Properties

Label 432.8.i.e.289.2
Level $432$
Weight $8$
Character 432.289
Analytic conductor $134.950$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,8,Mod(145,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.145");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 432.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(134.950331009\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 10 x^{19} + 332929 x^{18} - 2996076 x^{17} + 44578211685 x^{16} - 356557783716 x^{15} + \cdots + 79\!\cdots\!67 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{48}\cdot 3^{45} \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.2
Root \(0.500000 + 187.726i\) of defining polynomial
Character \(\chi\) \(=\) 432.289
Dual form 432.8.i.e.145.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-156.325 - 270.763i) q^{5} +(-626.107 + 1084.45i) q^{7} +(992.406 - 1718.90i) q^{11} +(6039.81 + 10461.3i) q^{13} +5453.94 q^{17} -51911.6 q^{19} +(-45567.2 - 78924.8i) q^{23} +(-9812.59 + 16995.9i) q^{25} +(-56370.4 + 97636.4i) q^{29} +(165765. + 287113. i) q^{31} +391505. q^{35} +313951. q^{37} +(95942.4 + 166177. i) q^{41} +(-84339.4 + 146080. i) q^{43} +(-240497. + 416554. i) q^{47} +(-372249. - 644754. i) q^{49} +562959. q^{53} -620552. q^{55} +(523339. + 906449. i) q^{59} +(587842. - 1.01817e6i) q^{61} +(1.88835e6 - 3.27072e6i) q^{65} +(-1.63387e6 - 2.82995e6i) q^{67} +2.19874e6 q^{71} +366453. q^{73} +(1.24270e6 + 2.15243e6i) q^{77} +(1.01679e6 - 1.76114e6i) q^{79} +(-1.79755e6 + 3.11344e6i) q^{83} +(-852588. - 1.47673e6i) q^{85} -5.04034e6 q^{89} -1.51263e7 q^{91} +(8.11508e6 + 1.40557e7i) q^{95} +(4.80998e6 - 8.33112e6i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 125 q^{5} - 1245 q^{7} + 6106 q^{11} + 4937 q^{13} - 48722 q^{17} + 26882 q^{19} + 19387 q^{23} - 218957 q^{25} + 46791 q^{29} + 185039 q^{31} + 83094 q^{35} + 108420 q^{37} + 638112 q^{41} - 892628 q^{43}+ \cdots + 17951260 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −156.325 270.763i −0.559286 0.968711i −0.997556 0.0698682i \(-0.977742\pi\)
0.438270 0.898843i \(-0.355591\pi\)
\(6\) 0 0
\(7\) −626.107 + 1084.45i −0.689931 + 1.19500i 0.281929 + 0.959435i \(0.409026\pi\)
−0.971860 + 0.235560i \(0.924308\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 992.406 1718.90i 0.224810 0.389382i −0.731453 0.681892i \(-0.761157\pi\)
0.956262 + 0.292511i \(0.0944907\pi\)
\(12\) 0 0
\(13\) 6039.81 + 10461.3i 0.762468 + 1.32063i 0.941575 + 0.336804i \(0.109346\pi\)
−0.179106 + 0.983830i \(0.557321\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5453.94 0.269240 0.134620 0.990897i \(-0.457019\pi\)
0.134620 + 0.990897i \(0.457019\pi\)
\(18\) 0 0
\(19\) −51911.6 −1.73631 −0.868154 0.496295i \(-0.834693\pi\)
−0.868154 + 0.496295i \(0.834693\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −45567.2 78924.8i −0.780918 1.35259i −0.931408 0.363977i \(-0.881419\pi\)
0.150490 0.988611i \(-0.451915\pi\)
\(24\) 0 0
\(25\) −9812.59 + 16995.9i −0.125601 + 0.217547i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −56370.4 + 97636.4i −0.429199 + 0.743394i −0.996802 0.0799082i \(-0.974537\pi\)
0.567604 + 0.823302i \(0.307871\pi\)
\(30\) 0 0
\(31\) 165765. + 287113.i 0.999370 + 1.73096i 0.530411 + 0.847741i \(0.322038\pi\)
0.468960 + 0.883220i \(0.344629\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 391505. 1.54347
\(36\) 0 0
\(37\) 313951. 1.01896 0.509478 0.860484i \(-0.329838\pi\)
0.509478 + 0.860484i \(0.329838\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 95942.4 + 166177.i 0.217404 + 0.376554i 0.954013 0.299764i \(-0.0969079\pi\)
−0.736610 + 0.676318i \(0.763575\pi\)
\(42\) 0 0
\(43\) −84339.4 + 146080.i −0.161767 + 0.280189i −0.935503 0.353320i \(-0.885053\pi\)
0.773735 + 0.633509i \(0.218386\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −240497. + 416554.i −0.337884 + 0.585233i −0.984035 0.177978i \(-0.943045\pi\)
0.646150 + 0.763210i \(0.276378\pi\)
\(48\) 0 0
\(49\) −372249. 644754.i −0.452009 0.782902i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 562959. 0.519411 0.259706 0.965688i \(-0.416375\pi\)
0.259706 + 0.965688i \(0.416375\pi\)
\(54\) 0 0
\(55\) −620552. −0.502931
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 523339. + 906449.i 0.331742 + 0.574594i 0.982854 0.184388i \(-0.0590302\pi\)
−0.651111 + 0.758982i \(0.725697\pi\)
\(60\) 0 0
\(61\) 587842. 1.01817e6i 0.331594 0.574337i −0.651231 0.758880i \(-0.725747\pi\)
0.982825 + 0.184542i \(0.0590803\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.88835e6 3.27072e6i 0.852875 1.47722i
\(66\) 0 0
\(67\) −1.63387e6 2.82995e6i −0.663677 1.14952i −0.979642 0.200752i \(-0.935661\pi\)
0.315965 0.948771i \(-0.397672\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.19874e6 0.729069 0.364535 0.931190i \(-0.381228\pi\)
0.364535 + 0.931190i \(0.381228\pi\)
\(72\) 0 0
\(73\) 366453. 0.110252 0.0551262 0.998479i \(-0.482444\pi\)
0.0551262 + 0.998479i \(0.482444\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.24270e6 + 2.15243e6i 0.310206 + 0.537293i
\(78\) 0 0
\(79\) 1.01679e6 1.76114e6i 0.232027 0.401883i −0.726377 0.687296i \(-0.758798\pi\)
0.958405 + 0.285413i \(0.0921309\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −1.79755e6 + 3.11344e6i −0.345070 + 0.597679i −0.985366 0.170449i \(-0.945478\pi\)
0.640297 + 0.768128i \(0.278811\pi\)
\(84\) 0 0
\(85\) −852588. 1.47673e6i −0.150582 0.260816i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5.04034e6 −0.757870 −0.378935 0.925423i \(-0.623710\pi\)
−0.378935 + 0.925423i \(0.623710\pi\)
\(90\) 0 0
\(91\) −1.51263e7 −2.10420
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.11508e6 + 1.40557e7i 0.971092 + 1.68198i
\(96\) 0 0
\(97\) 4.80998e6 8.33112e6i 0.535109 0.926835i −0.464050 0.885809i \(-0.653604\pi\)
0.999158 0.0410259i \(-0.0130626\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.05741e6 1.56879e7i 0.874740 1.51509i 0.0177006 0.999843i \(-0.494365\pi\)
0.857039 0.515251i \(-0.172301\pi\)
\(102\) 0 0
\(103\) −2.84928e6 4.93510e6i −0.256924 0.445006i 0.708492 0.705719i \(-0.249376\pi\)
−0.965416 + 0.260713i \(0.916042\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.24222e7 −1.76943 −0.884717 0.466129i \(-0.845648\pi\)
−0.884717 + 0.466129i \(0.845648\pi\)
\(108\) 0 0
\(109\) −1.56382e7 −1.15663 −0.578313 0.815815i \(-0.696289\pi\)
−0.578313 + 0.815815i \(0.696289\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −4.83473e6 8.37400e6i −0.315208 0.545957i 0.664273 0.747490i \(-0.268741\pi\)
−0.979482 + 0.201533i \(0.935408\pi\)
\(114\) 0 0
\(115\) −1.42466e7 + 2.46758e7i −0.873512 + 1.51297i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.41475e6 + 5.91452e6i −0.185757 + 0.321740i
\(120\) 0 0
\(121\) 7.77385e6 + 1.34647e7i 0.398921 + 0.690952i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.82900e7 −0.837584
\(126\) 0 0
\(127\) −1.24333e7 −0.538607 −0.269303 0.963055i \(-0.586793\pi\)
−0.269303 + 0.963055i \(0.586793\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.94757e6 3.37329e6i −0.0756908 0.131100i 0.825696 0.564116i \(-0.190783\pi\)
−0.901386 + 0.433015i \(0.857450\pi\)
\(132\) 0 0
\(133\) 3.25022e7 5.62955e7i 1.19793 2.07488i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.51354e6 + 2.62153e6i −0.0502889 + 0.0871029i −0.890074 0.455816i \(-0.849348\pi\)
0.839785 + 0.542919i \(0.182681\pi\)
\(138\) 0 0
\(139\) 1.09738e7 + 1.90072e7i 0.346581 + 0.600296i 0.985640 0.168862i \(-0.0540092\pi\)
−0.639059 + 0.769158i \(0.720676\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 2.39758e7 0.685641
\(144\) 0 0
\(145\) 3.52484e7 0.960179
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −3.40718e7 5.90140e7i −0.843806 1.46151i −0.886654 0.462433i \(-0.846977\pi\)
0.0428483 0.999082i \(-0.486357\pi\)
\(150\) 0 0
\(151\) 1.57918e7 2.73521e7i 0.373260 0.646505i −0.616805 0.787116i \(-0.711573\pi\)
0.990065 + 0.140611i \(0.0449067\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.18264e7 8.97660e7i 1.11787 1.93620i
\(156\) 0 0
\(157\) −82154.5 142296.i −0.00169427 0.00293456i 0.865177 0.501467i \(-0.167206\pi\)
−0.866871 + 0.498532i \(0.833873\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.14120e8 2.15512
\(162\) 0 0
\(163\) −5.92828e7 −1.07219 −0.536096 0.844157i \(-0.680101\pi\)
−0.536096 + 0.844157i \(0.680101\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −2.28547e7 3.95856e7i −0.379725 0.657702i 0.611297 0.791401i \(-0.290648\pi\)
−0.991022 + 0.133699i \(0.957315\pi\)
\(168\) 0 0
\(169\) −4.15844e7 + 7.20264e7i −0.662716 + 1.14786i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.29464e7 1.09026e8i 0.924293 1.60092i 0.131599 0.991303i \(-0.457989\pi\)
0.792694 0.609620i \(-0.208678\pi\)
\(174\) 0 0
\(175\) −1.22875e7 2.12825e7i −0.173312 0.300185i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.62701e7 −0.342354 −0.171177 0.985240i \(-0.554757\pi\)
−0.171177 + 0.985240i \(0.554757\pi\)
\(180\) 0 0
\(181\) −7.44262e7 −0.932934 −0.466467 0.884539i \(-0.654473\pi\)
−0.466467 + 0.884539i \(0.654473\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −4.90784e7 8.50063e7i −0.569888 0.987074i
\(186\) 0 0
\(187\) 5.41252e6 9.37476e6i 0.0605277 0.104837i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.01302e7 + 8.68281e7i −0.520574 + 0.901661i 0.479139 + 0.877739i \(0.340949\pi\)
−0.999714 + 0.0239225i \(0.992384\pi\)
\(192\) 0 0
\(193\) 3.28715e6 + 5.69351e6i 0.0329131 + 0.0570072i 0.882013 0.471226i \(-0.156188\pi\)
−0.849100 + 0.528233i \(0.822855\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1.71132e8 −1.59478 −0.797389 0.603466i \(-0.793786\pi\)
−0.797389 + 0.603466i \(0.793786\pi\)
\(198\) 0 0
\(199\) 6.93519e7 0.623839 0.311920 0.950109i \(-0.399028\pi\)
0.311920 + 0.950109i \(0.399028\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −7.05878e7 1.22262e8i −0.592235 1.02578i
\(204\) 0 0
\(205\) 2.99964e7 5.19553e7i 0.243182 0.421203i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.15173e7 + 8.92307e7i −0.390339 + 0.676086i
\(210\) 0 0
\(211\) −7.71886e7 1.33695e8i −0.565672 0.979773i −0.996987 0.0775711i \(-0.975284\pi\)
0.431315 0.902201i \(-0.358050\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.27375e7 0.361897
\(216\) 0 0
\(217\) −4.15146e8 −2.75799
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.29408e7 + 5.70551e7i 0.205287 + 0.355567i
\(222\) 0 0
\(223\) 1.75831e6 3.04549e6i 0.0106177 0.0183903i −0.860668 0.509167i \(-0.829954\pi\)
0.871285 + 0.490777i \(0.163287\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.30268e7 1.26486e8i 0.414373 0.717716i −0.580989 0.813911i \(-0.697334\pi\)
0.995362 + 0.0961956i \(0.0306674\pi\)
\(228\) 0 0
\(229\) −7.37847e7 1.27799e8i −0.406015 0.703239i 0.588424 0.808553i \(-0.299749\pi\)
−0.994439 + 0.105314i \(0.966415\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.17721e7 0.475297 0.237648 0.971351i \(-0.423623\pi\)
0.237648 + 0.971351i \(0.423623\pi\)
\(234\) 0 0
\(235\) 1.50383e8 0.755895
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.98194e8 3.43282e8i −0.939070 1.62652i −0.767210 0.641396i \(-0.778356\pi\)
−0.171860 0.985121i \(-0.554978\pi\)
\(240\) 0 0
\(241\) 3.21419e7 5.56713e7i 0.147915 0.256196i −0.782542 0.622598i \(-0.786077\pi\)
0.930457 + 0.366402i \(0.119411\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.16384e8 + 2.01582e8i −0.505604 + 0.875732i
\(246\) 0 0
\(247\) −3.13536e8 5.43061e8i −1.32388 2.29303i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.44658e8 0.976565 0.488282 0.872686i \(-0.337624\pi\)
0.488282 + 0.872686i \(0.337624\pi\)
\(252\) 0 0
\(253\) −1.80885e8 −0.702231
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.52502e8 + 2.64142e8i 0.560416 + 0.970669i 0.997460 + 0.0712287i \(0.0226920\pi\)
−0.437044 + 0.899440i \(0.643975\pi\)
\(258\) 0 0
\(259\) −1.96567e8 + 3.40464e8i −0.703009 + 1.21765i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 1.71110e8 2.96371e8i 0.580003 1.00460i −0.415475 0.909605i \(-0.636385\pi\)
0.995478 0.0949905i \(-0.0302821\pi\)
\(264\) 0 0
\(265\) −8.80046e7 1.52428e8i −0.290499 0.503159i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.36577e7 0.168073 0.0840367 0.996463i \(-0.473219\pi\)
0.0840367 + 0.996463i \(0.473219\pi\)
\(270\) 0 0
\(271\) −7.20909e7 −0.220033 −0.110017 0.993930i \(-0.535090\pi\)
−0.110017 + 0.993930i \(0.535090\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.94761e7 + 3.37336e7i 0.0564727 + 0.0978135i
\(276\) 0 0
\(277\) −8.46674e6 + 1.46648e7i −0.0239352 + 0.0414570i −0.877745 0.479128i \(-0.840953\pi\)
0.853810 + 0.520585i \(0.174286\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.83198e8 4.90513e8i 0.761409 1.31880i −0.180715 0.983535i \(-0.557841\pi\)
0.942124 0.335264i \(-0.108825\pi\)
\(282\) 0 0
\(283\) −1.27769e8 2.21303e8i −0.335099 0.580409i 0.648405 0.761296i \(-0.275437\pi\)
−0.983504 + 0.180887i \(0.942103\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.40281e8 −0.599974
\(288\) 0 0
\(289\) −3.80593e8 −0.927510
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.90411e7 + 1.02262e8i 0.137125 + 0.237508i 0.926407 0.376523i \(-0.122880\pi\)
−0.789282 + 0.614031i \(0.789547\pi\)
\(294\) 0 0
\(295\) 1.63622e8 2.83402e8i 0.371077 0.642725i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 5.50435e8 9.53382e8i 1.19085 2.06261i
\(300\) 0 0
\(301\) −1.05611e8 1.82924e8i −0.223217 0.386623i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −3.67578e8 −0.741823
\(306\) 0 0
\(307\) 6.74541e8 1.33053 0.665264 0.746608i \(-0.268319\pi\)
0.665264 + 0.746608i \(0.268319\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 4.54229e8 + 7.86747e8i 0.856275 + 1.48311i 0.875457 + 0.483295i \(0.160560\pi\)
−0.0191826 + 0.999816i \(0.506106\pi\)
\(312\) 0 0
\(313\) 9.89750e7 1.71430e8i 0.182440 0.315995i −0.760271 0.649606i \(-0.774934\pi\)
0.942711 + 0.333611i \(0.108267\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.02010e8 8.69506e8i 0.885125 1.53308i 0.0395543 0.999217i \(-0.487406\pi\)
0.845570 0.533864i \(-0.179260\pi\)
\(318\) 0 0
\(319\) 1.11885e8 + 1.93790e8i 0.192976 + 0.334244i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.83123e8 −0.467483
\(324\) 0 0
\(325\) −2.37065e8 −0.383067
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −3.01154e8 5.21614e8i −0.466233 0.807540i
\(330\) 0 0
\(331\) −2.00562e8 + 3.47384e8i −0.303984 + 0.526516i −0.977035 0.213081i \(-0.931650\pi\)
0.673050 + 0.739597i \(0.264984\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.10831e8 + 8.84786e8i −0.742371 + 1.28582i
\(336\) 0 0
\(337\) 4.64377e8 + 8.04325e8i 0.660947 + 1.14479i 0.980367 + 0.197180i \(0.0631784\pi\)
−0.319421 + 0.947613i \(0.603488\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.58024e8 0.898672
\(342\) 0 0
\(343\) −9.89821e7 −0.132442
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.01563e6 + 5.22323e6i 0.00387459 + 0.00671098i 0.867956 0.496641i \(-0.165433\pi\)
−0.864082 + 0.503352i \(0.832100\pi\)
\(348\) 0 0
\(349\) 7.35229e7 1.27345e8i 0.0925835 0.160359i −0.816014 0.578032i \(-0.803821\pi\)
0.908598 + 0.417673i \(0.137154\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −5.76816e8 + 9.99075e8i −0.697953 + 1.20889i 0.271223 + 0.962517i \(0.412572\pi\)
−0.969175 + 0.246373i \(0.920761\pi\)
\(354\) 0 0
\(355\) −3.43718e8 5.95336e8i −0.407758 0.706258i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −9.18824e8 −1.04810 −0.524049 0.851688i \(-0.675579\pi\)
−0.524049 + 0.851688i \(0.675579\pi\)
\(360\) 0 0
\(361\) 1.80094e9 2.01476
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.72857e7 9.92218e7i −0.0616626 0.106803i
\(366\) 0 0
\(367\) −4.51396e8 + 7.81840e8i −0.476679 + 0.825632i −0.999643 0.0267225i \(-0.991493\pi\)
0.522964 + 0.852355i \(0.324826\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3.52473e8 + 6.10500e8i −0.358358 + 0.620694i
\(372\) 0 0
\(373\) 8.32346e8 + 1.44166e9i 0.830468 + 1.43841i 0.897668 + 0.440673i \(0.145260\pi\)
−0.0672001 + 0.997740i \(0.521407\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.36187e9 −1.30900
\(378\) 0 0
\(379\) −1.59369e8 −0.150372 −0.0751862 0.997170i \(-0.523955\pi\)
−0.0751862 + 0.997170i \(0.523955\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 1.63721e7 + 2.83573e7i 0.0148905 + 0.0257910i 0.873375 0.487049i \(-0.161927\pi\)
−0.858484 + 0.512840i \(0.828593\pi\)
\(384\) 0 0
\(385\) 3.88532e8 6.72957e8i 0.346988 0.601000i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.80917e8 8.32973e8i 0.414235 0.717476i −0.581113 0.813823i \(-0.697382\pi\)
0.995348 + 0.0963469i \(0.0307158\pi\)
\(390\) 0 0
\(391\) −2.48521e8 4.30451e8i −0.210254 0.364171i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −6.35802e8 −0.519078
\(396\) 0 0
\(397\) −1.54506e9 −1.23931 −0.619653 0.784876i \(-0.712726\pi\)
−0.619653 + 0.784876i \(0.712726\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −8.63954e8 1.49641e9i −0.669091 1.15890i −0.978159 0.207860i \(-0.933350\pi\)
0.309067 0.951040i \(-0.399983\pi\)
\(402\) 0 0
\(403\) −2.00238e9 + 3.46822e9i −1.52398 + 2.63960i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 3.11566e8 5.39649e8i 0.229071 0.396763i
\(408\) 0 0
\(409\) −4.09724e8 7.09662e8i −0.296114 0.512885i 0.679129 0.734019i \(-0.262358\pi\)
−0.975244 + 0.221134i \(0.929024\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.31066e9 −0.915517
\(414\) 0 0
\(415\) 1.12401e9 0.771971
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 3.59438e8 + 6.22565e8i 0.238712 + 0.413462i 0.960345 0.278814i \(-0.0899414\pi\)
−0.721633 + 0.692276i \(0.756608\pi\)
\(420\) 0 0
\(421\) 1.35748e9 2.35122e9i 0.886638 1.53570i 0.0428124 0.999083i \(-0.486368\pi\)
0.843825 0.536618i \(-0.180298\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.35173e7 + 9.26946e7i −0.0338168 + 0.0585724i
\(426\) 0 0
\(427\) 7.36105e8 + 1.27497e9i 0.457554 + 0.792506i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 3.70358e8 0.222819 0.111409 0.993775i \(-0.464464\pi\)
0.111409 + 0.993775i \(0.464464\pi\)
\(432\) 0 0
\(433\) −4.91018e8 −0.290663 −0.145332 0.989383i \(-0.546425\pi\)
−0.145332 + 0.989383i \(0.546425\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.36547e9 + 4.09711e9i 1.35591 + 2.34851i
\(438\) 0 0
\(439\) 1.50342e9 2.60401e9i 0.848117 1.46898i −0.0347701 0.999395i \(-0.511070\pi\)
0.882887 0.469586i \(-0.155597\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −5.03867e8 + 8.72724e8i −0.275361 + 0.476940i −0.970226 0.242200i \(-0.922131\pi\)
0.694865 + 0.719140i \(0.255464\pi\)
\(444\) 0 0
\(445\) 7.87931e8 + 1.36474e9i 0.423866 + 0.734157i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 1.97900e9 1.03177 0.515886 0.856657i \(-0.327463\pi\)
0.515886 + 0.856657i \(0.327463\pi\)
\(450\) 0 0
\(451\) 3.80855e8 0.195498
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.36462e9 + 4.09564e9i 1.17685 + 2.03836i
\(456\) 0 0
\(457\) 6.27954e8 1.08765e9i 0.307767 0.533067i −0.670107 0.742265i \(-0.733752\pi\)
0.977873 + 0.209197i \(0.0670851\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.23226e9 2.13433e9i 0.585798 1.01463i −0.408978 0.912544i \(-0.634115\pi\)
0.994775 0.102087i \(-0.0325520\pi\)
\(462\) 0 0
\(463\) 6.66460e8 + 1.15434e9i 0.312062 + 0.540507i 0.978809 0.204777i \(-0.0656470\pi\)
−0.666747 + 0.745284i \(0.732314\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 1.35293e9 0.614706 0.307353 0.951596i \(-0.400557\pi\)
0.307353 + 0.951596i \(0.400557\pi\)
\(468\) 0 0
\(469\) 4.09192e9 1.83157
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.67398e8 + 2.89942e8i 0.0727337 + 0.125979i
\(474\) 0 0
\(475\) 5.09387e8 8.82284e8i 0.218082 0.377729i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −6.80465e8 + 1.17860e9i −0.282899 + 0.489995i −0.972097 0.234577i \(-0.924629\pi\)
0.689199 + 0.724572i \(0.257963\pi\)
\(480\) 0 0
\(481\) 1.89620e9 + 3.28432e9i 0.776922 + 1.34567i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.00768e9 −1.19711
\(486\) 0 0
\(487\) 1.72113e8 0.0675247 0.0337623 0.999430i \(-0.489251\pi\)
0.0337623 + 0.999430i \(0.489251\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.48430e9 2.57089e9i −0.565897 0.980162i −0.996966 0.0778432i \(-0.975197\pi\)
0.431069 0.902319i \(-0.358137\pi\)
\(492\) 0 0
\(493\) −3.07441e8 + 5.32503e8i −0.115557 + 0.200151i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.37664e9 + 2.38442e9i −0.503007 + 0.871234i
\(498\) 0 0
\(499\) −1.62065e9 2.80704e9i −0.583897 1.01134i −0.995012 0.0997561i \(-0.968194\pi\)
0.411115 0.911584i \(-0.365140\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.38952e9 −0.486831 −0.243415 0.969922i \(-0.578268\pi\)
−0.243415 + 0.969922i \(0.578268\pi\)
\(504\) 0 0
\(505\) −5.66360e9 −1.95692
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.05258e9 + 3.55518e9i 0.689904 + 1.19495i 0.971868 + 0.235524i \(0.0756807\pi\)
−0.281964 + 0.959425i \(0.590986\pi\)
\(510\) 0 0
\(511\) −2.29439e8 + 3.97399e8i −0.0760665 + 0.131751i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −8.90828e8 + 1.54296e9i −0.287388 + 0.497771i
\(516\) 0 0
\(517\) 4.77342e8 + 8.26780e8i 0.151919 + 0.263132i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.64582e8 0.0819651 0.0409825 0.999160i \(-0.486951\pi\)
0.0409825 + 0.999160i \(0.486951\pi\)
\(522\) 0 0
\(523\) 3.53766e9 1.08133 0.540667 0.841237i \(-0.318172\pi\)
0.540667 + 0.841237i \(0.318172\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.04072e8 + 1.56590e9i 0.269070 + 0.466043i
\(528\) 0 0
\(529\) −2.45033e9 + 4.24410e9i −0.719664 + 1.24650i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −1.15895e9 + 2.00736e9i −0.331527 + 0.574221i
\(534\) 0 0
\(535\) 3.50515e9 + 6.07109e9i 0.989619 + 1.71407i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.47769e9 −0.406464
\(540\) 0 0
\(541\) −1.60977e8 −0.0437092 −0.0218546 0.999761i \(-0.506957\pi\)
−0.0218546 + 0.999761i \(0.506957\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 2.44464e9 + 4.23424e9i 0.646885 + 1.12044i
\(546\) 0 0
\(547\) 2.74652e9 4.75712e9i 0.717510 1.24276i −0.244474 0.969656i \(-0.578615\pi\)
0.961983 0.273108i \(-0.0880515\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.92628e9 5.06846e9i 0.745221 1.29076i
\(552\) 0 0
\(553\) 1.27325e9 + 2.20533e9i 0.320165 + 0.554542i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.53683e9 0.622012 0.311006 0.950408i \(-0.399334\pi\)
0.311006 + 0.950408i \(0.399334\pi\)
\(558\) 0 0
\(559\) −2.03758e9 −0.493370
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 3.67329e9 + 6.36232e9i 0.867513 + 1.50258i 0.864531 + 0.502580i \(0.167616\pi\)
0.00298204 + 0.999996i \(0.499051\pi\)
\(564\) 0 0
\(565\) −1.51158e9 + 2.61813e9i −0.352583 + 0.610692i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.84835e9 + 4.93349e9i −0.648188 + 1.12269i 0.335368 + 0.942087i \(0.391139\pi\)
−0.983555 + 0.180607i \(0.942194\pi\)
\(570\) 0 0
\(571\) 1.78543e9 + 3.09245e9i 0.401343 + 0.695147i 0.993888 0.110391i \(-0.0352102\pi\)
−0.592545 + 0.805537i \(0.701877\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.78853e9 0.392336
\(576\) 0 0
\(577\) 4.44708e9 0.963739 0.481869 0.876243i \(-0.339958\pi\)
0.481869 + 0.876243i \(0.339958\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −2.25091e9 3.89870e9i −0.476149 0.824714i
\(582\) 0 0
\(583\) 5.58684e8 9.67668e8i 0.116769 0.202249i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.39248e8 1.45362e9i 0.171260 0.296632i −0.767600 0.640929i \(-0.778549\pi\)
0.938861 + 0.344297i \(0.111883\pi\)
\(588\) 0 0
\(589\) −8.60511e9 1.49045e10i −1.73521 3.00548i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.89473e9 −0.766984 −0.383492 0.923544i \(-0.625279\pi\)
−0.383492 + 0.923544i \(0.625279\pi\)
\(594\) 0 0
\(595\) 2.13525e9 0.415565
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.40239e9 7.62517e9i −0.836941 1.44962i −0.892440 0.451166i \(-0.851008\pi\)
0.0554990 0.998459i \(-0.482325\pi\)
\(600\) 0 0
\(601\) −1.79514e9 + 3.10928e9i −0.337317 + 0.584251i −0.983927 0.178570i \(-0.942853\pi\)
0.646610 + 0.762821i \(0.276186\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.43050e9 4.20974e9i 0.446222 0.772879i
\(606\) 0 0
\(607\) −1.40497e9 2.43347e9i −0.254980 0.441638i 0.709910 0.704292i \(-0.248735\pi\)
−0.964890 + 0.262654i \(0.915402\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.81024e9 −1.03050
\(612\) 0 0
\(613\) −8.63009e8 −0.151323 −0.0756613 0.997134i \(-0.524107\pi\)
−0.0756613 + 0.997134i \(0.524107\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3.67139e9 + 6.35904e9i 0.629263 + 1.08992i 0.987700 + 0.156362i \(0.0499767\pi\)
−0.358436 + 0.933554i \(0.616690\pi\)
\(618\) 0 0
\(619\) 5.18346e7 8.97801e7i 0.00878420 0.0152147i −0.861600 0.507588i \(-0.830537\pi\)
0.870384 + 0.492373i \(0.163871\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.15579e9 5.46599e9i 0.522878 0.905651i
\(624\) 0 0
\(625\) 3.62579e9 + 6.28006e9i 0.594050 + 1.02892i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.71227e9 0.274344
\(630\) 0 0
\(631\) −2.99264e9 −0.474189 −0.237094 0.971487i \(-0.576195\pi\)
−0.237094 + 0.971487i \(0.576195\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.94363e9 + 3.36647e9i 0.301235 + 0.521755i
\(636\) 0 0
\(637\) 4.49662e9 7.78838e9i 0.689285 1.19388i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9.47265e8 + 1.64071e9i −0.142059 + 0.246053i −0.928272 0.371902i \(-0.878706\pi\)
0.786213 + 0.617956i \(0.212039\pi\)
\(642\) 0 0
\(643\) −4.39965e9 7.62041e9i −0.652648 1.13042i −0.982478 0.186380i \(-0.940325\pi\)
0.329829 0.944041i \(-0.393009\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.07161e10 −1.55550 −0.777750 0.628574i \(-0.783639\pi\)
−0.777750 + 0.628574i \(0.783639\pi\)
\(648\) 0 0
\(649\) 2.07746e9 0.298315
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.84818e8 1.53255e9i −0.124353 0.215386i 0.797127 0.603812i \(-0.206352\pi\)
−0.921480 + 0.388426i \(0.873019\pi\)
\(654\) 0 0
\(655\) −6.08908e8 + 1.05466e9i −0.0846656 + 0.146645i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 4.51603e9 7.82199e9i 0.614692 1.06468i −0.375746 0.926723i \(-0.622613\pi\)
0.990438 0.137956i \(-0.0440532\pi\)
\(660\) 0 0
\(661\) −1.21392e9 2.10257e9i −0.163488 0.283169i 0.772629 0.634857i \(-0.218941\pi\)
−0.936117 + 0.351688i \(0.885608\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.03236e10 −2.67994
\(666\) 0 0
\(667\) 1.02746e10 1.34067
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.16676e9 2.02088e9i −0.149091 0.258233i
\(672\) 0 0
\(673\) −5.08131e9 + 8.80109e9i −0.642574 + 1.11297i 0.342282 + 0.939597i \(0.388800\pi\)
−0.984856 + 0.173373i \(0.944533\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.89120e9 6.73975e9i 0.481973 0.834802i −0.517813 0.855494i \(-0.673254\pi\)
0.999786 + 0.0206918i \(0.00658689\pi\)
\(678\) 0 0
\(679\) 6.02312e9 + 1.04324e10i 0.738376 + 1.27890i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −4.85965e9 −0.583624 −0.291812 0.956476i \(-0.594258\pi\)
−0.291812 + 0.956476i \(0.594258\pi\)
\(684\) 0 0
\(685\) 9.46417e8 0.112503
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.40017e9 + 5.88926e9i 0.396034 + 0.685952i
\(690\) 0 0
\(691\) −2.02680e9 + 3.51052e9i −0.233689 + 0.404760i −0.958891 0.283776i \(-0.908413\pi\)
0.725202 + 0.688536i \(0.241746\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.43096e9 5.94259e9i 0.387676 0.671474i
\(696\) 0 0
\(697\) 5.23264e8 + 9.06320e8i 0.0585337 + 0.101383i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.65648e9 −0.181624 −0.0908118 0.995868i \(-0.528946\pi\)
−0.0908118 + 0.995868i \(0.528946\pi\)
\(702\) 0 0
\(703\) −1.62977e10 −1.76922
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.13418e10 + 1.96446e10i 1.20702 + 2.09062i
\(708\) 0 0
\(709\) 4.42534e8 7.66491e8i 0.0466321 0.0807691i −0.841767 0.539841i \(-0.818485\pi\)
0.888399 + 0.459072i \(0.151818\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.51069e10 2.61659e10i 1.56085 2.70347i
\(714\) 0 0
\(715\) −3.74802e9 6.49175e9i −0.383469 0.664188i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.53057e9 0.253902 0.126951 0.991909i \(-0.459481\pi\)
0.126951 + 0.991909i \(0.459481\pi\)
\(720\) 0 0
\(721\) 7.13582e9 0.709039
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.10628e9 1.91613e9i −0.107816 0.186742i
\(726\) 0 0
\(727\) −3.01834e9 + 5.22791e9i −0.291338 + 0.504613i −0.974126 0.226004i \(-0.927434\pi\)
0.682788 + 0.730616i \(0.260767\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.59982e8 + 7.96713e8i −0.0435542 + 0.0754381i
\(732\) 0 0
\(733\) −5.72318e8 9.91284e8i −0.0536752 0.0929681i 0.837939 0.545763i \(-0.183760\pi\)
−0.891615 + 0.452795i \(0.850427\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.48587e9 −0.596804
\(738\) 0 0
\(739\) −1.09705e10 −0.999929 −0.499964 0.866046i \(-0.666654\pi\)
−0.499964 + 0.866046i \(0.666654\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.20870e9 5.55763e9i −0.286991 0.497083i 0.686099 0.727508i \(-0.259322\pi\)
−0.973090 + 0.230425i \(0.925988\pi\)
\(744\) 0 0
\(745\) −1.06525e10 + 1.84507e10i −0.943857 + 1.63481i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.40387e10 2.43157e10i 1.22079 2.11446i
\(750\) 0 0
\(751\) 1.88052e9 + 3.25716e9i 0.162009 + 0.280608i 0.935589 0.353091i \(-0.114869\pi\)
−0.773580 + 0.633698i \(0.781536\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9.87459e9 −0.835035
\(756\) 0 0
\(757\) 1.67431e10 1.40281 0.701406 0.712762i \(-0.252556\pi\)
0.701406 + 0.712762i \(0.252556\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −7.05428e9 1.22184e10i −0.580238 1.00500i −0.995451 0.0952776i \(-0.969626\pi\)
0.415213 0.909724i \(-0.363707\pi\)
\(762\) 0 0
\(763\) 9.79117e9 1.69588e10i 0.797992 1.38216i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −6.32174e9 + 1.09496e10i −0.505886 + 0.876220i
\(768\) 0 0
\(769\) −1.15935e10 2.00806e10i −0.919336 1.59234i −0.800426 0.599431i \(-0.795393\pi\)
−0.118910 0.992905i \(-0.537940\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.85122e10 1.44155 0.720776 0.693168i \(-0.243786\pi\)
0.720776 + 0.693168i \(0.243786\pi\)
\(774\) 0 0
\(775\) −6.50633e9 −0.502088
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.98052e9 8.62651e9i −0.377480 0.653814i
\(780\) 0 0
\(781\) 2.18204e9 3.77940e9i 0.163902 0.283886i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −2.56856e7 + 4.44888e7i −0.00189516 + 0.00328252i
\(786\) 0 0
\(787\) 6.54533e9 + 1.13369e10i 0.478652 + 0.829050i 0.999700 0.0244770i \(-0.00779205\pi\)
−0.521048 + 0.853527i \(0.674459\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.21082e10 0.869888
\(792\) 0 0
\(793\) 1.42018e10 1.01132
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −6.90232e8 1.19552e9i −0.0482938 0.0836473i 0.840868 0.541240i \(-0.182045\pi\)
−0.889162 + 0.457593i \(0.848712\pi\)
\(798\) 0 0
\(799\) −1.31166e9 + 2.27186e9i −0.0909719 + 0.157568i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.63670e8 6.29894e8i 0.0247858 0.0429302i
\(804\) 0 0
\(805\) −1.78398e10 3.08994e10i −1.20533 2.08769i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.61305e10 −1.07109 −0.535547 0.844506i \(-0.679894\pi\)
−0.535547 + 0.844506i \(0.679894\pi\)
\(810\) 0 0
\(811\) −2.56158e10 −1.68630 −0.843149 0.537680i \(-0.819301\pi\)
−0.843149 + 0.537680i \(0.819301\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.26740e9 + 1.60516e10i 0.599661 + 1.03864i
\(816\) 0 0
\(817\) 4.37819e9 7.58325e9i 0.280878 0.486495i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −9.05197e9 + 1.56785e10i −0.570876 + 0.988787i 0.425600 + 0.904911i \(0.360063\pi\)
−0.996476 + 0.0838753i \(0.973270\pi\)
\(822\) 0 0
\(823\) −1.11889e10 1.93797e10i −0.699659 1.21184i −0.968585 0.248684i \(-0.920002\pi\)
0.268926 0.963161i \(-0.413331\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 1.84371e10 1.13350 0.566751 0.823889i \(-0.308200\pi\)
0.566751 + 0.823889i \(0.308200\pi\)
\(828\) 0 0
\(829\) −1.97903e10 −1.20646 −0.603229 0.797568i \(-0.706120\pi\)
−0.603229 + 0.797568i \(0.706120\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.03022e9 3.51645e9i −0.121699 0.210788i
\(834\) 0 0
\(835\) −7.14554e9 + 1.23764e10i −0.424749 + 0.735687i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 5.88842e9 1.01990e10i 0.344217 0.596201i −0.640994 0.767546i \(-0.721478\pi\)
0.985211 + 0.171345i \(0.0548111\pi\)
\(840\) 0 0
\(841\) 2.26969e9 + 3.93122e9i 0.131577 + 0.227898i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 2.60028e10 1.48259
\(846\) 0 0
\(847\) −1.94690e10 −1.10091
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −1.43059e10 2.47785e10i −0.795721 1.37823i
\(852\) 0 0
\(853\) 1.51855e10 2.63021e10i 0.837736 1.45100i −0.0540465 0.998538i \(-0.517212\pi\)
0.891783 0.452464i \(-0.149455\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.53340e10 + 2.65593e10i −0.832191 + 1.44140i 0.0641056 + 0.997943i \(0.479581\pi\)
−0.896297 + 0.443454i \(0.853753\pi\)
\(858\) 0 0
\(859\) −1.02801e10 1.78057e10i −0.553379 0.958481i −0.998028 0.0627758i \(-0.980005\pi\)
0.444648 0.895705i \(-0.353329\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4.22477e9 0.223751 0.111876 0.993722i \(-0.464314\pi\)
0.111876 + 0.993722i \(0.464314\pi\)
\(864\) 0 0
\(865\) −3.93604e10 −2.06778
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −2.01815e9 3.49553e9i −0.104324 0.180694i
\(870\) 0 0
\(871\) 1.97366e10 3.41848e10i 1.01207 1.75295i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.14515e10 1.98346e10i 0.577875 1.00091i
\(876\) 0 0
\(877\) 6.71489e9 + 1.16305e10i 0.336155 + 0.582238i 0.983706 0.179784i \(-0.0575399\pi\)
−0.647551 + 0.762022i \(0.724207\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −7.77155e9 −0.382906 −0.191453 0.981502i \(-0.561320\pi\)
−0.191453 + 0.981502i \(0.561320\pi\)
\(882\) 0 0
\(883\) −2.88850e10 −1.41192 −0.705960 0.708252i \(-0.749484\pi\)
−0.705960 + 0.708252i \(0.749484\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.10173e9 + 5.37236e9i 0.149235 + 0.258483i 0.930945 0.365159i \(-0.118985\pi\)
−0.781710 + 0.623642i \(0.785652\pi\)
\(888\) 0 0
\(889\) 7.78455e9 1.34832e10i 0.371601 0.643633i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.24846e10 2.16240e10i 0.586671 1.01614i
\(894\) 0 0
\(895\) 4.10668e9 + 7.11297e9i 0.191474 + 0.331643i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.73769e10 −1.71571
\(900\) 0 0
\(901\) 3.07035e9 0.139846
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.16347e10 + 2.01519e10i 0.521777 + 0.903744i
\(906\) 0 0
\(907\) −5.90280e9 + 1.02240e10i −0.262684 + 0.454981i −0.966954 0.254950i \(-0.917941\pi\)
0.704271 + 0.709932i \(0.251274\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −5.59334e9 + 9.68794e9i −0.245107 + 0.424539i −0.962162 0.272479i \(-0.912157\pi\)
0.717054 + 0.697017i \(0.245490\pi\)
\(912\) 0 0
\(913\) 3.56779e9 + 6.17960e9i 0.155150 + 0.268728i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.87755e9 0.208886
\(918\) 0 0
\(919\) 4.12146e10 1.75165 0.875824 0.482630i \(-0.160318\pi\)
0.875824 + 0.482630i \(0.160318\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.32800e10 + 2.30015e10i 0.555892 + 0.962833i
\(924\) 0 0
\(925\) −3.08067e9 + 5.33587e9i −0.127982 + 0.221671i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 5.07376e9 8.78801e9i 0.207623 0.359613i −0.743342 0.668911i \(-0.766761\pi\)
0.950965 + 0.309298i \(0.100094\pi\)
\(930\) 0 0
\(931\) 1.93240e10 + 3.34702e10i 0.784826 + 1.35936i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.38445e9 −0.135409
\(936\) 0 0
\(937\) −5.92808e8 −0.0235410 −0.0117705 0.999931i \(-0.503747\pi\)
−0.0117705 + 0.999931i \(0.503747\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.34877e9 + 9.26433e9i 0.209262 + 0.362452i 0.951482 0.307704i \(-0.0995606\pi\)
−0.742220 + 0.670156i \(0.766227\pi\)
\(942\) 0 0
\(943\) 8.74365e9 1.51445e10i 0.339549 0.588116i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −6.37884e9 + 1.10485e10i −0.244071 + 0.422744i −0.961870 0.273507i \(-0.911816\pi\)
0.717799 + 0.696250i \(0.245150\pi\)
\(948\) 0 0
\(949\) 2.21331e9 + 3.83356e9i 0.0840639 + 0.145603i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −4.65154e10 −1.74089 −0.870446 0.492264i \(-0.836170\pi\)
−0.870446 + 0.492264i \(0.836170\pi\)
\(954\) 0 0
\(955\) 3.13465e10 1.16460
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.89528e9 3.28271e9i −0.0693917 0.120190i
\(960\) 0 0
\(961\) −4.11997e10 + 7.13599e10i −1.49748 + 2.59372i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.02773e9 1.78008e9i 0.0368157 0.0637666i
\(966\) 0 0
\(967\) −6.31824e9 1.09435e10i −0.224700 0.389192i 0.731529 0.681810i \(-0.238807\pi\)
−0.956229 + 0.292618i \(0.905474\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2.15235e10 −0.754477 −0.377239 0.926116i \(-0.623126\pi\)
−0.377239 + 0.926116i \(0.623126\pi\)
\(972\) 0 0
\(973\) −2.74831e10 −0.956468
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1.00079e10 1.73343e10i −0.343332 0.594668i 0.641717 0.766941i \(-0.278222\pi\)
−0.985049 + 0.172273i \(0.944889\pi\)
\(978\) 0 0
\(979\) −5.00206e9 + 8.66382e9i −0.170376 + 0.295101i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.40447e10 4.16466e10i 0.807386 1.39843i −0.107282 0.994229i \(-0.534215\pi\)
0.914668 0.404206i \(-0.132452\pi\)
\(984\) 0 0
\(985\) 2.67523e10 + 4.63363e10i 0.891936 + 1.54488i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.53725e10 0.505308
\(990\) 0 0
\(991\) 3.43048e10 1.11969 0.559844 0.828598i \(-0.310861\pi\)
0.559844 + 0.828598i \(0.310861\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.08414e10 1.87779e10i −0.348904 0.604320i
\(996\) 0 0
\(997\) −1.00711e9 + 1.74437e9i −0.0321843 + 0.0557449i −0.881669 0.471869i \(-0.843580\pi\)
0.849485 + 0.527613i \(0.176913\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.8.i.e.289.2 20
3.2 odd 2 144.8.i.e.97.5 20
4.3 odd 2 216.8.i.a.73.2 20
9.4 even 3 inner 432.8.i.e.145.2 20
9.5 odd 6 144.8.i.e.49.5 20
12.11 even 2 72.8.i.a.25.6 20
36.23 even 6 72.8.i.a.49.6 yes 20
36.31 odd 6 216.8.i.a.145.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.8.i.a.25.6 20 12.11 even 2
72.8.i.a.49.6 yes 20 36.23 even 6
144.8.i.e.49.5 20 9.5 odd 6
144.8.i.e.97.5 20 3.2 odd 2
216.8.i.a.73.2 20 4.3 odd 2
216.8.i.a.145.2 20 36.31 odd 6
432.8.i.e.145.2 20 9.4 even 3 inner
432.8.i.e.289.2 20 1.1 even 1 trivial