Properties

Label 2-4320-40.29-c1-0-43
Degree $2$
Conductor $4320$
Sign $0.851 + 0.524i$
Analytic cond. $34.4953$
Root an. cond. $5.87327$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.49 − 1.66i)5-s − 1.43i·7-s + 0.0984i·11-s + 1.92·13-s + 2.03i·17-s − 0.999i·19-s + 4.30i·23-s + (−0.525 + 4.97i)25-s + 3.56i·29-s − 1.42·31-s + (−2.38 + 2.14i)35-s + 8.27·37-s + 5.11·41-s + 5.50·43-s + 9.00i·47-s + ⋯
L(s)  = 1  + (−0.668 − 0.743i)5-s − 0.542i·7-s + 0.0296i·11-s + 0.533·13-s + 0.494i·17-s − 0.229i·19-s + 0.897i·23-s + (−0.105 + 0.994i)25-s + 0.662i·29-s − 0.255·31-s + (−0.403 + 0.362i)35-s + 1.36·37-s + 0.799·41-s + 0.839·43-s + 1.31i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.851 + 0.524i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.851 + 0.524i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4320\)    =    \(2^{5} \cdot 3^{3} \cdot 5\)
Sign: $0.851 + 0.524i$
Analytic conductor: \(34.4953\)
Root analytic conductor: \(5.87327\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{4320} (3889, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 4320,\ (\ :1/2),\ 0.851 + 0.524i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.617346761\)
\(L(\frac12)\) \(\approx\) \(1.617346761\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (1.49 + 1.66i)T \)
good7 \( 1 + 1.43iT - 7T^{2} \)
11 \( 1 - 0.0984iT - 11T^{2} \)
13 \( 1 - 1.92T + 13T^{2} \)
17 \( 1 - 2.03iT - 17T^{2} \)
19 \( 1 + 0.999iT - 19T^{2} \)
23 \( 1 - 4.30iT - 23T^{2} \)
29 \( 1 - 3.56iT - 29T^{2} \)
31 \( 1 + 1.42T + 31T^{2} \)
37 \( 1 - 8.27T + 37T^{2} \)
41 \( 1 - 5.11T + 41T^{2} \)
43 \( 1 - 5.50T + 43T^{2} \)
47 \( 1 - 9.00iT - 47T^{2} \)
53 \( 1 - 4.93T + 53T^{2} \)
59 \( 1 + 6.27iT - 59T^{2} \)
61 \( 1 + 12.8iT - 61T^{2} \)
67 \( 1 + 1.89T + 67T^{2} \)
71 \( 1 + 12.3T + 71T^{2} \)
73 \( 1 + 5.62iT - 73T^{2} \)
79 \( 1 + 2.48T + 79T^{2} \)
83 \( 1 + 2.26T + 83T^{2} \)
89 \( 1 - 13.3T + 89T^{2} \)
97 \( 1 - 14.7iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.111987284590989689209161492828, −7.76798389112437665546127906812, −6.97929713388460763332912992290, −6.06158347244550990353712446202, −5.32728395593143025178294220366, −4.39504572582607645374699505624, −3.90661065532186911945088423826, −2.99906455615988935632760264117, −1.62643573311265266701706586719, −0.71572168017621088893666579715, 0.74705971641215113119419682716, 2.30465624955305066303354146146, 2.89728018499786553744896948662, 3.94077982979509551382483713848, 4.49766129435663359332531976323, 5.72947685366353445785988899656, 6.14637944791473272228044495357, 7.14292421023097488916400584983, 7.58626907201970600317918220428, 8.518869332113574128215776323321

Graph of the $Z$-function along the critical line