L(s) = 1 | + (−156. − 270. i)5-s + (−626. + 1.08e3i)7-s + (992. − 1.71e3i)11-s + (6.03e3 + 1.04e4i)13-s + 5.45e3·17-s − 5.19e4·19-s + (−4.55e4 − 7.89e4i)23-s + (−9.81e3 + 1.69e4i)25-s + (−5.63e4 + 9.76e4i)29-s + (1.65e5 + 2.87e5i)31-s + 3.91e5·35-s + 3.13e5·37-s + (9.59e4 + 1.66e5i)41-s + (−8.43e4 + 1.46e5i)43-s + (−2.40e5 + 4.16e5i)47-s + ⋯ |
L(s) = 1 | + (−0.559 − 0.968i)5-s + (−0.689 + 1.19i)7-s + (0.224 − 0.389i)11-s + (0.762 + 1.32i)13-s + 0.269·17-s − 1.73·19-s + (−0.780 − 1.35i)23-s + (−0.125 + 0.217i)25-s + (−0.429 + 0.743i)29-s + (0.999 + 1.73i)31-s + 1.54·35-s + 1.01·37-s + (0.217 + 0.376i)41-s + (−0.161 + 0.280i)43-s + (−0.337 + 0.585i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.436 + 0.899i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 432 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.436 + 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.5577211830\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5577211830\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (156. + 270. i)T + (-3.90e4 + 6.76e4i)T^{2} \) |
| 7 | \( 1 + (626. - 1.08e3i)T + (-4.11e5 - 7.13e5i)T^{2} \) |
| 11 | \( 1 + (-992. + 1.71e3i)T + (-9.74e6 - 1.68e7i)T^{2} \) |
| 13 | \( 1 + (-6.03e3 - 1.04e4i)T + (-3.13e7 + 5.43e7i)T^{2} \) |
| 17 | \( 1 - 5.45e3T + 4.10e8T^{2} \) |
| 19 | \( 1 + 5.19e4T + 8.93e8T^{2} \) |
| 23 | \( 1 + (4.55e4 + 7.89e4i)T + (-1.70e9 + 2.94e9i)T^{2} \) |
| 29 | \( 1 + (5.63e4 - 9.76e4i)T + (-8.62e9 - 1.49e10i)T^{2} \) |
| 31 | \( 1 + (-1.65e5 - 2.87e5i)T + (-1.37e10 + 2.38e10i)T^{2} \) |
| 37 | \( 1 - 3.13e5T + 9.49e10T^{2} \) |
| 41 | \( 1 + (-9.59e4 - 1.66e5i)T + (-9.73e10 + 1.68e11i)T^{2} \) |
| 43 | \( 1 + (8.43e4 - 1.46e5i)T + (-1.35e11 - 2.35e11i)T^{2} \) |
| 47 | \( 1 + (2.40e5 - 4.16e5i)T + (-2.53e11 - 4.38e11i)T^{2} \) |
| 53 | \( 1 - 5.62e5T + 1.17e12T^{2} \) |
| 59 | \( 1 + (-5.23e5 - 9.06e5i)T + (-1.24e12 + 2.15e12i)T^{2} \) |
| 61 | \( 1 + (-5.87e5 + 1.01e6i)T + (-1.57e12 - 2.72e12i)T^{2} \) |
| 67 | \( 1 + (1.63e6 + 2.82e6i)T + (-3.03e12 + 5.24e12i)T^{2} \) |
| 71 | \( 1 - 2.19e6T + 9.09e12T^{2} \) |
| 73 | \( 1 - 3.66e5T + 1.10e13T^{2} \) |
| 79 | \( 1 + (-1.01e6 + 1.76e6i)T + (-9.60e12 - 1.66e13i)T^{2} \) |
| 83 | \( 1 + (1.79e6 - 3.11e6i)T + (-1.35e13 - 2.35e13i)T^{2} \) |
| 89 | \( 1 + 5.04e6T + 4.42e13T^{2} \) |
| 97 | \( 1 + (-4.80e6 + 8.33e6i)T + (-4.03e13 - 6.99e13i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.418365180567238663110140930089, −8.607494492192766228347141650007, −8.385467904409380166811782966068, −6.60597852511713116311355547202, −6.11297824000636656273238535466, −4.76593462109266685515177153308, −3.98704956076614617657595106852, −2.66854159402262513782351455967, −1.46335787558228347228346153943, −0.14380996549416970995783101723,
0.830249761765379436820007624526, 2.44273546578715173537666275722, 3.67380526048574063989446943432, 4.05838365290919309776230763907, 5.82822293226076805493325923706, 6.62564217005998315961010411642, 7.54994371593127213214583091076, 8.156619213920594166717600918960, 9.677732179018033003442336792247, 10.33183733891967414059524217847