Properties

Label 2-4304-1.1-c1-0-122
Degree $2$
Conductor $4304$
Sign $-1$
Analytic cond. $34.3676$
Root an. cond. $5.86238$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.37·3-s + 1.97·5-s − 2.44·7-s − 1.09·9-s − 3.43·11-s + 4.69·13-s + 2.72·15-s + 1.90·17-s + 1.23·19-s − 3.36·21-s − 6.49·23-s − 1.10·25-s − 5.65·27-s − 5.54·29-s − 4.88·31-s − 4.73·33-s − 4.81·35-s − 10.2·37-s + 6.47·39-s − 5.60·41-s + 2.85·43-s − 2.16·45-s + 1.80·47-s − 1.04·49-s + 2.62·51-s + 2.04·53-s − 6.77·55-s + ⋯
L(s)  = 1  + 0.796·3-s + 0.882·5-s − 0.922·7-s − 0.366·9-s − 1.03·11-s + 1.30·13-s + 0.702·15-s + 0.461·17-s + 0.282·19-s − 0.734·21-s − 1.35·23-s − 0.221·25-s − 1.08·27-s − 1.02·29-s − 0.876·31-s − 0.824·33-s − 0.814·35-s − 1.68·37-s + 1.03·39-s − 0.875·41-s + 0.434·43-s − 0.322·45-s + 0.264·47-s − 0.148·49-s + 0.367·51-s + 0.280·53-s − 0.914·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4304 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4304\)    =    \(2^{4} \cdot 269\)
Sign: $-1$
Analytic conductor: \(34.3676\)
Root analytic conductor: \(5.86238\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4304,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
269 \( 1 - T \)
good3 \( 1 - 1.37T + 3T^{2} \)
5 \( 1 - 1.97T + 5T^{2} \)
7 \( 1 + 2.44T + 7T^{2} \)
11 \( 1 + 3.43T + 11T^{2} \)
13 \( 1 - 4.69T + 13T^{2} \)
17 \( 1 - 1.90T + 17T^{2} \)
19 \( 1 - 1.23T + 19T^{2} \)
23 \( 1 + 6.49T + 23T^{2} \)
29 \( 1 + 5.54T + 29T^{2} \)
31 \( 1 + 4.88T + 31T^{2} \)
37 \( 1 + 10.2T + 37T^{2} \)
41 \( 1 + 5.60T + 41T^{2} \)
43 \( 1 - 2.85T + 43T^{2} \)
47 \( 1 - 1.80T + 47T^{2} \)
53 \( 1 - 2.04T + 53T^{2} \)
59 \( 1 - 1.02T + 59T^{2} \)
61 \( 1 - 12.6T + 61T^{2} \)
67 \( 1 + 1.65T + 67T^{2} \)
71 \( 1 - 4.59T + 71T^{2} \)
73 \( 1 - 5.17T + 73T^{2} \)
79 \( 1 + 13.5T + 79T^{2} \)
83 \( 1 - 13.9T + 83T^{2} \)
89 \( 1 + 9.64T + 89T^{2} \)
97 \( 1 + 16.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.177187871039468361191662247051, −7.38696311022926448605361549916, −6.47800471872512986131415016551, −5.65800348733173796378417175147, −5.44045495767852663358880163890, −3.79704051966393730680536035594, −3.42424418399327095164634090606, −2.44491105675455185585088522138, −1.71091608164255320629422460618, 0, 1.71091608164255320629422460618, 2.44491105675455185585088522138, 3.42424418399327095164634090606, 3.79704051966393730680536035594, 5.44045495767852663358880163890, 5.65800348733173796378417175147, 6.47800471872512986131415016551, 7.38696311022926448605361549916, 8.177187871039468361191662247051

Graph of the $Z$-function along the critical line