21.4580i −0.275598 0.848203i
\(641\) 9.28115 28.5645i 0.366584 1.12823i −0.582400 0.812902i \(-0.697886\pi\)
0.948984 0.315326i \(-0.102114\pi\)
\(642\) 0.0172209 + 0.0125117i 0.000679656 + 0.000493799i
\(643\) −5.70820 −0.225110 −0.112555 0.993646i \(-0.535903\pi\)
−0.112555 + 0.993646i \(0.535903\pi\)
\(644\) 15.4894 + 11.2537i 0.610366 + 0.443457i
\(645\) −4.73607 14.5761i −0.186482 0.573934i
\(646\) 1.50000 1.08981i 0.0590167 0.0428782i
\(647\) 4.52786 3.28969i 0.178009 0.129331i −0.495213 0.868772i \(-0.664910\pi\)
0.673222 + 0.739441i \(0.264910\pi\)
\(648\) 0.454915 + 1.40008i 0.0178708 + 0.0550005i
\(649\) 37.5967 1.47580
\(650\) −2.86475 2.08136i −0.112365 0.0816376i
\(651\) −47.2705 −1.85268
\(652\) 6.67627 + 20.5475i 0.261463 + 0.804701i
\(653\) 7.88197 5.72658i 0.308445 0.224099i −0.422784 0.906231i \(-0.638947\pi\)
0.731229 + 0.682132i \(0.238947\pi\)
\(654\) 1.76393 1.28157i 0.0689752 0.0501134i
\(655\) 36.7705 26.7153i 1.43674 1.04385i
\(656\) −6.29180 4.57126i −0.245653 0.178478i
\(657\) −18.0000 −0.702247
\(658\) 3.73607 + 2.71441i 0.145647 + 0.105819i
\(659\) 10.3607 31.8869i 0.403595 1.24214i −0.518468 0.855097i \(-0.673498\pi\)
0.922063 0.387040i \(-0.126502\pi\)
\(660\) −4.14590 + 12.7598i −0.161379 + 0.496673i
\(661\) 14.7361 + 45.3530i 0.573167 + 1.76403i 0.642339 + 0.766421i \(0.277964\pi\)
−0.0691723 + 0.997605i \(0.522036\pi\)
\(662\) 2.05573 6.32688i 0.0798981 0.245901i
\(663\) 0.572949 1.76336i 0.0222515 0.0684831i
\(664\) 2.70414 + 8.32248i 0.104941 + 0.322975i
\(665\) 40.5517 29.4625i 1.57253 1.14251i
\(666\) 2.34752 7.22494i 0.0909647 0.279961i
\(667\) 11.5451 + 8.38800i 0.447027 + 0.324784i
\(668\) 37.2492 1.44122
\(669\) 7.85410 + 5.70634i 0.303657 + 0.220620i
\(670\) 10.6525 + 7.73948i 0.411541 + 0.299002i
\(671\) 13.0902 9.51057i 0.505340 0.367151i
\(672\) −15.4894 + 11.2537i −0.597515 + 0.434120i
\(673\) −6.41641 19.7477i −0.247334 0.761217i −0.995244 0.0974160i \(-0.968942\pi\)
0.747909 0.663801i \(-0.231058\pi\)
\(674\) 5.47214 0.210779
\(675\) 7.72542 23.7764i 0.297352 0.915155i
\(676\) 17.7295 0.681903
\(677\) 14.7533 + 45.4060i 0.567015 + 1.74509i 0.661888 + 0.749603i \(0.269756\pi\)
−0.0948726 + 0.995489i \(0.530244\pi\)
\(678\) 2.26393 1.64484i 0.0869458 0.0631698i
\(679\) −30.4336 + 22.1113i −1.16794 + 0.848555i
\(680\) −3.29180 −0.126235
\(681\) −10.8541 7.88597i −0.415930 0.302191i
\(682\) −12.6525 −0.484488
\(683\) 36.7877 + 26.7279i 1.40764 + 1.02271i 0.993660 + 0.112428i \(0.0358629\pi\)
0.413984 + 0.910284i \(0.364137\pi\)
\(684\) 5.56231 17.1190i 0.212680 0.654562i
\(685\) −7.98936 5.80461i −0.305258 0.221783i
\(686\) −3.99342 12.2905i −0.152470 0.469253i
\(687\) −1.85410 + 5.70634i −0.0707384 + 0.217710i
\(688\) −6.66312 + 20.5070i −0.254029 + 0.781821i
\(689\) −2.15654 6.63715i −0.0821577 0.252855i
\(690\) 1.54508 + 1.12257i 0.0588204 + 0.0427355i
\(691\) 1.77051 5.44907i 0.0673534 0.207292i −0.911715 0.410823i \(-0.865242\pi\)
0.979069 + 0.203530i \(0.0652415\pi\)
\(692\) −9.35410 6.79615i −0.355590 0.258351i
\(693\) −29.8885 −1.13537
\(694\) 2.79180 + 2.02836i 0.105975 + 0.0769954i
\(695\) −9.47214 −0.359299
\(696\) −7.60081 + 5.52231i −0.288108 + 0.209323i
\(697\) −2.00000 + 1.45309i −0.0757554 + 0.0550395i
\(698\) 0.708204 + 2.17963i 0.0268059 + 0.0825001i
\(699\) −8.18034 −0.309409
\(700\) −42.8115 −1.61812
\(701\) 42.3607 1.59994 0.799970 0.600039i \(-0.204848\pi\)
0.799970 + 0.600039i \(0.204848\pi\)
\(702\) 1.09424 + 3.36771i 0.0412992 + 0.127106i
\(703\) −39.0517 + 28.3727i −1.47286 + 1.07010i
\(704\) 12.3262 8.95554i 0.464563 0.337524i
\(705\) −4.73607 3.44095i −0.178371 0.129594i
\(706\) 7.71885 + 5.60807i 0.290503 + 0.211063i
\(707\) −35.8541 −1.34843
\(708\) −17.4271 12.6615i −0.654949 0.475848i
\(709\) −3.39919 + 10.4616i −0.127659 + 0.392894i −0.994376 0.105906i \(-0.966226\pi\)
0.866717 + 0.498800i \(0.166226\pi\)
\(710\) −5.42705 + 3.94298i −0.203674 + 0.147978i
\(711\) −1.29180 3.97574i −0.0484461 0.149102i
\(712\) 0.562306 1.73060i 0.0210733 0.0648570i
\(713\) 7.07295 21.7683i 0.264884 0.815229i
\(714\) 0.545085 + 1.67760i 0.0203993 + 0.0627826i
\(715\) 4.14590 12.7598i 0.155048 0.477188i
\(716\) 15.0319 46.2635i 0.561770 1.72895i
\(717\) 1.19098 + 0.865300i 0.0444781 + 0.0323152i
\(718\) 13.2918 0.496045
\(719\) 12.7533 + 9.26581i 0.475617 + 0.345556i 0.799626 0.600498i \(-0.205031\pi\)
−0.324009 + 0.946054i \(0.605031\pi\)
\(720\) −11.3820 + 8.26948i −0.424181 + 0.308185i
\(721\) −4.95492 + 3.59996i −0.184531 + 0.134069i
\(722\) 1.40983 1.02430i 0.0524684 0.0381206i
\(723\) 4.07295 + 12.5352i 0.151475 + 0.466191i
\(724\) 10.0426 0.373229
\(725\) −31.9098 −1.18510
\(726\) −0.201626 −0.00748305
\(727\) 7.20820 + 22.1846i 0.267337 + 0.822780i 0.991146 + 0.132779i \(0.0423900\pi\)
−0.723808 + 0.690001i \(0.757610\pi\)
\(728\) 10.1976 7.40896i 0.377947 0.274594i
\(729\) −10.5172 + 7.64121i −0.389527 + 0.283008i
\(730\) 2.37539 + 7.31069i 0.0879171 + 0.270581i
\(731\) 5.54508 + 4.02874i 0.205092 + 0.149008i
\(732\) −9.27051 −0.342648
\(733\) −23.5795 17.1315i −0.870930 0.632767i 0.0599066 0.998204i \(-0.480920\pi\)
−0.930836 + 0.365437i \(0.880920\pi\)
\(734\) −3.99593 + 12.2982i −0.147493 + 0.453936i
\(735\) 9.89919 + 30.4666i 0.365137 + 1.12378i
\(736\) −2.86475 8.81678i −0.105596 0.324991i
\(737\) −15.4164 + 47.4468i −0.567871 + 1.74773i
\(738\) 0.583592 1.79611i 0.0214823 0.0661158i
\(739\) −9.62461 29.6215i −0.354047 1.08964i −0.956560 0.291536i \(-0.905834\pi\)
0.602513 0.798109i \(-0.294166\pi\)
\(740\) 41.2279 1.51557
\(741\) 2.78115 8.55951i 0.102168 0.314441i
\(742\) 5.37132 + 3.90249i 0.197187 + 0.143265i
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 12.1910 + 8.85727i 0.446943 + 0.324723i
\(745\) 10.4894 32.2829i 0.384300 1.18275i
\(746\) 4.06231 2.95144i 0.148732 0.108060i
\(747\) 9.61803 6.98791i 0.351905 0.255674i
\(748\) −1.85410 5.70634i −0.0677927 0.208644i
\(749\) −0.257354 −0.00940352
\(750\) −4.27051 −0.155937
\(751\) 8.52786 0.311186 0.155593 0.987821i \(-0.450271\pi\)
0.155593 + 0.987821i \(0.450271\pi\)
\(752\) 2.54508 + 7.83297i 0.0928097 + 0.285639i
\(753\) −19.1353 + 13.9026i −0.697327 + 0.506638i
\(754\) 3.65654 2.65663i 0.133163 0.0967489i
\(755\) −7.70163 + 23.7032i −0.280291 + 0.862647i
\(756\) 34.6353 + 25.1640i 1.25967 + 0.915205i
\(757\) −29.3607 −1.06713 −0.533566 0.845758i \(-0.679148\pi\)
−0.533566 + 0.845758i \(0.679148\pi\)
\(758\) 7.07295 + 5.13880i 0.256901 + 0.186650i
\(759\) −2.23607 + 6.88191i −0.0811641 + 0.249797i
\(760\) −15.9787 −0.579609
\(761\) 5.40983 + 16.6497i 0.196106 + 0.603553i 0.999962 + 0.00872845i \(0.00277839\pi\)
−0.803856 + 0.594824i \(0.797222\pi\)
\(762\) 0.875388 2.69417i 0.0317120 0.0975994i
\(763\) −8.14590 + 25.0705i −0.294901 + 0.907613i
\(764\) 11.8328 + 36.4177i 0.428096 + 1.31754i
\(765\) 1.38197 + 4.25325i 0.0499651 + 0.153777i
\(766\) −1.95085 + 6.00410i −0.0704871 + 0.216937i
\(767\) 17.4271 + 12.6615i 0.629254 + 0.457180i
\(768\) −5.56231 −0.200712
\(769\) −7.85410 5.70634i −0.283226 0.205776i 0.437097 0.899414i \(-0.356007\pi\)
−0.720323 + 0.693638i \(0.756007\pi\)
\(770\) 3.94427 + 12.1392i 0.142142 + 0.437467i
\(771\) 3.92705 2.85317i 0.141429 0.102754i
\(772\) 34.4164 25.0050i 1.23867 0.899949i
\(773\) 4.73607 + 14.5761i 0.170345 + 0.524267i 0.999390 0.0349142i \(-0.0111158\pi\)
−0.829046 + 0.559181i \(0.811116\pi\)
\(774\) −5.23607 −0.188207
\(775\) 15.8156 + 48.6754i 0.568113 + 1.74847i
\(776\) 11.9919 0.430483
\(777\) −14.1910 43.6754i −0.509099 1.56684i
\(778\) 7.21885 5.24480i 0.258808 0.188035i
\(779\) −9.70820 + 7.05342i −0.347833 + 0.252715i
\(780\) −6.21885 + 4.51826i −0.222670 + 0.161780i
\(781\) −20.5623 14.9394i −0.735777 0.534573i
\(782\) −0.854102 −0.0305426
\(783\) 25.8156 + 18.7561i 0.922574 + 0.670289i
\(784\) 13.9271 42.8631i 0.497395 1.53082i
\(785\) −14.5106 + 44.6592i −0.517907 + 1.59395i
\(786\) 2.39919 + 7.38394i 0.0855762 + 0.263376i
\(787\) 10.3262 31.7809i 0.368091 1.13287i −0.579932 0.814665i \(-0.696921\pi\)
0.948023 0.318202i \(-0.103079\pi\)
\(788\) 1.24922 3.84471i 0.0445017 0.136962i
\(789\) −2.28115 7.02067i −0.0812112 0.249942i
\(790\) −1.44427 + 1.04932i −0.0513849 + 0.0373333i
\(791\) −10.4549 + 32.1769i −0.371734 + 1.14408i
\(792\) 7.70820 + 5.60034i 0.273899 + 0.198999i
\(793\) 9.27051 0.329205
\(794\) 1.82624 + 1.32684i 0.0648108 + 0.0470878i
\(795\) −6.80902 4.94704i −0.241491 0.175453i
\(796\) 15.4894 11.2537i 0.549006 0.398876i
\(797\) −23.0795 + 16.7683i −0.817519 + 0.593962i −0.916001 0.401177i \(-0.868601\pi\)
0.0984819 + 0.995139i \(0.468601\pi\)
\(798\) 2.64590 + 8.14324i 0.0936638 + 0.288267i
\(799\) 2.61803 0.0926194
\(800\) 16.7705 + 12.1845i 0.592927 + 0.430787i
\(801\) −2.47214 −0.0873486
\(802\) −0.444272 1.36733i −0.0156878 0.0482820i
\(803\) −23.5623 + 17.1190i −0.831496 + 0.604117i
\(804\) 23.1246 16.8010i 0.815542 0.592526i
\(805\) −23.0902 −0.813822
\(806\) −5.86475 4.26099i −0.206577 0.150087i
\(807\) 13.4164 0.472280
\(808\) 9.24671 + 6.71813i 0.325298 + 0.236343i
\(809\) 16.8435 51.8388i 0.592184 1.82256i 0.0239149 0.999714i \(-0.492387\pi\)
0.568270 0.822842i \(-0.307613\pi\)
\(810\) −0.690983 0.502029i −0.0242787 0.0176395i
\(811\) −0.399187 1.22857i −0.0140173 0.0431410i 0.943803 0.330508i \(-0.107220\pi\)
−0.957821 + 0.287367i \(0.907220\pi\)
\(812\) 16.8860 51.9699i 0.592584 1.82378i
\(813\) 4.90983 15.1109i 0.172195 0.529963i
\(814\) −3.79837 11.6902i −0.133133 0.409741i
\(815\) −21.0795 15.3152i −0.738384 0.536467i
\(816\) −0.972136 + 2.99193i −0.0340316 + 0.104738i
\(817\) 26.9164 + 19.5559i 0.941686 + 0.684175i
\(818\) −5.39512 −0.188636
\(819\) −13.8541 10.0656i −0.484102 0.351720i
\(820\) 10.2492 0.357918
\(821\) 20.9164 15.1967i 0.729988 0.530367i −0.159572 0.987186i \(-0.551011\pi\)
0.889560 + 0.456819i \(0.151011\pi\)
\(822\) 1.36475 0.991545i 0.0476010 0.0345841i
\(823\) −5.29180 16.2865i −0.184460 0.567711i 0.815478 0.578788i \(-0.196474\pi\)
−0.999939 + 0.0110770i \(0.996474\pi\)
\(824\) 1.95240 0.0680152
\(825\) −5.00000 15.3884i −0.174078 0.535756i
\(826\) −20.4934 −0.713057
\(827\) −1.46556 4.51052i −0.0509625 0.156846i 0.922336 0.386388i \(-0.126277\pi\)
−0.973299 + 0.229541i \(0.926277\pi\)
\(828\) −6.70820 + 4.87380i −0.233126 + 0.169376i
\(829\) −31.4443 + 22.8456i −1.09210 + 0.793461i −0.979753 0.200208i \(-0.935838\pi\)
−0.112351 + 0.993669i \(0.535838\pi\)
\(830\) −4.10739 2.98419i −0.142570 0.103583i
\(831\) −14.3713 10.4414i −0.498536 0.362207i
\(832\) 8.72949 0.302641
\(833\) −11.5902 8.42075i −0.401576 0.291762i
\(834\) 0.500000 1.53884i 0.0173136 0.0532857i
\(835\) −36.3435 + 26.4051i −1.25772 + 0.913785i
\(836\) −9.00000 27.6992i −0.311272 0.957995i
\(837\) 15.8156 48.6754i 0.546667 1.68247i
\(838\) −4.44427 + 13.6781i −0.153525 + 0.472501i
\(839\) 6.68034 + 20.5600i 0.230631 + 0.709809i 0.997671 + 0.0682098i \(0.0217287\pi\)
−0.767040 + 0.641599i \(0.778271\pi\)
\(840\) 4.69756 14.4576i 0.162081 0.498835i
\(841\) 3.62461 11.1554i 0.124987 0.384669i
\(842\) 0.854102 + 0.620541i 0.0294343 + 0.0213853i
\(843\) 8.56231 0.294901
\(844\) −31.7705 23.0826i −1.09359 0.794537i
\(845\) −17.2984 + 12.5680i −0.595082 + 0.432352i
\(846\) −1.61803 + 1.17557i −0.0556292 + 0.0404169i
\(847\) 1.97214 1.43284i 0.0677634 0.0492330i
\(848\) 3.65905 + 11.2614i 0.125652 + 0.386718i
\(849\) −2.90983 −0.0998651
\(850\) 1.54508 1.12257i 0.0529960 0.0385038i
\(851\) 22.2361 0.762243
\(852\) 4.50000 + 13.8496i 0.154167 + 0.474479i
\(853\) −15.7082 + 11.4127i −0.537839 + 0.390763i −0.823282 0.567633i \(-0.807859\pi\)
0.285443 + 0.958396i \(0.407859\pi\)
\(854\) −7.13525 + 5.18407i −0.244163 + 0.177395i
\(855\) 6.70820 + 20.6457i 0.229416 + 0.706069i
\(856\) 0.0663712 + 0.0482215i 0.00226852 + 0.00164818i
\(857\) −28.7426 −0.981830 −0.490915 0.871207i \(-0.663337\pi\)
−0.490915 + 0.871207i \(0.663337\pi\)
\(858\) 1.85410 + 1.34708i 0.0632980 + 0.0459887i
\(859\) −4.80244 + 14.7804i −0.163857 + 0.504300i −0.998950 0.0458082i \(-0.985414\pi\)
0.835093 + 0.550109i \(0.185414\pi\)
\(860\) −8.78115 27.0256i −0.299435 0.921566i
\(861\) −3.52786 10.8576i −0.120229 0.370028i
\(862\) 3.70163 11.3924i 0.126078 0.388028i
\(863\) 10.9377 33.6628i 0.372323 1.14589i −0.572943 0.819595i \(-0.694198\pi\)
0.945267 0.326299i \(-0.105802\pi\)
\(864\) −6.40576 19.7149i −0.217929 0.670715i
\(865\) 13.9443 0.474119
\(866\) −1.01064 + 3.11044i −0.0343431 + 0.105697i
\(867\) 0.809017 + 0.587785i 0.0274757 + 0.0199622i
\(868\) −87.6443 −2.97484
\(869\) −5.47214 3.97574i −0.185629 0.134868i
\(870\) 1.68441 5.18407i 0.0571067 0.175756i
\(871\) −23.1246 + 16.8010i −0.783548 + 0.569281i
\(872\) 6.79837 4.93931i 0.230222 0.167266i
\(873\) −5.03444 15.4944i −0.170390 0.524407i
\(874\) −4.14590 −0.140237
\(875\) 41.7705 30.3481i 1.41210 1.02595i
\(876\) 16.6869 0.563799
\(877\) 2.38197 + 7.33094i 0.0804333 + 0.247548i 0.983185 0.182615i \(-0.0584561\pi\)
−0.902751 + 0.430163i \(0.858456\pi\)
\(878\) −2.57295 + 1.86936i −0.0868328 + 0.0630877i
\(879\) −2.38197 + 1.73060i −0.0803417 + 0.0583717i
\(880\) −7.03444 + 21.6498i −0.237131 + 0.729814i
\(881\) 21.7082 + 15.7719i 0.731368 + 0.531370i 0.889996 0.455968i \(-0.150707\pi\)
−0.158628 + 0.987338i \(0.550707\pi\)
\(882\) 10.9443 0.368513
\(883\) −29.3607 21.3318i −0.988066 0.717872i −0.0285689 0.999592i \(-0.509095\pi\)
−0.959497 + 0.281720i \(0.909095\pi\)
\(884\) 1.06231 3.26944i 0.0357292 0.109963i
\(885\) 25.9787 0.873265
\(886\) −0.645898 1.98787i −0.0216994 0.0667838i
\(887\) 5.94427 18.2946i 0.199589 0.614272i −0.800303 0.599596i \(-0.795328\pi\)
0.999892 0.0146766i \(-0.00467187\pi\)
\(888\) −4.52380 + 13.9228i −0.151809 + 0.467219i
\(889\) 10.5836 + 32.5729i 0.354962 + 1.09246i
\(890\) 0.326238 + 1.00406i 0.0109355 + 0.0336561i
\(891\) 1.00000 3.07768i 0.0335013 0.103106i
\(892\) 14.5623 + 10.5801i 0.487582 + 0.354249i
\(893\) 12.7082 0.425264
\(894\) 4.69098 + 3.40820i 0.156890 + 0.113987i
\(895\) 18.1287 + 55.7943i 0.605975 + 1.86500i
\(896\) −37.6976 + 27.3889i −1.25939 + 0.914998i
\(897\) −3.35410 + 2.43690i −0.111990 + 0.0813656i
\(898\) 2.60739 + 8.02472i 0.0870098 + 0.267789i
\(899\) −65.3262 −2.17875
\(900\) 5.72949 17.6336i 0.190983 0.587785i
\(901\) 3.76393 0.125395
\(902\) −0.944272 2.90617i −0.0314408 0.0967649i
\(903\) −25.6074 + 18.6049i −0.852161 + 0.619131i
\(904\) 8.72542 6.33939i 0.290203 0.210845i
\(905\) −9.79837 + 7.11894i −0.325709 + 0.236641i
\(906\) −3.44427 2.50241i −0.114428 0.0831370i
\(907\) 19.0000 0.630885 0.315442 0.948945i \(-0.397847\pi\)
0.315442 + 0.948945i \(0.397847\pi\)
\(908\) −20.1246 14.6214i −0.667859 0.485228i
\(909\) 4.79837 14.7679i 0.159152 0.489820i
\(910\) −2.25987 + 6.95515i −0.0749139 + 0.230561i
\(911\) −6.92705 21.3193i −0.229503 0.706339i −0.997803 0.0662487i \(-0.978897\pi\)
0.768300 0.640090i \(-0.221103\pi\)
\(912\) −4.71885 + 14.5231i −0.156257 + 0.480908i
\(913\) 5.94427 18.2946i 0.196727 0.605462i
\(914\) −2.93112 9.02105i −0.0969527 0.298390i
\(915\) 9.04508 6.57164i 0.299021 0.217252i
\(916\) −3.43769 + 10.5801i −0.113585 + 0.349577i
\(917\) −75.9402 55.1738i −2.50777 1.82200i
\(918\) −1.90983 −0.0630338
\(919\) 0.635255 + 0.461540i 0.0209551 + 0.0152248i 0.598214 0.801337i \(-0.295877\pi\)
−0.577258 + 0.816562i \(0.695877\pi\)
\(920\) 5.95492 + 4.32650i 0.196328 + 0.142640i
\(921\) −0.854102 + 0.620541i −0.0281436 + 0.0204475i
\(922\) −1.39919 + 1.01657i −0.0460798 + 0.0334789i
\(923\) −4.50000 13.8496i −0.148119 0.455864i
\(924\) 27.7082 0.911533
\(925\) −40.2254 + 29.2255i −1.32260 + 0.960928i
\(926\) 8.63119 0.283638
\(927\) −0.819660 2.52265i −0.0269212 0.0828548i
\(928\) −21.4058 + 15.5522i −0.702679 + 0.510526i
\(929\) 22.1525 16.0947i 0.726799 0.528050i −0.161750 0.986832i \(-0.551714\pi\)
0.888549 + 0.458781i \(0.151714\pi\)
\(930\) −8.74265 −0.286683
\(931\) −56.2599 40.8752i −1.84384 1.33963i
\(932\) −15.1672 −0.496818
\(933\) 4.82624 + 3.50647i 0.158004 + 0.114797i
\(934\) −0.600813 + 1.84911i −0.0196592 + 0.0605048i
\(935\) 5.85410 + 4.25325i 0.191450 + 0.139096i
\(936\) 1.68692 + 5.19180i 0.0551386 + 0.169699i
\(937\) −14.7361 + 45.3530i −0.481406 + 1.48162i 0.355713 + 0.934595i \(0.384238\pi\)
−0.837119 + 0.547021i \(0.815762\pi\)
\(938\) 8.40325 25.8626i 0.274376 0.844442i
\(939\) −4.14590 12.7598i −0.135296 0.416399i
\(940\) −8.78115 6.37988i −0.286410 0.208089i
\(941\) 8.51064 26.1931i 0.277439 0.853870i −0.711125 0.703066i \(-0.751814\pi\)
0.988564 0.150804i \(-0.0481861\pi\)
\(942\) −6.48936 4.71479i −0.211435 0.153616i
\(943\) 5.52786 0.180012
\(944\) −29.5689 21.4831i −0.962385 0.699214i
\(945\) −51.6312 −1.67956
\(946\) −6.85410 + 4.97980i −0.222846 + 0.161907i
\(947\) −1.23607 + 0.898056i −0.0401668 + 0.0291829i −0.607688 0.794176i \(-0.707903\pi\)
0.567521 + 0.823359i \(0.307903\pi\)
\(948\) 1.19756 + 3.68571i 0.0388950 + 0.119706i
\(949\) −16.6869 −0.541680
\(950\) 7.50000 5.44907i 0.243332 0.176791i
\(951\) −8.88854 −0.288231
\(952\) 2.10081 + 6.46564i 0.0680877 + 0.209553i
\(953\) −7.11803 + 5.17155i −0.230576 + 0.167523i −0.697074 0.716999i \(-0.745515\pi\)
0.466499 + 0.884522i \(0.345515\pi\)
\(954\) −2.32624 + 1.69011i −0.0753147 + 0.0547194i
\(955\) −37.3607 27.1441i −1.20896 0.878363i
\(956\) 2.20820 + 1.60435i 0.0714184 + 0.0518885i
\(957\) 20.6525 0.667600
\(958\) 0.298374 + 0.216781i 0.00964002 + 0.00700389i
\(959\) −6.30244 + 19.3969i −0.203516 + 0.626359i
\(960\) 8.51722 6.18812i 0.274892 0.199721i
\(961\) 22.7984 + 70.1662i 0.735431 + 2.26343i
\(962\) 2.17627 6.69788i 0.0701659 0.215948i
\(963\) 0.0344419 0.106001i 0.00110987 0.00341584i
\(964\) 7.55166 + 23.2416i 0.243223 + 0.748562i
\(965\) −15.8541 + 48.7939i −0.510362 + 1.57073i
\(966\) 1.21885 3.75123i 0.0392158 0.120694i
\(967\) −11.5623 8.40051i −0.371819 0.270142i 0.386146 0.922438i \(-0.373806\pi\)
−0.757965 + 0.652296i \(0.773806\pi\)
\(968\) −0.777088 −0.0249765
\(969\) 3.92705 + 2.85317i 0.126155 + 0.0916570i
\(970\) −5.62868 + 4.08947i −0.180726 + 0.131305i
\(971\) 40.1976 29.2052i 1.29000 0.937241i 0.290196 0.956967i \(-0.406280\pi\)
0.999805 + 0.0197266i \(0.00627959\pi\)
\(972\) −24.0000 + 17.4370i −0.769800 + 0.559293i
\(973\) 6.04508 + 18.6049i 0.193797 + 0.596444i
\(974\) −8.56231 −0.274354
\(975\) 2.86475 8.81678i 0.0917453 0.282363i
\(976\) −15.7295 −0.503489
\(977\) 7.30902 + 22.4948i 0.233836 + 0.719674i 0.997274 + 0.0737920i \(0.0235101\pi\)
−0.763437 + 0.645882i \(0.776490\pi\)
\(978\) 3.60081 2.61614i 0.115141 0.0836551i
\(979\) −3.23607 + 2.35114i −0.103425 + 0.0751428i
\(980\) 18.3541 + 56.4881i 0.586300 + 1.80445i
\(981\) −9.23607 6.71040i −0.294885 0.214246i
\(982\) −5.32624 −0.169967
\(983\) 3.83688 + 2.78766i 0.122377 + 0.0889125i 0.647290 0.762243i \(-0.275902\pi\)
−0.524913 + 0.851156i \(0.675902\pi\)
\(984\) −1.12461 + 3.46120i −0.0358513 + 0.110339i
\(985\) 1.50658 + 4.63677i 0.0480036 + 0.147740i
\(986\) 0.753289 + 2.31838i 0.0239896 + 0.0738324i
\(987\) −3.73607 + 11.4984i −0.118920 + 0.365999i
\(988\) 5.15654 15.8702i 0.164051 0.504898i
\(989\) −4.73607 14.5761i −0.150598 0.463494i
\(990\) −5.52786 −0.175687
\(991\) −4.96149 + 15.2699i −0.157607 + 0.485065i −0.998416 0.0562679i \(-0.982080\pi\)
0.840809 + 0.541332i \(0.182080\pi\)
\(992\) 34.3328 + 24.9443i 1.09007 + 0.791981i
\(993\) 17.4164 0.552693
\(994\) 11.2082 + 8.14324i 0.355503 + 0.258288i
\(995\) −7.13525 + 21.9601i −0.226203 + 0.696181i
\(996\) −8.91641 + 6.47815i −0.282527 + 0.205268i
\(997\) 33.1697 24.0992i 1.05049 0.763229i 0.0781884 0.996939i \(-0.475086\pi\)
0.972306 + 0.233709i \(0.0750864\pi\)
\(998\) 2.63525 + 8.11048i 0.0834175 + 0.256733i
\(999\) 49.7214 1.57311
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.k.a.256.1 yes 4
25.21 even 5 inner 425.2.k.a.171.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
425.2.k.a.171.1 4 25.21 even 5 inner
425.2.k.a.256.1 yes 4 1.1 even 1 trivial