L(s) = 1 | + 12.3i·5-s + 21.4i·7-s − 15.5·11-s − 2·13-s + 24.7i·17-s + 85.6i·19-s − 124.·23-s − 27.9·25-s − 272. i·29-s − 278. i·31-s − 265.·35-s + 128·37-s + 296. i·41-s − 42.8i·43-s − 592.·47-s + ⋯ |
L(s) = 1 | + 1.10i·5-s + 1.15i·7-s − 0.427·11-s − 0.0426·13-s + 0.352i·17-s + 1.03i·19-s − 1.13·23-s − 0.223·25-s − 1.74i·29-s − 1.61i·31-s − 1.27·35-s + 0.568·37-s + 1.13i·41-s − 0.151i·43-s − 1.83·47-s + ⋯ |
Λ(s)=(=(432s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(432s/2ΓC(s+3/2)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
432
= 24⋅33
|
Sign: |
−1
|
Analytic conductor: |
25.4888 |
Root analytic conductor: |
5.04864 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ432(431,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 432, ( :3/2), −1)
|
Particular Values
L(2) |
≈ |
0.8914841334 |
L(21) |
≈ |
0.8914841334 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−12.3iT−125T2 |
| 7 | 1−21.4iT−343T2 |
| 11 | 1+15.5T+1.33e3T2 |
| 13 | 1+2T+2.19e3T2 |
| 17 | 1−24.7iT−4.91e3T2 |
| 19 | 1−85.6iT−6.85e3T2 |
| 23 | 1+124.T+1.21e4T2 |
| 29 | 1+272.iT−2.43e4T2 |
| 31 | 1+278.iT−2.97e4T2 |
| 37 | 1−128T+5.06e4T2 |
| 41 | 1−296.iT−6.89e4T2 |
| 43 | 1+42.8iT−7.95e4T2 |
| 47 | 1+592.T+1.03e5T2 |
| 53 | 1−259.iT−1.48e5T2 |
| 59 | 1+530.T+2.05e5T2 |
| 61 | 1+340T+2.26e5T2 |
| 67 | 1−899.iT−3.00e5T2 |
| 71 | 1+966.T+3.57e5T2 |
| 73 | 1−817T+3.89e5T2 |
| 79 | 1−214.iT−4.93e5T2 |
| 83 | 1+358.T+5.71e5T2 |
| 89 | 1+915.iT−7.04e5T2 |
| 97 | 1+965T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.29010122376503711494913806426, −10.18263750497562831447497832589, −9.605597375827719697380407576055, −8.271439012810719172821251288729, −7.65787693277461397883305921115, −6.22002079000557253059737668710, −5.85142592237865463173727599084, −4.27620730882754556140098380650, −2.96563156863142463859765261970, −2.06154878611918138817789955728,
0.28472710602980690226419601398, 1.49347763875534544180407815435, 3.27474073236677394853512132858, 4.56293349876928932537543826528, 5.17523392849378332063202812408, 6.64403406343019837191535275126, 7.53019044534645123921506682827, 8.505649414406756092502055260485, 9.313448174070513464642292375040, 10.34437640417272867410988132201