Properties

Label 432.4.c.f
Level $432$
Weight $4$
Character orbit 432.c
Analytic conductor $25.489$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,4,Mod(431,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.431");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 432.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.4888251225\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{-17})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{5} + \beta_{3} q^{7} + \beta_{2} q^{11} - 2 q^{13} - 2 \beta_1 q^{17} + 4 \beta_{3} q^{19} + 8 \beta_{2} q^{23} - 28 q^{25} + 22 \beta_1 q^{29} - 13 \beta_{3} q^{31} + 17 \beta_{2} q^{35}+ \cdots - 965 q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{13} - 112 q^{25} + 512 q^{37} - 464 q^{49} - 1360 q^{61} + 3268 q^{73} - 1224 q^{85} - 3860 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 3\nu^{3} + 36\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -9\nu^{3} - 18\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 6\nu^{2} + 21 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 3\beta_1 ) / 18 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 21 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{2} - \beta_1 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
431.1
−0.866025 + 2.06155i
0.866025 + 2.06155i
0.866025 2.06155i
−0.866025 2.06155i
0 0 0 12.3693i 0 21.4243i 0 0 0
431.2 0 0 0 12.3693i 0 21.4243i 0 0 0
431.3 0 0 0 12.3693i 0 21.4243i 0 0 0
431.4 0 0 0 12.3693i 0 21.4243i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
12.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 432.4.c.f 4
3.b odd 2 1 inner 432.4.c.f 4
4.b odd 2 1 inner 432.4.c.f 4
8.b even 2 1 1728.4.c.g 4
8.d odd 2 1 1728.4.c.g 4
12.b even 2 1 inner 432.4.c.f 4
24.f even 2 1 1728.4.c.g 4
24.h odd 2 1 1728.4.c.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
432.4.c.f 4 1.a even 1 1 trivial
432.4.c.f 4 3.b odd 2 1 inner
432.4.c.f 4 4.b odd 2 1 inner
432.4.c.f 4 12.b even 2 1 inner
1728.4.c.g 4 8.b even 2 1
1728.4.c.g 4 8.d odd 2 1
1728.4.c.g 4 24.f even 2 1
1728.4.c.g 4 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(432, [\chi])\):

\( T_{5}^{2} + 153 \) Copy content Toggle raw display
\( T_{7}^{2} + 459 \) Copy content Toggle raw display
\( T_{11}^{2} - 243 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 153)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 459)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 243)^{2} \) Copy content Toggle raw display
$13$ \( (T + 2)^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 612)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 7344)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 15552)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 74052)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 77571)^{2} \) Copy content Toggle raw display
$37$ \( (T - 128)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} + 88128)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 1836)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 350892)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 67473)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 280908)^{2} \) Copy content Toggle raw display
$61$ \( (T + 340)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 809676)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 934092)^{2} \) Copy content Toggle raw display
$73$ \( (T - 817)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} + 45900)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 128547)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 837828)^{2} \) Copy content Toggle raw display
$97$ \( (T + 965)^{4} \) Copy content Toggle raw display
show more
show less