Properties

Label 4304.2.a.l.1.12
Level $4304$
Weight $2$
Character 4304.1
Self dual yes
Analytic conductor $34.368$
Analytic rank $1$
Dimension $16$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4304,2,Mod(1,4304)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4304, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4304.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4304 = 2^{4} \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4304.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(34.3676130300\)
Analytic rank: \(1\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - x^{15} - 28 x^{14} + 27 x^{13} + 314 x^{12} - 283 x^{11} - 1803 x^{10} + 1435 x^{9} + \cdots + 172 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 269)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.12
Root \(0.282877\) of defining polynomial
Character \(\chi\) \(=\) 4304.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.37910 q^{3} +1.97313 q^{5} -2.44119 q^{7} -1.09807 q^{9} -3.43591 q^{11} +4.69311 q^{13} +2.72116 q^{15} +1.90195 q^{17} +1.23155 q^{19} -3.36666 q^{21} -6.50000 q^{23} -1.10675 q^{25} -5.65167 q^{27} -5.54253 q^{29} -4.88221 q^{31} -4.73848 q^{33} -4.81680 q^{35} -10.2236 q^{37} +6.47229 q^{39} -5.60633 q^{41} +2.85084 q^{43} -2.16664 q^{45} +1.80999 q^{47} -1.04058 q^{49} +2.62299 q^{51} +2.04207 q^{53} -6.77951 q^{55} +1.69844 q^{57} +1.02290 q^{59} +12.6403 q^{61} +2.68060 q^{63} +9.26012 q^{65} -1.65225 q^{67} -8.96418 q^{69} +4.59265 q^{71} +5.17859 q^{73} -1.52632 q^{75} +8.38772 q^{77} -13.5494 q^{79} -4.50003 q^{81} +13.9606 q^{83} +3.75280 q^{85} -7.64373 q^{87} -9.64059 q^{89} -11.4568 q^{91} -6.73308 q^{93} +2.43001 q^{95} -16.2488 q^{97} +3.77287 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 5 q^{3} - q^{5} - 11 q^{7} + 21 q^{9} - 16 q^{11} - q^{13} + 5 q^{15} - 2 q^{17} - 35 q^{19} - q^{23} + 13 q^{25} - 11 q^{27} + 2 q^{29} - 13 q^{31} - 8 q^{33} - 9 q^{35} + 4 q^{37} - 11 q^{39}+ \cdots - 90 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.37910 0.796227 0.398113 0.917336i \(-0.369665\pi\)
0.398113 + 0.917336i \(0.369665\pi\)
\(4\) 0 0
\(5\) 1.97313 0.882412 0.441206 0.897406i \(-0.354551\pi\)
0.441206 + 0.897406i \(0.354551\pi\)
\(6\) 0 0
\(7\) −2.44119 −0.922684 −0.461342 0.887222i \(-0.652632\pi\)
−0.461342 + 0.887222i \(0.652632\pi\)
\(8\) 0 0
\(9\) −1.09807 −0.366023
\(10\) 0 0
\(11\) −3.43591 −1.03597 −0.517983 0.855391i \(-0.673317\pi\)
−0.517983 + 0.855391i \(0.673317\pi\)
\(12\) 0 0
\(13\) 4.69311 1.30163 0.650817 0.759235i \(-0.274427\pi\)
0.650817 + 0.759235i \(0.274427\pi\)
\(14\) 0 0
\(15\) 2.72116 0.702600
\(16\) 0 0
\(17\) 1.90195 0.461291 0.230645 0.973038i \(-0.425916\pi\)
0.230645 + 0.973038i \(0.425916\pi\)
\(18\) 0 0
\(19\) 1.23155 0.282537 0.141269 0.989971i \(-0.454882\pi\)
0.141269 + 0.989971i \(0.454882\pi\)
\(20\) 0 0
\(21\) −3.36666 −0.734666
\(22\) 0 0
\(23\) −6.50000 −1.35534 −0.677672 0.735365i \(-0.737011\pi\)
−0.677672 + 0.735365i \(0.737011\pi\)
\(24\) 0 0
\(25\) −1.10675 −0.221349
\(26\) 0 0
\(27\) −5.65167 −1.08766
\(28\) 0 0
\(29\) −5.54253 −1.02922 −0.514611 0.857424i \(-0.672064\pi\)
−0.514611 + 0.857424i \(0.672064\pi\)
\(30\) 0 0
\(31\) −4.88221 −0.876871 −0.438436 0.898763i \(-0.644467\pi\)
−0.438436 + 0.898763i \(0.644467\pi\)
\(32\) 0 0
\(33\) −4.73848 −0.824864
\(34\) 0 0
\(35\) −4.81680 −0.814187
\(36\) 0 0
\(37\) −10.2236 −1.68075 −0.840377 0.542003i \(-0.817666\pi\)
−0.840377 + 0.542003i \(0.817666\pi\)
\(38\) 0 0
\(39\) 6.47229 1.03640
\(40\) 0 0
\(41\) −5.60633 −0.875561 −0.437780 0.899082i \(-0.644235\pi\)
−0.437780 + 0.899082i \(0.644235\pi\)
\(42\) 0 0
\(43\) 2.85084 0.434749 0.217374 0.976088i \(-0.430251\pi\)
0.217374 + 0.976088i \(0.430251\pi\)
\(44\) 0 0
\(45\) −2.16664 −0.322983
\(46\) 0 0
\(47\) 1.80999 0.264014 0.132007 0.991249i \(-0.457858\pi\)
0.132007 + 0.991249i \(0.457858\pi\)
\(48\) 0 0
\(49\) −1.04058 −0.148654
\(50\) 0 0
\(51\) 2.62299 0.367292
\(52\) 0 0
\(53\) 2.04207 0.280500 0.140250 0.990116i \(-0.455209\pi\)
0.140250 + 0.990116i \(0.455209\pi\)
\(54\) 0 0
\(55\) −6.77951 −0.914149
\(56\) 0 0
\(57\) 1.69844 0.224964
\(58\) 0 0
\(59\) 1.02290 0.133170 0.0665850 0.997781i \(-0.478790\pi\)
0.0665850 + 0.997781i \(0.478790\pi\)
\(60\) 0 0
\(61\) 12.6403 1.61843 0.809213 0.587515i \(-0.199894\pi\)
0.809213 + 0.587515i \(0.199894\pi\)
\(62\) 0 0
\(63\) 2.68060 0.337724
\(64\) 0 0
\(65\) 9.26012 1.14858
\(66\) 0 0
\(67\) −1.65225 −0.201854 −0.100927 0.994894i \(-0.532181\pi\)
−0.100927 + 0.994894i \(0.532181\pi\)
\(68\) 0 0
\(69\) −8.96418 −1.07916
\(70\) 0 0
\(71\) 4.59265 0.545047 0.272523 0.962149i \(-0.412142\pi\)
0.272523 + 0.962149i \(0.412142\pi\)
\(72\) 0 0
\(73\) 5.17859 0.606108 0.303054 0.952973i \(-0.401994\pi\)
0.303054 + 0.952973i \(0.401994\pi\)
\(74\) 0 0
\(75\) −1.52632 −0.176244
\(76\) 0 0
\(77\) 8.38772 0.955870
\(78\) 0 0
\(79\) −13.5494 −1.52443 −0.762213 0.647326i \(-0.775887\pi\)
−0.762213 + 0.647326i \(0.775887\pi\)
\(80\) 0 0
\(81\) −4.50003 −0.500004
\(82\) 0 0
\(83\) 13.9606 1.53237 0.766187 0.642618i \(-0.222152\pi\)
0.766187 + 0.642618i \(0.222152\pi\)
\(84\) 0 0
\(85\) 3.75280 0.407049
\(86\) 0 0
\(87\) −7.64373 −0.819494
\(88\) 0 0
\(89\) −9.64059 −1.02190 −0.510950 0.859610i \(-0.670706\pi\)
−0.510950 + 0.859610i \(0.670706\pi\)
\(90\) 0 0
\(91\) −11.4568 −1.20100
\(92\) 0 0
\(93\) −6.73308 −0.698188
\(94\) 0 0
\(95\) 2.43001 0.249314
\(96\) 0 0
\(97\) −16.2488 −1.64982 −0.824908 0.565267i \(-0.808773\pi\)
−0.824908 + 0.565267i \(0.808773\pi\)
\(98\) 0 0
\(99\) 3.77287 0.379188
\(100\) 0 0
\(101\) 15.4748 1.53980 0.769900 0.638165i \(-0.220306\pi\)
0.769900 + 0.638165i \(0.220306\pi\)
\(102\) 0 0
\(103\) −11.6936 −1.15220 −0.576101 0.817379i \(-0.695426\pi\)
−0.576101 + 0.817379i \(0.695426\pi\)
\(104\) 0 0
\(105\) −6.64287 −0.648278
\(106\) 0 0
\(107\) −0.0867365 −0.00838514 −0.00419257 0.999991i \(-0.501335\pi\)
−0.00419257 + 0.999991i \(0.501335\pi\)
\(108\) 0 0
\(109\) 3.18524 0.305091 0.152545 0.988296i \(-0.451253\pi\)
0.152545 + 0.988296i \(0.451253\pi\)
\(110\) 0 0
\(111\) −14.0994 −1.33826
\(112\) 0 0
\(113\) −2.15866 −0.203070 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(114\) 0 0
\(115\) −12.8254 −1.19597
\(116\) 0 0
\(117\) −5.15336 −0.476428
\(118\) 0 0
\(119\) −4.64303 −0.425626
\(120\) 0 0
\(121\) 0.805487 0.0732261
\(122\) 0 0
\(123\) −7.73171 −0.697145
\(124\) 0 0
\(125\) −12.0494 −1.07773
\(126\) 0 0
\(127\) −3.13665 −0.278333 −0.139166 0.990269i \(-0.544442\pi\)
−0.139166 + 0.990269i \(0.544442\pi\)
\(128\) 0 0
\(129\) 3.93160 0.346158
\(130\) 0 0
\(131\) 19.1069 1.66938 0.834689 0.550721i \(-0.185647\pi\)
0.834689 + 0.550721i \(0.185647\pi\)
\(132\) 0 0
\(133\) −3.00645 −0.260693
\(134\) 0 0
\(135\) −11.1515 −0.959768
\(136\) 0 0
\(137\) −7.77105 −0.663925 −0.331963 0.943293i \(-0.607711\pi\)
−0.331963 + 0.943293i \(0.607711\pi\)
\(138\) 0 0
\(139\) −7.50884 −0.636891 −0.318446 0.947941i \(-0.603161\pi\)
−0.318446 + 0.947941i \(0.603161\pi\)
\(140\) 0 0
\(141\) 2.49616 0.210215
\(142\) 0 0
\(143\) −16.1251 −1.34845
\(144\) 0 0
\(145\) −10.9361 −0.908198
\(146\) 0 0
\(147\) −1.43507 −0.118362
\(148\) 0 0
\(149\) −21.5548 −1.76584 −0.882921 0.469522i \(-0.844426\pi\)
−0.882921 + 0.469522i \(0.844426\pi\)
\(150\) 0 0
\(151\) 8.16873 0.664762 0.332381 0.943145i \(-0.392148\pi\)
0.332381 + 0.943145i \(0.392148\pi\)
\(152\) 0 0
\(153\) −2.08848 −0.168843
\(154\) 0 0
\(155\) −9.63325 −0.773761
\(156\) 0 0
\(157\) 19.5185 1.55774 0.778872 0.627183i \(-0.215792\pi\)
0.778872 + 0.627183i \(0.215792\pi\)
\(158\) 0 0
\(159\) 2.81623 0.223342
\(160\) 0 0
\(161\) 15.8677 1.25055
\(162\) 0 0
\(163\) −5.85613 −0.458687 −0.229344 0.973345i \(-0.573658\pi\)
−0.229344 + 0.973345i \(0.573658\pi\)
\(164\) 0 0
\(165\) −9.34965 −0.727870
\(166\) 0 0
\(167\) 16.1245 1.24775 0.623876 0.781523i \(-0.285557\pi\)
0.623876 + 0.781523i \(0.285557\pi\)
\(168\) 0 0
\(169\) 9.02526 0.694251
\(170\) 0 0
\(171\) −1.35233 −0.103415
\(172\) 0 0
\(173\) −13.5232 −1.02815 −0.514074 0.857746i \(-0.671864\pi\)
−0.514074 + 0.857746i \(0.671864\pi\)
\(174\) 0 0
\(175\) 2.70178 0.204236
\(176\) 0 0
\(177\) 1.41068 0.106034
\(178\) 0 0
\(179\) −22.1712 −1.65715 −0.828577 0.559875i \(-0.810849\pi\)
−0.828577 + 0.559875i \(0.810849\pi\)
\(180\) 0 0
\(181\) 3.61117 0.268416 0.134208 0.990953i \(-0.457151\pi\)
0.134208 + 0.990953i \(0.457151\pi\)
\(182\) 0 0
\(183\) 17.4323 1.28863
\(184\) 0 0
\(185\) −20.1726 −1.48312
\(186\) 0 0
\(187\) −6.53494 −0.477882
\(188\) 0 0
\(189\) 13.7968 1.00357
\(190\) 0 0
\(191\) 7.41632 0.536626 0.268313 0.963332i \(-0.413534\pi\)
0.268313 + 0.963332i \(0.413534\pi\)
\(192\) 0 0
\(193\) −23.0099 −1.65629 −0.828145 0.560514i \(-0.810604\pi\)
−0.828145 + 0.560514i \(0.810604\pi\)
\(194\) 0 0
\(195\) 12.7707 0.914528
\(196\) 0 0
\(197\) 0.810204 0.0577247 0.0288623 0.999583i \(-0.490812\pi\)
0.0288623 + 0.999583i \(0.490812\pi\)
\(198\) 0 0
\(199\) −16.0676 −1.13900 −0.569500 0.821991i \(-0.692863\pi\)
−0.569500 + 0.821991i \(0.692863\pi\)
\(200\) 0 0
\(201\) −2.27863 −0.160722
\(202\) 0 0
\(203\) 13.5304 0.949647
\(204\) 0 0
\(205\) −11.0620 −0.772605
\(206\) 0 0
\(207\) 7.13745 0.496087
\(208\) 0 0
\(209\) −4.23150 −0.292699
\(210\) 0 0
\(211\) 9.98098 0.687119 0.343559 0.939131i \(-0.388367\pi\)
0.343559 + 0.939131i \(0.388367\pi\)
\(212\) 0 0
\(213\) 6.33374 0.433981
\(214\) 0 0
\(215\) 5.62508 0.383627
\(216\) 0 0
\(217\) 11.9184 0.809075
\(218\) 0 0
\(219\) 7.14182 0.482599
\(220\) 0 0
\(221\) 8.92606 0.600432
\(222\) 0 0
\(223\) 19.6088 1.31310 0.656550 0.754283i \(-0.272015\pi\)
0.656550 + 0.754283i \(0.272015\pi\)
\(224\) 0 0
\(225\) 1.21529 0.0810191
\(226\) 0 0
\(227\) 11.4505 0.759998 0.379999 0.924987i \(-0.375924\pi\)
0.379999 + 0.924987i \(0.375924\pi\)
\(228\) 0 0
\(229\) 22.6433 1.49631 0.748156 0.663523i \(-0.230939\pi\)
0.748156 + 0.663523i \(0.230939\pi\)
\(230\) 0 0
\(231\) 11.5675 0.761089
\(232\) 0 0
\(233\) −15.8879 −1.04085 −0.520427 0.853906i \(-0.674227\pi\)
−0.520427 + 0.853906i \(0.674227\pi\)
\(234\) 0 0
\(235\) 3.57134 0.232969
\(236\) 0 0
\(237\) −18.6860 −1.21379
\(238\) 0 0
\(239\) −7.35894 −0.476010 −0.238005 0.971264i \(-0.576493\pi\)
−0.238005 + 0.971264i \(0.576493\pi\)
\(240\) 0 0
\(241\) −13.1161 −0.844882 −0.422441 0.906390i \(-0.638827\pi\)
−0.422441 + 0.906390i \(0.638827\pi\)
\(242\) 0 0
\(243\) 10.7490 0.689548
\(244\) 0 0
\(245\) −2.05320 −0.131174
\(246\) 0 0
\(247\) 5.77980 0.367760
\(248\) 0 0
\(249\) 19.2531 1.22012
\(250\) 0 0
\(251\) 0.274032 0.0172967 0.00864837 0.999963i \(-0.497247\pi\)
0.00864837 + 0.999963i \(0.497247\pi\)
\(252\) 0 0
\(253\) 22.3334 1.40409
\(254\) 0 0
\(255\) 5.17551 0.324103
\(256\) 0 0
\(257\) −5.65777 −0.352922 −0.176461 0.984308i \(-0.556465\pi\)
−0.176461 + 0.984308i \(0.556465\pi\)
\(258\) 0 0
\(259\) 24.9578 1.55080
\(260\) 0 0
\(261\) 6.08609 0.376719
\(262\) 0 0
\(263\) −18.5754 −1.14541 −0.572703 0.819763i \(-0.694105\pi\)
−0.572703 + 0.819763i \(0.694105\pi\)
\(264\) 0 0
\(265\) 4.02928 0.247517
\(266\) 0 0
\(267\) −13.2954 −0.813665
\(268\) 0 0
\(269\) 1.00000 0.0609711
\(270\) 0 0
\(271\) 5.19643 0.315661 0.157830 0.987466i \(-0.449550\pi\)
0.157830 + 0.987466i \(0.449550\pi\)
\(272\) 0 0
\(273\) −15.8001 −0.956266
\(274\) 0 0
\(275\) 3.80269 0.229311
\(276\) 0 0
\(277\) 6.13328 0.368513 0.184257 0.982878i \(-0.441012\pi\)
0.184257 + 0.982878i \(0.441012\pi\)
\(278\) 0 0
\(279\) 5.36101 0.320955
\(280\) 0 0
\(281\) 19.4792 1.16203 0.581017 0.813891i \(-0.302655\pi\)
0.581017 + 0.813891i \(0.302655\pi\)
\(282\) 0 0
\(283\) −1.43510 −0.0853076 −0.0426538 0.999090i \(-0.513581\pi\)
−0.0426538 + 0.999090i \(0.513581\pi\)
\(284\) 0 0
\(285\) 3.35124 0.198511
\(286\) 0 0
\(287\) 13.6861 0.807866
\(288\) 0 0
\(289\) −13.3826 −0.787211
\(290\) 0 0
\(291\) −22.4088 −1.31363
\(292\) 0 0
\(293\) −29.8473 −1.74370 −0.871848 0.489776i \(-0.837078\pi\)
−0.871848 + 0.489776i \(0.837078\pi\)
\(294\) 0 0
\(295\) 2.01832 0.117511
\(296\) 0 0
\(297\) 19.4186 1.12678
\(298\) 0 0
\(299\) −30.5052 −1.76416
\(300\) 0 0
\(301\) −6.95944 −0.401136
\(302\) 0 0
\(303\) 21.3414 1.22603
\(304\) 0 0
\(305\) 24.9410 1.42812
\(306\) 0 0
\(307\) 14.6428 0.835710 0.417855 0.908514i \(-0.362782\pi\)
0.417855 + 0.908514i \(0.362782\pi\)
\(308\) 0 0
\(309\) −16.1267 −0.917413
\(310\) 0 0
\(311\) 14.9926 0.850155 0.425077 0.905157i \(-0.360247\pi\)
0.425077 + 0.905157i \(0.360247\pi\)
\(312\) 0 0
\(313\) −14.3883 −0.813272 −0.406636 0.913590i \(-0.633298\pi\)
−0.406636 + 0.913590i \(0.633298\pi\)
\(314\) 0 0
\(315\) 5.28918 0.298012
\(316\) 0 0
\(317\) 18.4565 1.03662 0.518309 0.855193i \(-0.326562\pi\)
0.518309 + 0.855193i \(0.326562\pi\)
\(318\) 0 0
\(319\) 19.0436 1.06624
\(320\) 0 0
\(321\) −0.119619 −0.00667647
\(322\) 0 0
\(323\) 2.34235 0.130332
\(324\) 0 0
\(325\) −5.19408 −0.288116
\(326\) 0 0
\(327\) 4.39278 0.242922
\(328\) 0 0
\(329\) −4.41853 −0.243601
\(330\) 0 0
\(331\) −29.1435 −1.60187 −0.800935 0.598752i \(-0.795664\pi\)
−0.800935 + 0.598752i \(0.795664\pi\)
\(332\) 0 0
\(333\) 11.2263 0.615195
\(334\) 0 0
\(335\) −3.26011 −0.178119
\(336\) 0 0
\(337\) −13.3401 −0.726682 −0.363341 0.931656i \(-0.618364\pi\)
−0.363341 + 0.931656i \(0.618364\pi\)
\(338\) 0 0
\(339\) −2.97702 −0.161689
\(340\) 0 0
\(341\) 16.7748 0.908409
\(342\) 0 0
\(343\) 19.6286 1.05984
\(344\) 0 0
\(345\) −17.6875 −0.952264
\(346\) 0 0
\(347\) −15.4841 −0.831232 −0.415616 0.909540i \(-0.636434\pi\)
−0.415616 + 0.909540i \(0.636434\pi\)
\(348\) 0 0
\(349\) 4.95774 0.265382 0.132691 0.991157i \(-0.457638\pi\)
0.132691 + 0.991157i \(0.457638\pi\)
\(350\) 0 0
\(351\) −26.5239 −1.41574
\(352\) 0 0
\(353\) −19.7221 −1.04970 −0.524851 0.851194i \(-0.675879\pi\)
−0.524851 + 0.851194i \(0.675879\pi\)
\(354\) 0 0
\(355\) 9.06190 0.480956
\(356\) 0 0
\(357\) −6.40322 −0.338895
\(358\) 0 0
\(359\) −10.0142 −0.528527 −0.264263 0.964451i \(-0.585129\pi\)
−0.264263 + 0.964451i \(0.585129\pi\)
\(360\) 0 0
\(361\) −17.4833 −0.920173
\(362\) 0 0
\(363\) 1.11085 0.0583046
\(364\) 0 0
\(365\) 10.2180 0.534837
\(366\) 0 0
\(367\) 1.28284 0.0669637 0.0334819 0.999439i \(-0.489340\pi\)
0.0334819 + 0.999439i \(0.489340\pi\)
\(368\) 0 0
\(369\) 6.15614 0.320476
\(370\) 0 0
\(371\) −4.98509 −0.258813
\(372\) 0 0
\(373\) 33.4573 1.73235 0.866176 0.499739i \(-0.166571\pi\)
0.866176 + 0.499739i \(0.166571\pi\)
\(374\) 0 0
\(375\) −16.6174 −0.858120
\(376\) 0 0
\(377\) −26.0117 −1.33967
\(378\) 0 0
\(379\) −32.2690 −1.65755 −0.828775 0.559583i \(-0.810961\pi\)
−0.828775 + 0.559583i \(0.810961\pi\)
\(380\) 0 0
\(381\) −4.32577 −0.221616
\(382\) 0 0
\(383\) 13.8572 0.708071 0.354036 0.935232i \(-0.384809\pi\)
0.354036 + 0.935232i \(0.384809\pi\)
\(384\) 0 0
\(385\) 16.5501 0.843471
\(386\) 0 0
\(387\) −3.13042 −0.159128
\(388\) 0 0
\(389\) 29.3155 1.48636 0.743178 0.669094i \(-0.233317\pi\)
0.743178 + 0.669094i \(0.233317\pi\)
\(390\) 0 0
\(391\) −12.3627 −0.625208
\(392\) 0 0
\(393\) 26.3504 1.32920
\(394\) 0 0
\(395\) −26.7348 −1.34517
\(396\) 0 0
\(397\) −4.33222 −0.217428 −0.108714 0.994073i \(-0.534673\pi\)
−0.108714 + 0.994073i \(0.534673\pi\)
\(398\) 0 0
\(399\) −4.14621 −0.207570
\(400\) 0 0
\(401\) 11.9708 0.597794 0.298897 0.954285i \(-0.403381\pi\)
0.298897 + 0.954285i \(0.403381\pi\)
\(402\) 0 0
\(403\) −22.9127 −1.14137
\(404\) 0 0
\(405\) −8.87916 −0.441209
\(406\) 0 0
\(407\) 35.1275 1.74120
\(408\) 0 0
\(409\) 10.5969 0.523985 0.261992 0.965070i \(-0.415620\pi\)
0.261992 + 0.965070i \(0.415620\pi\)
\(410\) 0 0
\(411\) −10.7171 −0.528635
\(412\) 0 0
\(413\) −2.49709 −0.122874
\(414\) 0 0
\(415\) 27.5461 1.35218
\(416\) 0 0
\(417\) −10.3555 −0.507110
\(418\) 0 0
\(419\) −0.320387 −0.0156519 −0.00782595 0.999969i \(-0.502491\pi\)
−0.00782595 + 0.999969i \(0.502491\pi\)
\(420\) 0 0
\(421\) 24.0501 1.17213 0.586064 0.810265i \(-0.300677\pi\)
0.586064 + 0.810265i \(0.300677\pi\)
\(422\) 0 0
\(423\) −1.98749 −0.0966352
\(424\) 0 0
\(425\) −2.10498 −0.102106
\(426\) 0 0
\(427\) −30.8574 −1.49330
\(428\) 0 0
\(429\) −22.2382 −1.07367
\(430\) 0 0
\(431\) 22.7364 1.09518 0.547588 0.836748i \(-0.315546\pi\)
0.547588 + 0.836748i \(0.315546\pi\)
\(432\) 0 0
\(433\) −26.8292 −1.28933 −0.644663 0.764467i \(-0.723002\pi\)
−0.644663 + 0.764467i \(0.723002\pi\)
\(434\) 0 0
\(435\) −15.0821 −0.723131
\(436\) 0 0
\(437\) −8.00508 −0.382935
\(438\) 0 0
\(439\) −26.3083 −1.25562 −0.627812 0.778365i \(-0.716049\pi\)
−0.627812 + 0.778365i \(0.716049\pi\)
\(440\) 0 0
\(441\) 1.14263 0.0544109
\(442\) 0 0
\(443\) −6.31703 −0.300131 −0.150066 0.988676i \(-0.547949\pi\)
−0.150066 + 0.988676i \(0.547949\pi\)
\(444\) 0 0
\(445\) −19.0222 −0.901737
\(446\) 0 0
\(447\) −29.7264 −1.40601
\(448\) 0 0
\(449\) 23.1873 1.09428 0.547138 0.837042i \(-0.315717\pi\)
0.547138 + 0.837042i \(0.315717\pi\)
\(450\) 0 0
\(451\) 19.2628 0.907052
\(452\) 0 0
\(453\) 11.2655 0.529301
\(454\) 0 0
\(455\) −22.6057 −1.05977
\(456\) 0 0
\(457\) 28.8658 1.35029 0.675144 0.737686i \(-0.264082\pi\)
0.675144 + 0.737686i \(0.264082\pi\)
\(458\) 0 0
\(459\) −10.7492 −0.501729
\(460\) 0 0
\(461\) −9.40857 −0.438201 −0.219100 0.975702i \(-0.570312\pi\)
−0.219100 + 0.975702i \(0.570312\pi\)
\(462\) 0 0
\(463\) −38.4998 −1.78924 −0.894618 0.446831i \(-0.852553\pi\)
−0.894618 + 0.446831i \(0.852553\pi\)
\(464\) 0 0
\(465\) −13.2853 −0.616089
\(466\) 0 0
\(467\) −29.2898 −1.35537 −0.677686 0.735352i \(-0.737017\pi\)
−0.677686 + 0.735352i \(0.737017\pi\)
\(468\) 0 0
\(469\) 4.03346 0.186248
\(470\) 0 0
\(471\) 26.9180 1.24032
\(472\) 0 0
\(473\) −9.79522 −0.450385
\(474\) 0 0
\(475\) −1.36302 −0.0625394
\(476\) 0 0
\(477\) −2.24234 −0.102670
\(478\) 0 0
\(479\) 14.2259 0.650000 0.325000 0.945714i \(-0.394636\pi\)
0.325000 + 0.945714i \(0.394636\pi\)
\(480\) 0 0
\(481\) −47.9806 −2.18773
\(482\) 0 0
\(483\) 21.8833 0.995724
\(484\) 0 0
\(485\) −32.0610 −1.45582
\(486\) 0 0
\(487\) 34.8431 1.57889 0.789446 0.613820i \(-0.210368\pi\)
0.789446 + 0.613820i \(0.210368\pi\)
\(488\) 0 0
\(489\) −8.07622 −0.365219
\(490\) 0 0
\(491\) 29.5777 1.33482 0.667411 0.744689i \(-0.267402\pi\)
0.667411 + 0.744689i \(0.267402\pi\)
\(492\) 0 0
\(493\) −10.5416 −0.474771
\(494\) 0 0
\(495\) 7.44438 0.334600
\(496\) 0 0
\(497\) −11.2115 −0.502906
\(498\) 0 0
\(499\) 22.3770 1.00173 0.500866 0.865525i \(-0.333015\pi\)
0.500866 + 0.865525i \(0.333015\pi\)
\(500\) 0 0
\(501\) 22.2374 0.993494
\(502\) 0 0
\(503\) −1.82300 −0.0812836 −0.0406418 0.999174i \(-0.512940\pi\)
−0.0406418 + 0.999174i \(0.512940\pi\)
\(504\) 0 0
\(505\) 30.5338 1.35874
\(506\) 0 0
\(507\) 12.4468 0.552781
\(508\) 0 0
\(509\) −2.76277 −0.122458 −0.0612288 0.998124i \(-0.519502\pi\)
−0.0612288 + 0.998124i \(0.519502\pi\)
\(510\) 0 0
\(511\) −12.6419 −0.559246
\(512\) 0 0
\(513\) −6.96032 −0.307305
\(514\) 0 0
\(515\) −23.0730 −1.01672
\(516\) 0 0
\(517\) −6.21895 −0.273509
\(518\) 0 0
\(519\) −18.6499 −0.818639
\(520\) 0 0
\(521\) 14.7532 0.646352 0.323176 0.946339i \(-0.395249\pi\)
0.323176 + 0.946339i \(0.395249\pi\)
\(522\) 0 0
\(523\) −3.00571 −0.131431 −0.0657154 0.997838i \(-0.520933\pi\)
−0.0657154 + 0.997838i \(0.520933\pi\)
\(524\) 0 0
\(525\) 3.72604 0.162618
\(526\) 0 0
\(527\) −9.28573 −0.404493
\(528\) 0 0
\(529\) 19.2500 0.836956
\(530\) 0 0
\(531\) −1.12321 −0.0487434
\(532\) 0 0
\(533\) −26.3111 −1.13966
\(534\) 0 0
\(535\) −0.171143 −0.00739914
\(536\) 0 0
\(537\) −30.5764 −1.31947
\(538\) 0 0
\(539\) 3.57534 0.154001
\(540\) 0 0
\(541\) 22.5866 0.971076 0.485538 0.874216i \(-0.338624\pi\)
0.485538 + 0.874216i \(0.338624\pi\)
\(542\) 0 0
\(543\) 4.98018 0.213720
\(544\) 0 0
\(545\) 6.28491 0.269216
\(546\) 0 0
\(547\) −6.83246 −0.292135 −0.146067 0.989275i \(-0.546662\pi\)
−0.146067 + 0.989275i \(0.546662\pi\)
\(548\) 0 0
\(549\) −13.8799 −0.592382
\(550\) 0 0
\(551\) −6.82591 −0.290793
\(552\) 0 0
\(553\) 33.0767 1.40656
\(554\) 0 0
\(555\) −27.8201 −1.18090
\(556\) 0 0
\(557\) 22.0266 0.933298 0.466649 0.884443i \(-0.345461\pi\)
0.466649 + 0.884443i \(0.345461\pi\)
\(558\) 0 0
\(559\) 13.3793 0.565883
\(560\) 0 0
\(561\) −9.01236 −0.380502
\(562\) 0 0
\(563\) 36.1440 1.52329 0.761645 0.647995i \(-0.224392\pi\)
0.761645 + 0.647995i \(0.224392\pi\)
\(564\) 0 0
\(565\) −4.25932 −0.179191
\(566\) 0 0
\(567\) 10.9854 0.461345
\(568\) 0 0
\(569\) −4.48775 −0.188136 −0.0940682 0.995566i \(-0.529987\pi\)
−0.0940682 + 0.995566i \(0.529987\pi\)
\(570\) 0 0
\(571\) 15.3385 0.641896 0.320948 0.947097i \(-0.395999\pi\)
0.320948 + 0.947097i \(0.395999\pi\)
\(572\) 0 0
\(573\) 10.2279 0.427276
\(574\) 0 0
\(575\) 7.19386 0.300005
\(576\) 0 0
\(577\) 25.5418 1.06332 0.531659 0.846958i \(-0.321569\pi\)
0.531659 + 0.846958i \(0.321569\pi\)
\(578\) 0 0
\(579\) −31.7331 −1.31878
\(580\) 0 0
\(581\) −34.0805 −1.41390
\(582\) 0 0
\(583\) −7.01638 −0.290589
\(584\) 0 0
\(585\) −10.1683 −0.420406
\(586\) 0 0
\(587\) −6.30137 −0.260085 −0.130043 0.991508i \(-0.541511\pi\)
−0.130043 + 0.991508i \(0.541511\pi\)
\(588\) 0 0
\(589\) −6.01269 −0.247749
\(590\) 0 0
\(591\) 1.11736 0.0459619
\(592\) 0 0
\(593\) −11.9031 −0.488801 −0.244400 0.969674i \(-0.578591\pi\)
−0.244400 + 0.969674i \(0.578591\pi\)
\(594\) 0 0
\(595\) −9.16131 −0.375577
\(596\) 0 0
\(597\) −22.1589 −0.906902
\(598\) 0 0
\(599\) 44.5084 1.81856 0.909282 0.416180i \(-0.136632\pi\)
0.909282 + 0.416180i \(0.136632\pi\)
\(600\) 0 0
\(601\) 18.3848 0.749930 0.374965 0.927039i \(-0.377655\pi\)
0.374965 + 0.927039i \(0.377655\pi\)
\(602\) 0 0
\(603\) 1.81429 0.0738834
\(604\) 0 0
\(605\) 1.58933 0.0646156
\(606\) 0 0
\(607\) 21.1238 0.857389 0.428694 0.903450i \(-0.358974\pi\)
0.428694 + 0.903450i \(0.358974\pi\)
\(608\) 0 0
\(609\) 18.6598 0.756134
\(610\) 0 0
\(611\) 8.49446 0.343649
\(612\) 0 0
\(613\) 2.99053 0.120786 0.0603931 0.998175i \(-0.480765\pi\)
0.0603931 + 0.998175i \(0.480765\pi\)
\(614\) 0 0
\(615\) −15.2557 −0.615169
\(616\) 0 0
\(617\) −10.4767 −0.421775 −0.210888 0.977510i \(-0.567635\pi\)
−0.210888 + 0.977510i \(0.567635\pi\)
\(618\) 0 0
\(619\) 9.34147 0.375465 0.187733 0.982220i \(-0.439886\pi\)
0.187733 + 0.982220i \(0.439886\pi\)
\(620\) 0 0
\(621\) 36.7358 1.47416
\(622\) 0 0
\(623\) 23.5345 0.942892
\(624\) 0 0
\(625\) −18.2414 −0.729655
\(626\) 0 0
\(627\) −5.83568 −0.233055
\(628\) 0 0
\(629\) −19.4448 −0.775316
\(630\) 0 0
\(631\) 21.8463 0.869688 0.434844 0.900506i \(-0.356804\pi\)
0.434844 + 0.900506i \(0.356804\pi\)
\(632\) 0 0
\(633\) 13.7648 0.547102
\(634\) 0 0
\(635\) −6.18902 −0.245604
\(636\) 0 0
\(637\) −4.88355 −0.193493
\(638\) 0 0
\(639\) −5.04305 −0.199500
\(640\) 0 0
\(641\) 39.9747 1.57891 0.789453 0.613811i \(-0.210364\pi\)
0.789453 + 0.613811i \(0.210364\pi\)
\(642\) 0 0
\(643\) 15.1256 0.596495 0.298247 0.954489i \(-0.403598\pi\)
0.298247 + 0.954489i \(0.403598\pi\)
\(644\) 0 0
\(645\) 7.75757 0.305454
\(646\) 0 0
\(647\) −43.0209 −1.69133 −0.845664 0.533716i \(-0.820795\pi\)
−0.845664 + 0.533716i \(0.820795\pi\)
\(648\) 0 0
\(649\) −3.51459 −0.137960
\(650\) 0 0
\(651\) 16.4368 0.644207
\(652\) 0 0
\(653\) 33.2486 1.30112 0.650559 0.759455i \(-0.274534\pi\)
0.650559 + 0.759455i \(0.274534\pi\)
\(654\) 0 0
\(655\) 37.7005 1.47308
\(656\) 0 0
\(657\) −5.68645 −0.221850
\(658\) 0 0
\(659\) −42.2827 −1.64710 −0.823549 0.567245i \(-0.808009\pi\)
−0.823549 + 0.567245i \(0.808009\pi\)
\(660\) 0 0
\(661\) −16.5817 −0.644955 −0.322477 0.946577i \(-0.604516\pi\)
−0.322477 + 0.946577i \(0.604516\pi\)
\(662\) 0 0
\(663\) 12.3100 0.478080
\(664\) 0 0
\(665\) −5.93213 −0.230038
\(666\) 0 0
\(667\) 36.0264 1.39495
\(668\) 0 0
\(669\) 27.0425 1.04552
\(670\) 0 0
\(671\) −43.4310 −1.67663
\(672\) 0 0
\(673\) 12.5066 0.482096 0.241048 0.970513i \(-0.422509\pi\)
0.241048 + 0.970513i \(0.422509\pi\)
\(674\) 0 0
\(675\) 6.25497 0.240754
\(676\) 0 0
\(677\) 41.3779 1.59028 0.795141 0.606424i \(-0.207397\pi\)
0.795141 + 0.606424i \(0.207397\pi\)
\(678\) 0 0
\(679\) 39.6664 1.52226
\(680\) 0 0
\(681\) 15.7915 0.605130
\(682\) 0 0
\(683\) 12.2490 0.468694 0.234347 0.972153i \(-0.424705\pi\)
0.234347 + 0.972153i \(0.424705\pi\)
\(684\) 0 0
\(685\) −15.3333 −0.585856
\(686\) 0 0
\(687\) 31.2275 1.19140
\(688\) 0 0
\(689\) 9.58367 0.365109
\(690\) 0 0
\(691\) 29.4843 1.12164 0.560819 0.827939i \(-0.310486\pi\)
0.560819 + 0.827939i \(0.310486\pi\)
\(692\) 0 0
\(693\) −9.21030 −0.349871
\(694\) 0 0
\(695\) −14.8159 −0.562000
\(696\) 0 0
\(697\) −10.6630 −0.403888
\(698\) 0 0
\(699\) −21.9111 −0.828755
\(700\) 0 0
\(701\) −16.4542 −0.621465 −0.310733 0.950497i \(-0.600574\pi\)
−0.310733 + 0.950497i \(0.600574\pi\)
\(702\) 0 0
\(703\) −12.5909 −0.474875
\(704\) 0 0
\(705\) 4.92526 0.185496
\(706\) 0 0
\(707\) −37.7770 −1.42075
\(708\) 0 0
\(709\) −46.2347 −1.73638 −0.868190 0.496232i \(-0.834717\pi\)
−0.868190 + 0.496232i \(0.834717\pi\)
\(710\) 0 0
\(711\) 14.8782 0.557976
\(712\) 0 0
\(713\) 31.7344 1.18846
\(714\) 0 0
\(715\) −31.8170 −1.18989
\(716\) 0 0
\(717\) −10.1487 −0.379012
\(718\) 0 0
\(719\) 23.8436 0.889218 0.444609 0.895725i \(-0.353343\pi\)
0.444609 + 0.895725i \(0.353343\pi\)
\(720\) 0 0
\(721\) 28.5462 1.06312
\(722\) 0 0
\(723\) −18.0885 −0.672717
\(724\) 0 0
\(725\) 6.13418 0.227818
\(726\) 0 0
\(727\) −38.1659 −1.41549 −0.707747 0.706466i \(-0.750288\pi\)
−0.707747 + 0.706466i \(0.750288\pi\)
\(728\) 0 0
\(729\) 28.3241 1.04904
\(730\) 0 0
\(731\) 5.42215 0.200546
\(732\) 0 0
\(733\) −50.9077 −1.88032 −0.940159 0.340737i \(-0.889323\pi\)
−0.940159 + 0.340737i \(0.889323\pi\)
\(734\) 0 0
\(735\) −2.83158 −0.104444
\(736\) 0 0
\(737\) 5.67698 0.209114
\(738\) 0 0
\(739\) −48.7104 −1.79184 −0.895920 0.444216i \(-0.853482\pi\)
−0.895920 + 0.444216i \(0.853482\pi\)
\(740\) 0 0
\(741\) 7.97095 0.292820
\(742\) 0 0
\(743\) −0.675629 −0.0247864 −0.0123932 0.999923i \(-0.503945\pi\)
−0.0123932 + 0.999923i \(0.503945\pi\)
\(744\) 0 0
\(745\) −42.5306 −1.55820
\(746\) 0 0
\(747\) −15.3297 −0.560885
\(748\) 0 0
\(749\) 0.211741 0.00773683
\(750\) 0 0
\(751\) −20.4428 −0.745967 −0.372983 0.927838i \(-0.621665\pi\)
−0.372983 + 0.927838i \(0.621665\pi\)
\(752\) 0 0
\(753\) 0.377919 0.0137721
\(754\) 0 0
\(755\) 16.1180 0.586594
\(756\) 0 0
\(757\) −21.5003 −0.781441 −0.390720 0.920509i \(-0.627774\pi\)
−0.390720 + 0.920509i \(0.627774\pi\)
\(758\) 0 0
\(759\) 30.8001 1.11797
\(760\) 0 0
\(761\) 29.7165 1.07722 0.538612 0.842554i \(-0.318949\pi\)
0.538612 + 0.842554i \(0.318949\pi\)
\(762\) 0 0
\(763\) −7.77579 −0.281503
\(764\) 0 0
\(765\) −4.12084 −0.148989
\(766\) 0 0
\(767\) 4.80057 0.173339
\(768\) 0 0
\(769\) 1.14904 0.0414355 0.0207178 0.999785i \(-0.493405\pi\)
0.0207178 + 0.999785i \(0.493405\pi\)
\(770\) 0 0
\(771\) −7.80266 −0.281006
\(772\) 0 0
\(773\) 3.89004 0.139915 0.0699576 0.997550i \(-0.477714\pi\)
0.0699576 + 0.997550i \(0.477714\pi\)
\(774\) 0 0
\(775\) 5.40337 0.194095
\(776\) 0 0
\(777\) 34.4195 1.23479
\(778\) 0 0
\(779\) −6.90448 −0.247379
\(780\) 0 0
\(781\) −15.7799 −0.564650
\(782\) 0 0
\(783\) 31.3245 1.11945
\(784\) 0 0
\(785\) 38.5126 1.37457
\(786\) 0 0
\(787\) −19.9603 −0.711508 −0.355754 0.934580i \(-0.615776\pi\)
−0.355754 + 0.934580i \(0.615776\pi\)
\(788\) 0 0
\(789\) −25.6174 −0.912003
\(790\) 0 0
\(791\) 5.26970 0.187369
\(792\) 0 0
\(793\) 59.3223 2.10660
\(794\) 0 0
\(795\) 5.55680 0.197079
\(796\) 0 0
\(797\) −42.9686 −1.52203 −0.761014 0.648736i \(-0.775298\pi\)
−0.761014 + 0.648736i \(0.775298\pi\)
\(798\) 0 0
\(799\) 3.44251 0.121787
\(800\) 0 0
\(801\) 10.5860 0.374040
\(802\) 0 0
\(803\) −17.7932 −0.627908
\(804\) 0 0
\(805\) 31.3092 1.10350
\(806\) 0 0
\(807\) 1.37910 0.0485468
\(808\) 0 0
\(809\) 28.0766 0.987119 0.493560 0.869712i \(-0.335695\pi\)
0.493560 + 0.869712i \(0.335695\pi\)
\(810\) 0 0
\(811\) 1.23855 0.0434915 0.0217458 0.999764i \(-0.493078\pi\)
0.0217458 + 0.999764i \(0.493078\pi\)
\(812\) 0 0
\(813\) 7.16642 0.251337
\(814\) 0 0
\(815\) −11.5549 −0.404751
\(816\) 0 0
\(817\) 3.51095 0.122833
\(818\) 0 0
\(819\) 12.5803 0.439593
\(820\) 0 0
\(821\) 9.91227 0.345941 0.172970 0.984927i \(-0.444664\pi\)
0.172970 + 0.984927i \(0.444664\pi\)
\(822\) 0 0
\(823\) −4.82339 −0.168133 −0.0840663 0.996460i \(-0.526791\pi\)
−0.0840663 + 0.996460i \(0.526791\pi\)
\(824\) 0 0
\(825\) 5.24430 0.182583
\(826\) 0 0
\(827\) −24.6328 −0.856566 −0.428283 0.903645i \(-0.640881\pi\)
−0.428283 + 0.903645i \(0.640881\pi\)
\(828\) 0 0
\(829\) 14.6300 0.508122 0.254061 0.967188i \(-0.418234\pi\)
0.254061 + 0.967188i \(0.418234\pi\)
\(830\) 0 0
\(831\) 8.45844 0.293420
\(832\) 0 0
\(833\) −1.97913 −0.0685728
\(834\) 0 0
\(835\) 31.8158 1.10103
\(836\) 0 0
\(837\) 27.5926 0.953741
\(838\) 0 0
\(839\) 42.5008 1.46729 0.733645 0.679533i \(-0.237818\pi\)
0.733645 + 0.679533i \(0.237818\pi\)
\(840\) 0 0
\(841\) 1.71964 0.0592979
\(842\) 0 0
\(843\) 26.8639 0.925243
\(844\) 0 0
\(845\) 17.8080 0.612615
\(846\) 0 0
\(847\) −1.96635 −0.0675646
\(848\) 0 0
\(849\) −1.97915 −0.0679242
\(850\) 0 0
\(851\) 66.4535 2.27800
\(852\) 0 0
\(853\) 27.8087 0.952153 0.476077 0.879404i \(-0.342058\pi\)
0.476077 + 0.879404i \(0.342058\pi\)
\(854\) 0 0
\(855\) −2.66832 −0.0912548
\(856\) 0 0
\(857\) −25.9123 −0.885149 −0.442574 0.896732i \(-0.645935\pi\)
−0.442574 + 0.896732i \(0.645935\pi\)
\(858\) 0 0
\(859\) −53.1905 −1.81484 −0.907418 0.420229i \(-0.861950\pi\)
−0.907418 + 0.420229i \(0.861950\pi\)
\(860\) 0 0
\(861\) 18.8746 0.643244
\(862\) 0 0
\(863\) 27.3604 0.931360 0.465680 0.884953i \(-0.345810\pi\)
0.465680 + 0.884953i \(0.345810\pi\)
\(864\) 0 0
\(865\) −26.6830 −0.907251
\(866\) 0 0
\(867\) −18.4560 −0.626798
\(868\) 0 0
\(869\) 46.5545 1.57925
\(870\) 0 0
\(871\) −7.75419 −0.262741
\(872\) 0 0
\(873\) 17.8423 0.603871
\(874\) 0 0
\(875\) 29.4150 0.994407
\(876\) 0 0
\(877\) −58.1170 −1.96247 −0.981235 0.192813i \(-0.938239\pi\)
−0.981235 + 0.192813i \(0.938239\pi\)
\(878\) 0 0
\(879\) −41.1625 −1.38838
\(880\) 0 0
\(881\) −46.7912 −1.57644 −0.788218 0.615396i \(-0.788996\pi\)
−0.788218 + 0.615396i \(0.788996\pi\)
\(882\) 0 0
\(883\) −25.8997 −0.871593 −0.435797 0.900045i \(-0.643533\pi\)
−0.435797 + 0.900045i \(0.643533\pi\)
\(884\) 0 0
\(885\) 2.78347 0.0935653
\(886\) 0 0
\(887\) −47.8720 −1.60738 −0.803692 0.595046i \(-0.797134\pi\)
−0.803692 + 0.595046i \(0.797134\pi\)
\(888\) 0 0
\(889\) 7.65716 0.256813
\(890\) 0 0
\(891\) 15.4617 0.517987
\(892\) 0 0
\(893\) 2.22909 0.0745937
\(894\) 0 0
\(895\) −43.7468 −1.46229
\(896\) 0 0
\(897\) −42.0699 −1.40467
\(898\) 0 0
\(899\) 27.0598 0.902495
\(900\) 0 0
\(901\) 3.88392 0.129392
\(902\) 0 0
\(903\) −9.59780 −0.319395
\(904\) 0 0
\(905\) 7.12532 0.236854
\(906\) 0 0
\(907\) 55.0189 1.82687 0.913437 0.406980i \(-0.133418\pi\)
0.913437 + 0.406980i \(0.133418\pi\)
\(908\) 0 0
\(909\) −16.9924 −0.563603
\(910\) 0 0
\(911\) 46.9311 1.55490 0.777448 0.628947i \(-0.216514\pi\)
0.777448 + 0.628947i \(0.216514\pi\)
\(912\) 0 0
\(913\) −47.9674 −1.58749
\(914\) 0 0
\(915\) 34.3963 1.13711
\(916\) 0 0
\(917\) −46.6436 −1.54031
\(918\) 0 0
\(919\) 10.0327 0.330948 0.165474 0.986214i \(-0.447085\pi\)
0.165474 + 0.986214i \(0.447085\pi\)
\(920\) 0 0
\(921\) 20.1940 0.665415
\(922\) 0 0
\(923\) 21.5538 0.709452
\(924\) 0 0
\(925\) 11.3150 0.372034
\(926\) 0 0
\(927\) 12.8404 0.421733
\(928\) 0 0
\(929\) −24.5291 −0.804773 −0.402387 0.915470i \(-0.631819\pi\)
−0.402387 + 0.915470i \(0.631819\pi\)
\(930\) 0 0
\(931\) −1.28153 −0.0420003
\(932\) 0 0
\(933\) 20.6764 0.676916
\(934\) 0 0
\(935\) −12.8943 −0.421689
\(936\) 0 0
\(937\) 8.89765 0.290673 0.145337 0.989382i \(-0.453573\pi\)
0.145337 + 0.989382i \(0.453573\pi\)
\(938\) 0 0
\(939\) −19.8429 −0.647549
\(940\) 0 0
\(941\) −36.1992 −1.18006 −0.590030 0.807381i \(-0.700884\pi\)
−0.590030 + 0.807381i \(0.700884\pi\)
\(942\) 0 0
\(943\) 36.4411 1.18669
\(944\) 0 0
\(945\) 27.2229 0.885562
\(946\) 0 0
\(947\) −15.3584 −0.499081 −0.249541 0.968364i \(-0.580280\pi\)
−0.249541 + 0.968364i \(0.580280\pi\)
\(948\) 0 0
\(949\) 24.3037 0.788931
\(950\) 0 0
\(951\) 25.4534 0.825383
\(952\) 0 0
\(953\) −5.78646 −0.187442 −0.0937209 0.995599i \(-0.529876\pi\)
−0.0937209 + 0.995599i \(0.529876\pi\)
\(954\) 0 0
\(955\) 14.6334 0.473525
\(956\) 0 0
\(957\) 26.2632 0.848968
\(958\) 0 0
\(959\) 18.9706 0.612593
\(960\) 0 0
\(961\) −7.16401 −0.231097
\(962\) 0 0
\(963\) 0.0952428 0.00306916
\(964\) 0 0
\(965\) −45.4016 −1.46153
\(966\) 0 0
\(967\) 27.8199 0.894629 0.447315 0.894377i \(-0.352380\pi\)
0.447315 + 0.894377i \(0.352380\pi\)
\(968\) 0 0
\(969\) 3.23035 0.103774
\(970\) 0 0
\(971\) 26.2776 0.843290 0.421645 0.906761i \(-0.361453\pi\)
0.421645 + 0.906761i \(0.361453\pi\)
\(972\) 0 0
\(973\) 18.3305 0.587649
\(974\) 0 0
\(975\) −7.16319 −0.229406
\(976\) 0 0
\(977\) −38.8447 −1.24275 −0.621377 0.783512i \(-0.713426\pi\)
−0.621377 + 0.783512i \(0.713426\pi\)
\(978\) 0 0
\(979\) 33.1242 1.05865
\(980\) 0 0
\(981\) −3.49762 −0.111670
\(982\) 0 0
\(983\) −15.9632 −0.509147 −0.254574 0.967053i \(-0.581935\pi\)
−0.254574 + 0.967053i \(0.581935\pi\)
\(984\) 0 0
\(985\) 1.59864 0.0509369
\(986\) 0 0
\(987\) −6.09361 −0.193962
\(988\) 0 0
\(989\) −18.5304 −0.589234
\(990\) 0 0
\(991\) −14.6111 −0.464138 −0.232069 0.972699i \(-0.574550\pi\)
−0.232069 + 0.972699i \(0.574550\pi\)
\(992\) 0 0
\(993\) −40.1919 −1.27545
\(994\) 0 0
\(995\) −31.7035 −1.00507
\(996\) 0 0
\(997\) 44.1438 1.39805 0.699024 0.715098i \(-0.253618\pi\)
0.699024 + 0.715098i \(0.253618\pi\)
\(998\) 0 0
\(999\) 57.7805 1.82809
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4304.2.a.l.1.12 16
4.3 odd 2 269.2.a.c.1.9 16
12.11 even 2 2421.2.a.i.1.8 16
20.19 odd 2 6725.2.a.i.1.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
269.2.a.c.1.9 16 4.3 odd 2
2421.2.a.i.1.8 16 12.11 even 2
4304.2.a.l.1.12 16 1.1 even 1 trivial
6725.2.a.i.1.8 16 20.19 odd 2