Properties

Label 4320.2.d.i.3889.7
Level $4320$
Weight $2$
Character 4320.3889
Analytic conductor $34.495$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4320,2,Mod(3889,4320)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4320, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4320.3889");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4320 = 2^{5} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4320.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.4953736732\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: 20.0.71899280742356107798058983489536.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3x^{18} + 8x^{16} - 24x^{14} + 56x^{12} - 92x^{10} + 224x^{8} - 384x^{6} + 512x^{4} - 768x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{20}\cdot 3^{4} \)
Twist minimal: no (minimal twist has level 1080)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3889.7
Root \(1.35662 - 0.399488i\) of defining polynomial
Character \(\chi\) \(=\) 4320.3889
Dual form 4320.2.d.i.3889.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.49578 - 1.66212i) q^{5} -1.43534i q^{7} +0.0984392i q^{11} +1.92218 q^{13} +2.03741i q^{17} -0.999558i q^{19} +4.30361i q^{23} +(-0.525254 + 4.97233i) q^{25} +3.56681i q^{29} -1.42267 q^{31} +(-2.38570 + 2.14696i) q^{35} +8.27330 q^{37} +5.11958 q^{41} +5.50577 q^{43} +9.00709i q^{47} +4.93980 q^{49} +4.93699 q^{53} +(0.163617 - 0.147244i) q^{55} -6.27246i q^{59} -12.8449i q^{61} +(-2.87517 - 3.19489i) q^{65} -1.89027 q^{67} -12.3259 q^{71} -5.62966i q^{73} +0.141294 q^{77} -2.48816 q^{79} -2.26930 q^{83} +(3.38640 - 3.04752i) q^{85} +13.3550 q^{89} -2.75898i q^{91} +(-1.66138 + 1.49512i) q^{95} +14.7457i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 4 q^{13} + 20 q^{25} - 12 q^{31} - 32 q^{37} - 12 q^{43} - 52 q^{49} + 28 q^{55} - 36 q^{79} - 44 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4320\mathbb{Z}\right)^\times\).

\(n\) \(2081\) \(2431\) \(3457\) \(3781\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.49578 1.66212i −0.668935 0.743321i
\(6\) 0 0
\(7\) 1.43534i 0.542507i −0.962508 0.271254i \(-0.912562\pi\)
0.962508 0.271254i \(-0.0874382\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.0984392i 0.0296805i 0.999890 + 0.0148403i \(0.00472398\pi\)
−0.999890 + 0.0148403i \(0.995276\pi\)
\(12\) 0 0
\(13\) 1.92218 0.533118 0.266559 0.963819i \(-0.414113\pi\)
0.266559 + 0.963819i \(0.414113\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.03741i 0.494144i 0.968997 + 0.247072i \(0.0794684\pi\)
−0.968997 + 0.247072i \(0.920532\pi\)
\(18\) 0 0
\(19\) 0.999558i 0.229314i −0.993405 0.114657i \(-0.963423\pi\)
0.993405 0.114657i \(-0.0365770\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.30361i 0.897364i 0.893691 + 0.448682i \(0.148106\pi\)
−0.893691 + 0.448682i \(0.851894\pi\)
\(24\) 0 0
\(25\) −0.525254 + 4.97233i −0.105051 + 0.994467i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.56681i 0.662339i 0.943571 + 0.331170i \(0.107443\pi\)
−0.943571 + 0.331170i \(0.892557\pi\)
\(30\) 0 0
\(31\) −1.42267 −0.255519 −0.127760 0.991805i \(-0.540779\pi\)
−0.127760 + 0.991805i \(0.540779\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.38570 + 2.14696i −0.403257 + 0.362902i
\(36\) 0 0
\(37\) 8.27330 1.36012 0.680061 0.733156i \(-0.261953\pi\)
0.680061 + 0.733156i \(0.261953\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.11958 0.799544 0.399772 0.916615i \(-0.369089\pi\)
0.399772 + 0.916615i \(0.369089\pi\)
\(42\) 0 0
\(43\) 5.50577 0.839623 0.419811 0.907611i \(-0.362096\pi\)
0.419811 + 0.907611i \(0.362096\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.00709i 1.31382i 0.753969 + 0.656910i \(0.228137\pi\)
−0.753969 + 0.656910i \(0.771863\pi\)
\(48\) 0 0
\(49\) 4.93980 0.705686
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.93699 0.678148 0.339074 0.940760i \(-0.389886\pi\)
0.339074 + 0.940760i \(0.389886\pi\)
\(54\) 0 0
\(55\) 0.163617 0.147244i 0.0220622 0.0198544i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 6.27246i 0.816605i −0.912847 0.408303i \(-0.866121\pi\)
0.912847 0.408303i \(-0.133879\pi\)
\(60\) 0 0
\(61\) 12.8449i 1.64463i −0.569035 0.822313i \(-0.692683\pi\)
0.569035 0.822313i \(-0.307317\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −2.87517 3.19489i −0.356621 0.396277i
\(66\) 0 0
\(67\) −1.89027 −0.230933 −0.115466 0.993311i \(-0.536836\pi\)
−0.115466 + 0.993311i \(0.536836\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −12.3259 −1.46281 −0.731406 0.681942i \(-0.761136\pi\)
−0.731406 + 0.681942i \(0.761136\pi\)
\(72\) 0 0
\(73\) 5.62966i 0.658902i −0.944173 0.329451i \(-0.893136\pi\)
0.944173 0.329451i \(-0.106864\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.141294 0.0161019
\(78\) 0 0
\(79\) −2.48816 −0.279939 −0.139970 0.990156i \(-0.544701\pi\)
−0.139970 + 0.990156i \(0.544701\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −2.26930 −0.249088 −0.124544 0.992214i \(-0.539747\pi\)
−0.124544 + 0.992214i \(0.539747\pi\)
\(84\) 0 0
\(85\) 3.38640 3.04752i 0.367307 0.330550i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.3550 1.41563 0.707815 0.706398i \(-0.249681\pi\)
0.707815 + 0.706398i \(0.249681\pi\)
\(90\) 0 0
\(91\) 2.75898i 0.289220i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.66138 + 1.49512i −0.170454 + 0.153396i
\(96\) 0 0
\(97\) 14.7457i 1.49720i 0.663024 + 0.748598i \(0.269273\pi\)
−0.663024 + 0.748598i \(0.730727\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 13.6218i 1.35542i 0.735328 + 0.677711i \(0.237028\pi\)
−0.735328 + 0.677711i \(0.762972\pi\)
\(102\) 0 0
\(103\) 10.8458i 1.06867i 0.845272 + 0.534336i \(0.179438\pi\)
−0.845272 + 0.534336i \(0.820562\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −12.4915 −1.20760 −0.603798 0.797137i \(-0.706347\pi\)
−0.603798 + 0.797137i \(0.706347\pi\)
\(108\) 0 0
\(109\) 16.5739i 1.58749i −0.608250 0.793745i \(-0.708128\pi\)
0.608250 0.793745i \(-0.291872\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.15123i 0.860875i −0.902620 0.430438i \(-0.858359\pi\)
0.902620 0.430438i \(-0.141641\pi\)
\(114\) 0 0
\(115\) 7.15309 6.43727i 0.667029 0.600279i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.92437 0.268077
\(120\) 0 0
\(121\) 10.9903 0.999119
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 9.05026 6.56451i 0.809480 0.587148i
\(126\) 0 0
\(127\) 10.9648i 0.972972i −0.873688 0.486486i \(-0.838278\pi\)
0.873688 0.486486i \(-0.161722\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 22.1895i 1.93870i −0.245678 0.969352i \(-0.579011\pi\)
0.245678 0.969352i \(-0.420989\pi\)
\(132\) 0 0
\(133\) −1.43471 −0.124405
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.7851i 0.921431i −0.887548 0.460716i \(-0.847593\pi\)
0.887548 0.460716i \(-0.152407\pi\)
\(138\) 0 0
\(139\) 15.5743i 1.32100i −0.750827 0.660499i \(-0.770345\pi\)
0.750827 0.660499i \(-0.229655\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0.189218i 0.0158232i
\(144\) 0 0
\(145\) 5.92844 5.33518i 0.492330 0.443062i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.17528i 0.342052i 0.985266 + 0.171026i \(0.0547083\pi\)
−0.985266 + 0.171026i \(0.945292\pi\)
\(150\) 0 0
\(151\) 3.18461 0.259160 0.129580 0.991569i \(-0.458637\pi\)
0.129580 + 0.991569i \(0.458637\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.12801 + 2.36464i 0.170926 + 0.189933i
\(156\) 0 0
\(157\) 20.4342 1.63083 0.815414 0.578878i \(-0.196509\pi\)
0.815414 + 0.578878i \(0.196509\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 6.17714 0.486827
\(162\) 0 0
\(163\) 19.5466 1.53101 0.765504 0.643432i \(-0.222490\pi\)
0.765504 + 0.643432i \(0.222490\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.16218i 0.0899322i 0.998989 + 0.0449661i \(0.0143180\pi\)
−0.998989 + 0.0449661i \(0.985682\pi\)
\(168\) 0 0
\(169\) −9.30521 −0.715786
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 7.38888 0.561766 0.280883 0.959742i \(-0.409373\pi\)
0.280883 + 0.959742i \(0.409373\pi\)
\(174\) 0 0
\(175\) 7.13699 + 0.753918i 0.539506 + 0.0569909i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 18.4318i 1.37766i 0.724924 + 0.688828i \(0.241875\pi\)
−0.724924 + 0.688828i \(0.758125\pi\)
\(180\) 0 0
\(181\) 4.75079i 0.353123i 0.984290 + 0.176562i \(0.0564975\pi\)
−0.984290 + 0.176562i \(0.943503\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −12.3751 13.7512i −0.909833 1.01101i
\(186\) 0 0
\(187\) −0.200561 −0.0146664
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.1635 −0.952479 −0.476240 0.879316i \(-0.658001\pi\)
−0.476240 + 0.879316i \(0.658001\pi\)
\(192\) 0 0
\(193\) 8.50034i 0.611868i −0.952053 0.305934i \(-0.901031\pi\)
0.952053 0.305934i \(-0.0989687\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.46451 0.318083 0.159042 0.987272i \(-0.449160\pi\)
0.159042 + 0.987272i \(0.449160\pi\)
\(198\) 0 0
\(199\) 19.2962 1.36787 0.683936 0.729542i \(-0.260267\pi\)
0.683936 + 0.729542i \(0.260267\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.11958 0.359324
\(204\) 0 0
\(205\) −7.65779 8.50933i −0.534843 0.594317i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0.0983957 0.00680617
\(210\) 0 0
\(211\) 22.4861i 1.54801i −0.633180 0.774005i \(-0.718251\pi\)
0.633180 0.774005i \(-0.281749\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −8.23545 9.15123i −0.561653 0.624109i
\(216\) 0 0
\(217\) 2.04201i 0.138621i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.91627i 0.263437i
\(222\) 0 0
\(223\) 27.6890i 1.85419i 0.374822 + 0.927097i \(0.377704\pi\)
−0.374822 + 0.927097i \(0.622296\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.25244 0.547734 0.273867 0.961768i \(-0.411697\pi\)
0.273867 + 0.961768i \(0.411697\pi\)
\(228\) 0 0
\(229\) 6.48061i 0.428251i 0.976806 + 0.214125i \(0.0686902\pi\)
−0.976806 + 0.214125i \(0.931310\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.27937i 0.542399i −0.962523 0.271200i \(-0.912580\pi\)
0.962523 0.271200i \(-0.0874204\pi\)
\(234\) 0 0
\(235\) 14.9708 13.4727i 0.976589 0.878861i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 26.3117 1.70196 0.850980 0.525198i \(-0.176009\pi\)
0.850980 + 0.525198i \(0.176009\pi\)
\(240\) 0 0
\(241\) −24.8023 −1.59765 −0.798827 0.601560i \(-0.794546\pi\)
−0.798827 + 0.601560i \(0.794546\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −7.38888 8.21052i −0.472058 0.524551i
\(246\) 0 0
\(247\) 1.92133i 0.122252i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0.277559i 0.0175194i −0.999962 0.00875968i \(-0.997212\pi\)
0.999962 0.00875968i \(-0.00278833\pi\)
\(252\) 0 0
\(253\) −0.423644 −0.0266343
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.2367i 0.888062i 0.896011 + 0.444031i \(0.146452\pi\)
−0.896011 + 0.444031i \(0.853548\pi\)
\(258\) 0 0
\(259\) 11.8750i 0.737876i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 17.1353i 1.05661i −0.849056 0.528303i \(-0.822828\pi\)
0.849056 0.528303i \(-0.177172\pi\)
\(264\) 0 0
\(265\) −7.38468 8.20585i −0.453637 0.504082i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 14.2417i 0.868333i −0.900833 0.434167i \(-0.857043\pi\)
0.900833 0.434167i \(-0.142957\pi\)
\(270\) 0 0
\(271\) 16.1177 0.979078 0.489539 0.871981i \(-0.337165\pi\)
0.489539 + 0.871981i \(0.337165\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.489473 0.0517056i −0.0295163 0.00311797i
\(276\) 0 0
\(277\) 15.6307 0.939156 0.469578 0.882891i \(-0.344406\pi\)
0.469578 + 0.882891i \(0.344406\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 5.65195 0.337167 0.168583 0.985687i \(-0.446081\pi\)
0.168583 + 0.985687i \(0.446081\pi\)
\(282\) 0 0
\(283\) 16.5466 0.983593 0.491796 0.870710i \(-0.336340\pi\)
0.491796 + 0.870710i \(0.336340\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 7.34833i 0.433758i
\(288\) 0 0
\(289\) 12.8490 0.755822
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −20.2544 −1.18328 −0.591638 0.806203i \(-0.701519\pi\)
−0.591638 + 0.806203i \(0.701519\pi\)
\(294\) 0 0
\(295\) −10.4256 + 9.38226i −0.606999 + 0.546256i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.27232i 0.478401i
\(300\) 0 0
\(301\) 7.90265i 0.455501i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −21.3498 + 19.2133i −1.22248 + 1.10015i
\(306\) 0 0
\(307\) −5.50772 −0.314342 −0.157171 0.987571i \(-0.550237\pi\)
−0.157171 + 0.987571i \(0.550237\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.57632 −0.486318 −0.243159 0.969986i \(-0.578184\pi\)
−0.243159 + 0.969986i \(0.578184\pi\)
\(312\) 0 0
\(313\) 9.83297i 0.555793i 0.960611 + 0.277896i \(0.0896372\pi\)
−0.960611 + 0.277896i \(0.910363\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −7.38888 −0.415001 −0.207500 0.978235i \(-0.566533\pi\)
−0.207500 + 0.978235i \(0.566533\pi\)
\(318\) 0 0
\(319\) −0.351114 −0.0196586
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.03651 0.113314
\(324\) 0 0
\(325\) −1.00964 + 9.55774i −0.0560045 + 0.530168i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 12.9282 0.712757
\(330\) 0 0
\(331\) 5.64764i 0.310422i −0.987881 0.155211i \(-0.950394\pi\)
0.987881 0.155211i \(-0.0496058\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 2.82743 + 3.14184i 0.154479 + 0.171657i
\(336\) 0 0
\(337\) 7.91137i 0.430960i 0.976508 + 0.215480i \(0.0691315\pi\)
−0.976508 + 0.215480i \(0.930868\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.140046i 0.00758394i
\(342\) 0 0
\(343\) 17.1377i 0.925347i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 25.8465 1.38751 0.693756 0.720210i \(-0.255954\pi\)
0.693756 + 0.720210i \(0.255954\pi\)
\(348\) 0 0
\(349\) 13.2897i 0.711382i −0.934604 0.355691i \(-0.884246\pi\)
0.934604 0.355691i \(-0.115754\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 28.1761i 1.49966i 0.661629 + 0.749831i \(0.269865\pi\)
−0.661629 + 0.749831i \(0.730135\pi\)
\(354\) 0 0
\(355\) 18.4369 + 20.4870i 0.978527 + 1.08734i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 27.5477 1.45391 0.726956 0.686684i \(-0.240934\pi\)
0.726956 + 0.686684i \(0.240934\pi\)
\(360\) 0 0
\(361\) 18.0009 0.947415
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.35715 + 8.42077i −0.489776 + 0.440763i
\(366\) 0 0
\(367\) 15.8778i 0.828815i 0.910091 + 0.414407i \(0.136011\pi\)
−0.910091 + 0.414407i \(0.863989\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 7.08626i 0.367900i
\(372\) 0 0
\(373\) 4.85063 0.251156 0.125578 0.992084i \(-0.459921\pi\)
0.125578 + 0.992084i \(0.459921\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.85605i 0.353105i
\(378\) 0 0
\(379\) 16.0191i 0.822846i 0.911445 + 0.411423i \(0.134968\pi\)
−0.911445 + 0.411423i \(0.865032\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.83627i 0.349317i 0.984629 + 0.174658i \(0.0558821\pi\)
−0.984629 + 0.174658i \(0.944118\pi\)
\(384\) 0 0
\(385\) −0.211345 0.234846i −0.0107711 0.0119689i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 15.1004i 0.765623i −0.923827 0.382811i \(-0.874956\pi\)
0.923827 0.382811i \(-0.125044\pi\)
\(390\) 0 0
\(391\) −8.76820 −0.443427
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.72175 + 4.13560i 0.187261 + 0.208085i
\(396\) 0 0
\(397\) 25.1307 1.26127 0.630636 0.776079i \(-0.282794\pi\)
0.630636 + 0.776079i \(0.282794\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −27.2424 −1.36042 −0.680211 0.733016i \(-0.738112\pi\)
−0.680211 + 0.733016i \(0.738112\pi\)
\(402\) 0 0
\(403\) −2.73463 −0.136222
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.814417i 0.0403691i
\(408\) 0 0
\(409\) −2.07322 −0.102514 −0.0512571 0.998685i \(-0.516323\pi\)
−0.0512571 + 0.998685i \(0.516323\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.00311 −0.443014
\(414\) 0 0
\(415\) 3.39439 + 3.77184i 0.166624 + 0.185152i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 28.2449i 1.37985i 0.723880 + 0.689926i \(0.242357\pi\)
−0.723880 + 0.689926i \(0.757643\pi\)
\(420\) 0 0
\(421\) 4.94229i 0.240873i −0.992721 0.120436i \(-0.961571\pi\)
0.992721 0.120436i \(-0.0384294\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10.1307 1.07016i −0.491410 0.0519102i
\(426\) 0 0
\(427\) −18.4369 −0.892222
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.01109 −0.241376 −0.120688 0.992691i \(-0.538510\pi\)
−0.120688 + 0.992691i \(0.538510\pi\)
\(432\) 0 0
\(433\) 7.79967i 0.374828i −0.982281 0.187414i \(-0.939989\pi\)
0.982281 0.187414i \(-0.0600106\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.30171 0.205779
\(438\) 0 0
\(439\) −34.9376 −1.66748 −0.833739 0.552158i \(-0.813804\pi\)
−0.833739 + 0.552158i \(0.813804\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −23.6112 −1.12180 −0.560900 0.827883i \(-0.689545\pi\)
−0.560900 + 0.827883i \(0.689545\pi\)
\(444\) 0 0
\(445\) −19.9763 22.1976i −0.946965 1.05227i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.39141 0.443208 0.221604 0.975137i \(-0.428871\pi\)
0.221604 + 0.975137i \(0.428871\pi\)
\(450\) 0 0
\(451\) 0.503967i 0.0237309i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.58575 + 4.12685i −0.214983 + 0.193470i
\(456\) 0 0
\(457\) 31.0457i 1.45226i 0.687560 + 0.726128i \(0.258682\pi\)
−0.687560 + 0.726128i \(0.741318\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0.867775i 0.0404163i −0.999796 0.0202081i \(-0.993567\pi\)
0.999796 0.0202081i \(-0.00643289\pi\)
\(462\) 0 0
\(463\) 31.0297i 1.44207i −0.692898 0.721035i \(-0.743667\pi\)
0.692898 0.721035i \(-0.256333\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −27.7060 −1.28208 −0.641040 0.767507i \(-0.721497\pi\)
−0.641040 + 0.767507i \(0.721497\pi\)
\(468\) 0 0
\(469\) 2.71317i 0.125283i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0.541984i 0.0249204i
\(474\) 0 0
\(475\) 4.97014 + 0.525022i 0.228046 + 0.0240897i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 30.8989 1.41181 0.705903 0.708309i \(-0.250541\pi\)
0.705903 + 0.708309i \(0.250541\pi\)
\(480\) 0 0
\(481\) 15.9028 0.725105
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 24.5090 22.0563i 1.11290 1.00153i
\(486\) 0 0
\(487\) 21.5162i 0.974991i −0.873125 0.487496i \(-0.837910\pi\)
0.873125 0.487496i \(-0.162090\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 9.74298i 0.439695i −0.975534 0.219847i \(-0.929444\pi\)
0.975534 0.219847i \(-0.0705559\pi\)
\(492\) 0 0
\(493\) −7.26704 −0.327291
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 17.6918i 0.793586i
\(498\) 0 0
\(499\) 6.91181i 0.309415i 0.987960 + 0.154708i \(0.0494435\pi\)
−0.987960 + 0.154708i \(0.950556\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 15.3213i 0.683142i 0.939856 + 0.341571i \(0.110959\pi\)
−0.939856 + 0.341571i \(0.889041\pi\)
\(504\) 0 0
\(505\) 22.6411 20.3753i 1.00751 0.906690i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.8669i 1.27950i 0.768582 + 0.639752i \(0.220963\pi\)
−0.768582 + 0.639752i \(0.779037\pi\)
\(510\) 0 0
\(511\) −8.08048 −0.357459
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18.0270 16.2230i 0.794365 0.714872i
\(516\) 0 0
\(517\) −0.886651 −0.0389949
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −0.525190 −0.0230090 −0.0115045 0.999934i \(-0.503662\pi\)
−0.0115045 + 0.999934i \(0.503662\pi\)
\(522\) 0 0
\(523\) −11.1631 −0.488127 −0.244064 0.969759i \(-0.578481\pi\)
−0.244064 + 0.969759i \(0.578481\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.89856i 0.126263i
\(528\) 0 0
\(529\) 4.47895 0.194737
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 9.84076 0.426251
\(534\) 0 0
\(535\) 18.6846 + 20.7623i 0.807804 + 0.897631i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.486270i 0.0209451i
\(540\) 0 0
\(541\) 4.30602i 0.185130i −0.995707 0.0925651i \(-0.970493\pi\)
0.995707 0.0925651i \(-0.0295066\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −27.5477 + 24.7910i −1.18001 + 1.06193i
\(546\) 0 0
\(547\) −40.0149 −1.71091 −0.855456 0.517875i \(-0.826723\pi\)
−0.855456 + 0.517875i \(0.826723\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3.56523 0.151884
\(552\) 0 0
\(553\) 3.57135i 0.151869i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −19.0641 −0.807771 −0.403886 0.914809i \(-0.632341\pi\)
−0.403886 + 0.914809i \(0.632341\pi\)
\(558\) 0 0
\(559\) 10.5831 0.447618
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.40993 0.270147 0.135073 0.990836i \(-0.456873\pi\)
0.135073 + 0.990836i \(0.456873\pi\)
\(564\) 0 0
\(565\) −15.2104 + 13.6883i −0.639906 + 0.575870i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 37.1532 1.55754 0.778771 0.627308i \(-0.215843\pi\)
0.778771 + 0.627308i \(0.215843\pi\)
\(570\) 0 0
\(571\) 28.7752i 1.20421i 0.798418 + 0.602103i \(0.205670\pi\)
−0.798418 + 0.602103i \(0.794330\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −21.3990 2.26049i −0.892399 0.0942689i
\(576\) 0 0
\(577\) 20.0173i 0.833332i −0.909060 0.416666i \(-0.863198\pi\)
0.909060 0.416666i \(-0.136802\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3.25722i 0.135132i
\(582\) 0 0
\(583\) 0.485994i 0.0201278i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.91407 0.326649 0.163324 0.986572i \(-0.447778\pi\)
0.163324 + 0.986572i \(0.447778\pi\)
\(588\) 0 0
\(589\) 1.42204i 0.0585942i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.4728i 0.594325i 0.954827 + 0.297163i \(0.0960404\pi\)
−0.954827 + 0.297163i \(0.903960\pi\)
\(594\) 0 0
\(595\) −4.37423 4.86064i −0.179326 0.199267i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 20.6597 0.844133 0.422067 0.906565i \(-0.361305\pi\)
0.422067 + 0.906565i \(0.361305\pi\)
\(600\) 0 0
\(601\) −32.3742 −1.32057 −0.660286 0.751014i \(-0.729565\pi\)
−0.660286 + 0.751014i \(0.729565\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −16.4391 18.2672i −0.668346 0.742666i
\(606\) 0 0
\(607\) 41.1110i 1.66865i −0.551276 0.834323i \(-0.685859\pi\)
0.551276 0.834323i \(-0.314141\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 17.3133i 0.700420i
\(612\) 0 0
\(613\) 9.54708 0.385603 0.192801 0.981238i \(-0.438243\pi\)
0.192801 + 0.981238i \(0.438243\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26.7796i 1.07811i −0.842272 0.539053i \(-0.818782\pi\)
0.842272 0.539053i \(-0.181218\pi\)
\(618\) 0 0
\(619\) 19.1724i 0.770602i −0.922791 0.385301i \(-0.874098\pi\)
0.922791 0.385301i \(-0.125902\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 19.1690i 0.767990i
\(624\) 0 0
\(625\) −24.4482 5.22348i −0.977929 0.208939i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 16.8561i 0.672095i
\(630\) 0 0
\(631\) 9.42121 0.375052 0.187526 0.982260i \(-0.439953\pi\)
0.187526 + 0.982260i \(0.439953\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −18.2248 + 16.4010i −0.723230 + 0.650856i
\(636\) 0 0
\(637\) 9.49520 0.376214
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −36.5224 −1.44255 −0.721275 0.692649i \(-0.756443\pi\)
−0.721275 + 0.692649i \(0.756443\pi\)
\(642\) 0 0
\(643\) −11.6563 −0.459681 −0.229840 0.973228i \(-0.573820\pi\)
−0.229840 + 0.973228i \(0.573820\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 40.2063i 1.58067i −0.612673 0.790337i \(-0.709906\pi\)
0.612673 0.790337i \(-0.290094\pi\)
\(648\) 0 0
\(649\) 0.617456 0.0242373
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.69902 −0.340419 −0.170209 0.985408i \(-0.554444\pi\)
−0.170209 + 0.985408i \(0.554444\pi\)
\(654\) 0 0
\(655\) −36.8815 + 33.1907i −1.44108 + 1.29687i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 22.2085i 0.865122i −0.901605 0.432561i \(-0.857610\pi\)
0.901605 0.432561i \(-0.142390\pi\)
\(660\) 0 0
\(661\) 32.1865i 1.25191i 0.779859 + 0.625956i \(0.215291\pi\)
−0.779859 + 0.625956i \(0.784709\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.14601 + 2.38465i 0.0832187 + 0.0924726i
\(666\) 0 0
\(667\) −15.3501 −0.594360
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.26445 0.0488134
\(672\) 0 0
\(673\) 39.8887i 1.53760i 0.639492 + 0.768798i \(0.279145\pi\)
−0.639492 + 0.768798i \(0.720855\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −4.46451 −0.171585 −0.0857925 0.996313i \(-0.527342\pi\)
−0.0857925 + 0.996313i \(0.527342\pi\)
\(678\) 0 0
\(679\) 21.1650 0.812240
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 42.7166 1.63450 0.817252 0.576281i \(-0.195497\pi\)
0.817252 + 0.576281i \(0.195497\pi\)
\(684\) 0 0
\(685\) −17.9260 + 16.1322i −0.684919 + 0.616378i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 9.48981 0.361533
\(690\) 0 0
\(691\) 14.4881i 0.551153i 0.961279 + 0.275577i \(0.0888687\pi\)
−0.961279 + 0.275577i \(0.911131\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −25.8863 + 23.2959i −0.981925 + 0.883662i
\(696\) 0 0
\(697\) 10.4307i 0.395090i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 27.2562i 1.02945i −0.857355 0.514726i \(-0.827894\pi\)
0.857355 0.514726i \(-0.172106\pi\)
\(702\) 0 0
\(703\) 8.26964i 0.311895i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 19.5520 0.735327
\(708\) 0 0
\(709\) 18.4360i 0.692379i 0.938165 + 0.346190i \(0.112525\pi\)
−0.938165 + 0.346190i \(0.887475\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.12261i 0.229294i
\(714\) 0 0
\(715\) 0.314502 0.283030i 0.0117617 0.0105847i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 20.2329 0.754561 0.377280 0.926099i \(-0.376859\pi\)
0.377280 + 0.926099i \(0.376859\pi\)
\(720\) 0 0
\(721\) 15.5674 0.579762
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −17.7354 1.87348i −0.658675 0.0695793i
\(726\) 0 0
\(727\) 3.89252i 0.144366i −0.997391 0.0721828i \(-0.977003\pi\)
0.997391 0.0721828i \(-0.0229965\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 11.2175i 0.414894i
\(732\) 0 0
\(733\) −35.3194 −1.30455 −0.652276 0.757982i \(-0.726186\pi\)
−0.652276 + 0.757982i \(0.726186\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.186076i 0.00685421i
\(738\) 0 0
\(739\) 38.5052i 1.41644i 0.705993 + 0.708219i \(0.250501\pi\)
−0.705993 + 0.708219i \(0.749499\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.4158i 0.712295i −0.934430 0.356148i \(-0.884090\pi\)
0.934430 0.356148i \(-0.115910\pi\)
\(744\) 0 0
\(745\) 6.93980 6.24532i 0.254255 0.228811i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 17.9295i 0.655130i
\(750\) 0 0
\(751\) −36.4832 −1.33129 −0.665646 0.746267i \(-0.731844\pi\)
−0.665646 + 0.746267i \(0.731844\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.76349 5.29319i −0.173361 0.192639i
\(756\) 0 0
\(757\) −10.9870 −0.399329 −0.199664 0.979864i \(-0.563985\pi\)
−0.199664 + 0.979864i \(0.563985\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 12.1991 0.442216 0.221108 0.975249i \(-0.429033\pi\)
0.221108 + 0.975249i \(0.429033\pi\)
\(762\) 0 0
\(763\) −23.7892 −0.861225
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 12.0568i 0.435347i
\(768\) 0 0
\(769\) −13.2424 −0.477531 −0.238766 0.971077i \(-0.576743\pi\)
−0.238766 + 0.971077i \(0.576743\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.66412 0.239692 0.119846 0.992793i \(-0.461760\pi\)
0.119846 + 0.992793i \(0.461760\pi\)
\(774\) 0 0
\(775\) 0.747264 7.07399i 0.0268425 0.254105i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.11732i 0.183347i
\(780\) 0 0
\(781\) 1.21335i 0.0434170i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −30.5652 33.9640i −1.09092 1.21223i
\(786\) 0 0
\(787\) 0.163075 0.00581301 0.00290650 0.999996i \(-0.499075\pi\)
0.00290650 + 0.999996i \(0.499075\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −13.1351 −0.467031
\(792\) 0 0
\(793\) 24.6903i 0.876780i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 46.0750 1.63206 0.816031 0.578009i \(-0.196170\pi\)
0.816031 + 0.578009i \(0.196170\pi\)
\(798\) 0 0
\(799\) −18.3511 −0.649216
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0.554180 0.0195566
\(804\) 0 0
\(805\) −9.23967 10.2671i −0.325656 0.361868i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 48.0231 1.68840 0.844201 0.536026i \(-0.180075\pi\)
0.844201 + 0.536026i \(0.180075\pi\)
\(810\) 0 0
\(811\) 19.0427i 0.668680i 0.942453 + 0.334340i \(0.108513\pi\)
−0.942453 + 0.334340i \(0.891487\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −29.2375 32.4887i −1.02414 1.13803i
\(816\) 0 0
\(817\) 5.50334i 0.192538i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 26.1910i 0.914073i −0.889448 0.457037i \(-0.848911\pi\)
0.889448 0.457037i \(-0.151089\pi\)
\(822\) 0 0
\(823\) 11.9142i 0.415302i 0.978203 + 0.207651i \(0.0665819\pi\)
−0.978203 + 0.207651i \(0.933418\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −20.2443 −0.703965 −0.351982 0.936007i \(-0.614492\pi\)
−0.351982 + 0.936007i \(0.614492\pi\)
\(828\) 0 0
\(829\) 32.5375i 1.13007i 0.825066 + 0.565037i \(0.191138\pi\)
−0.825066 + 0.565037i \(0.808862\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 10.0644i 0.348710i
\(834\) 0 0
\(835\) 1.93168 1.73837i 0.0668484 0.0601588i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 40.6959 1.40498 0.702489 0.711695i \(-0.252072\pi\)
0.702489 + 0.711695i \(0.252072\pi\)
\(840\) 0 0
\(841\) 16.2779 0.561307
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 13.9186 + 15.4663i 0.478814 + 0.532058i
\(846\) 0 0
\(847\) 15.7748i 0.542029i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 35.6050i 1.22052i
\(852\) 0 0
\(853\) −18.5346 −0.634611 −0.317306 0.948323i \(-0.602778\pi\)
−0.317306 + 0.948323i \(0.602778\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.9004i 1.60209i −0.598607 0.801043i \(-0.704279\pi\)
0.598607 0.801043i \(-0.295721\pi\)
\(858\) 0 0
\(859\) 32.2074i 1.09890i 0.835526 + 0.549452i \(0.185163\pi\)
−0.835526 + 0.549452i \(0.814837\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 23.5848i 0.802836i 0.915895 + 0.401418i \(0.131483\pi\)
−0.915895 + 0.401418i \(0.868517\pi\)
\(864\) 0 0
\(865\) −11.0522 12.2812i −0.375785 0.417572i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0.244932i 0.00830875i
\(870\) 0 0
\(871\) −3.63344 −0.123114
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −9.42230 12.9902i −0.318532 0.439149i
\(876\) 0 0
\(877\) 6.16767 0.208267 0.104134 0.994563i \(-0.466793\pi\)
0.104134 + 0.994563i \(0.466793\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −48.3515 −1.62900 −0.814502 0.580161i \(-0.802990\pi\)
−0.814502 + 0.580161i \(0.802990\pi\)
\(882\) 0 0
\(883\) −7.17454 −0.241443 −0.120721 0.992686i \(-0.538521\pi\)
−0.120721 + 0.992686i \(0.538521\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 33.8797i 1.13757i 0.822486 + 0.568785i \(0.192586\pi\)
−0.822486 + 0.568785i \(0.807414\pi\)
\(888\) 0 0
\(889\) −15.7383 −0.527845
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 9.00311 0.301278
\(894\) 0 0
\(895\) 30.6358 27.5700i 1.02404 0.921564i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 5.07439i 0.169240i
\(900\) 0 0
\(901\) 10.0587i 0.335103i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 7.89635 7.10615i 0.262484 0.236217i
\(906\) 0 0
\(907\) −25.4054 −0.843573 −0.421787 0.906695i \(-0.638597\pi\)
−0.421787 + 0.906695i \(0.638597\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.7243 −0.421574 −0.210787 0.977532i \(-0.567603\pi\)
−0.210787 + 0.977532i \(0.567603\pi\)
\(912\) 0 0
\(913\) 0.223388i 0.00739307i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −31.8494 −1.05176
\(918\) 0 0
\(919\) −10.1070 −0.333399 −0.166699 0.986008i \(-0.553311\pi\)
−0.166699 + 0.986008i \(0.553311\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −23.6926 −0.779851
\(924\) 0 0
\(925\) −4.34559 + 41.1376i −0.142882 + 1.35260i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 28.2928 0.928257 0.464129 0.885768i \(-0.346368\pi\)
0.464129 + 0.885768i \(0.346368\pi\)
\(930\) 0 0
\(931\) 4.93762i 0.161824i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.299996 + 0.333355i 0.00981091 + 0.0109019i
\(936\) 0 0
\(937\) 21.5800i 0.704987i −0.935814 0.352493i \(-0.885334\pi\)
0.935814 0.352493i \(-0.114666\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 25.5990i 0.834503i −0.908791 0.417252i \(-0.862993\pi\)
0.908791 0.417252i \(-0.137007\pi\)
\(942\) 0 0
\(943\) 22.0327i 0.717482i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26.0177 0.845461 0.422730 0.906256i \(-0.361072\pi\)
0.422730 + 0.906256i \(0.361072\pi\)
\(948\) 0 0
\(949\) 10.8212i 0.351272i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 58.0689i 1.88104i −0.339745 0.940518i \(-0.610341\pi\)
0.339745 0.940518i \(-0.389659\pi\)
\(954\) 0 0
\(955\) 19.6898 + 21.8793i 0.637147 + 0.707997i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −15.4802 −0.499883
\(960\) 0 0
\(961\) −28.9760 −0.934710
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −14.1285 + 12.7147i −0.454814 + 0.409300i
\(966\) 0 0
\(967\) 29.7133i 0.955516i 0.878491 + 0.477758i \(0.158550\pi\)
−0.878491 + 0.477758i \(0.841450\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 29.8380i 0.957547i −0.877938 0.478774i \(-0.841081\pi\)
0.877938 0.478774i \(-0.158919\pi\)
\(972\) 0 0
\(973\) −22.3545 −0.716651
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 15.4533i 0.494394i 0.968965 + 0.247197i \(0.0795094\pi\)
−0.968965 + 0.247197i \(0.920491\pi\)
\(978\) 0 0
\(979\) 1.31466i 0.0420167i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 5.17515i 0.165062i 0.996589 + 0.0825309i \(0.0263003\pi\)
−0.996589 + 0.0825309i \(0.973700\pi\)
\(984\) 0 0
\(985\) −6.67795 7.42053i −0.212777 0.236438i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 23.6947i 0.753448i
\(990\) 0 0
\(991\) 18.2392 0.579388 0.289694 0.957119i \(-0.406446\pi\)
0.289694 + 0.957119i \(0.406446\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −28.8630 32.0725i −0.915018 1.01677i
\(996\) 0 0
\(997\) −40.5033 −1.28275 −0.641377 0.767226i \(-0.721636\pi\)
−0.641377 + 0.767226i \(0.721636\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4320.2.d.i.3889.7 20
3.2 odd 2 inner 4320.2.d.i.3889.14 20
4.3 odd 2 1080.2.d.i.109.4 yes 20
5.4 even 2 4320.2.d.j.3889.13 20
8.3 odd 2 1080.2.d.j.109.18 yes 20
8.5 even 2 4320.2.d.j.3889.14 20
12.11 even 2 1080.2.d.i.109.17 yes 20
15.14 odd 2 4320.2.d.j.3889.8 20
20.19 odd 2 1080.2.d.j.109.17 yes 20
24.5 odd 2 4320.2.d.j.3889.7 20
24.11 even 2 1080.2.d.j.109.3 yes 20
40.19 odd 2 1080.2.d.i.109.3 20
40.29 even 2 inner 4320.2.d.i.3889.8 20
60.59 even 2 1080.2.d.j.109.4 yes 20
120.29 odd 2 inner 4320.2.d.i.3889.13 20
120.59 even 2 1080.2.d.i.109.18 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.d.i.109.3 20 40.19 odd 2
1080.2.d.i.109.4 yes 20 4.3 odd 2
1080.2.d.i.109.17 yes 20 12.11 even 2
1080.2.d.i.109.18 yes 20 120.59 even 2
1080.2.d.j.109.3 yes 20 24.11 even 2
1080.2.d.j.109.4 yes 20 60.59 even 2
1080.2.d.j.109.17 yes 20 20.19 odd 2
1080.2.d.j.109.18 yes 20 8.3 odd 2
4320.2.d.i.3889.7 20 1.1 even 1 trivial
4320.2.d.i.3889.8 20 40.29 even 2 inner
4320.2.d.i.3889.13 20 120.29 odd 2 inner
4320.2.d.i.3889.14 20 3.2 odd 2 inner
4320.2.d.j.3889.7 20 24.5 odd 2
4320.2.d.j.3889.8 20 15.14 odd 2
4320.2.d.j.3889.13 20 5.4 even 2
4320.2.d.j.3889.14 20 8.5 even 2