Properties

Label 1080.2.d.j.109.18
Level $1080$
Weight $2$
Character 1080.109
Analytic conductor $8.624$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1080,2,Mod(109,1080)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1080, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1080.109");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1080.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.62384341830\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: 20.0.71899280742356107798058983489536.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 3x^{18} + 8x^{16} - 24x^{14} + 56x^{12} - 92x^{10} + 224x^{8} - 384x^{6} + 512x^{4} - 768x^{2} + 1024 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 109.18
Root \(-1.35662 - 0.399488i\) of defining polynomial
Character \(\chi\) \(=\) 1080.109
Dual form 1080.2.d.j.109.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35662 + 0.399488i) q^{2} +(1.68082 + 1.08390i) q^{4} +(1.49578 + 1.66212i) q^{5} +1.43534i q^{7} +(1.84722 + 2.14191i) q^{8} +(1.36521 + 2.85240i) q^{10} +0.0984392i q^{11} -1.92218 q^{13} +(-0.573401 + 1.94721i) q^{14} +(1.65030 + 3.64369i) q^{16} +2.03741i q^{17} -0.999558i q^{19} +(0.712569 + 4.41500i) q^{20} +(-0.0393253 + 0.133544i) q^{22} -4.30361i q^{23} +(-0.525254 + 4.97233i) q^{25} +(-2.60767 - 0.767889i) q^{26} +(-1.55577 + 2.41255i) q^{28} -3.56681i q^{29} +1.42267 q^{31} +(0.783216 + 5.60237i) q^{32} +(-0.813920 + 2.76398i) q^{34} +(-2.38570 + 2.14696i) q^{35} -8.27330 q^{37} +(0.399311 - 1.35602i) q^{38} +(-0.797057 + 6.27413i) q^{40} +5.11958 q^{41} +5.50577 q^{43} +(-0.106699 + 0.165458i) q^{44} +(1.71924 - 5.83835i) q^{46} -9.00709i q^{47} +4.93980 q^{49} +(-2.69896 + 6.53572i) q^{50} +(-3.23084 - 2.08346i) q^{52} -4.93699 q^{53} +(-0.163617 + 0.147244i) q^{55} +(-3.07437 + 2.65139i) q^{56} +(1.42490 - 4.83879i) q^{58} -6.27246i q^{59} +12.8449i q^{61} +(1.93002 + 0.568340i) q^{62} +(-1.17556 + 7.91316i) q^{64} +(-2.87517 - 3.19489i) q^{65} -1.89027 q^{67} +(-2.20835 + 3.42451i) q^{68} +(-4.09416 + 1.95954i) q^{70} +12.3259 q^{71} -5.62966i q^{73} +(-11.2237 - 3.30508i) q^{74} +(1.08343 - 1.68008i) q^{76} -0.141294 q^{77} +2.48816 q^{79} +(-3.58774 + 8.19317i) q^{80} +(6.94531 + 2.04521i) q^{82} -2.26930 q^{83} +(-3.38640 + 3.04752i) q^{85} +(7.46923 + 2.19949i) q^{86} +(-0.210848 + 0.181839i) q^{88} +13.3550 q^{89} -2.75898i q^{91} +(4.66470 - 7.23359i) q^{92} +(3.59823 - 12.2192i) q^{94} +(1.66138 - 1.49512i) q^{95} +14.7457i q^{97} +(6.70142 + 1.97339i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{4} - 2 q^{10} + 4 q^{13} - 14 q^{16} + 34 q^{22} + 20 q^{25} - 20 q^{28} + 12 q^{31} + 6 q^{34} + 32 q^{37} - 26 q^{40} - 12 q^{43} + 2 q^{46} - 52 q^{49} + 50 q^{52} - 28 q^{55} - 6 q^{58}+ \cdots - 22 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35662 + 0.399488i 0.959273 + 0.282481i
\(3\) 0 0
\(4\) 1.68082 + 1.08390i 0.840409 + 0.541952i
\(5\) 1.49578 + 1.66212i 0.668935 + 0.743321i
\(6\) 0 0
\(7\) 1.43534i 0.542507i 0.962508 + 0.271254i \(0.0874382\pi\)
−0.962508 + 0.271254i \(0.912562\pi\)
\(8\) 1.84722 + 2.14191i 0.653091 + 0.757280i
\(9\) 0 0
\(10\) 1.36521 + 2.85240i 0.431718 + 0.902009i
\(11\) 0.0984392i 0.0296805i 0.999890 + 0.0148403i \(0.00472398\pi\)
−0.999890 + 0.0148403i \(0.995276\pi\)
\(12\) 0 0
\(13\) −1.92218 −0.533118 −0.266559 0.963819i \(-0.585887\pi\)
−0.266559 + 0.963819i \(0.585887\pi\)
\(14\) −0.573401 + 1.94721i −0.153248 + 0.520413i
\(15\) 0 0
\(16\) 1.65030 + 3.64369i 0.412576 + 0.910923i
\(17\) 2.03741i 0.494144i 0.968997 + 0.247072i \(0.0794684\pi\)
−0.968997 + 0.247072i \(0.920532\pi\)
\(18\) 0 0
\(19\) 0.999558i 0.229314i −0.993405 0.114657i \(-0.963423\pi\)
0.993405 0.114657i \(-0.0365770\pi\)
\(20\) 0.712569 + 4.41500i 0.159335 + 0.987225i
\(21\) 0 0
\(22\) −0.0393253 + 0.133544i −0.00838418 + 0.0284717i
\(23\) 4.30361i 0.897364i −0.893691 0.448682i \(-0.851894\pi\)
0.893691 0.448682i \(-0.148106\pi\)
\(24\) 0 0
\(25\) −0.525254 + 4.97233i −0.105051 + 0.994467i
\(26\) −2.60767 0.767889i −0.511405 0.150595i
\(27\) 0 0
\(28\) −1.55577 + 2.41255i −0.294013 + 0.455928i
\(29\) 3.56681i 0.662339i −0.943571 0.331170i \(-0.892557\pi\)
0.943571 0.331170i \(-0.107443\pi\)
\(30\) 0 0
\(31\) 1.42267 0.255519 0.127760 0.991805i \(-0.459221\pi\)
0.127760 + 0.991805i \(0.459221\pi\)
\(32\) 0.783216 + 5.60237i 0.138454 + 0.990369i
\(33\) 0 0
\(34\) −0.813920 + 2.76398i −0.139586 + 0.474019i
\(35\) −2.38570 + 2.14696i −0.403257 + 0.362902i
\(36\) 0 0
\(37\) −8.27330 −1.36012 −0.680061 0.733156i \(-0.738047\pi\)
−0.680061 + 0.733156i \(0.738047\pi\)
\(38\) 0.399311 1.35602i 0.0647769 0.219975i
\(39\) 0 0
\(40\) −0.797057 + 6.27413i −0.126026 + 0.992027i
\(41\) 5.11958 0.799544 0.399772 0.916615i \(-0.369089\pi\)
0.399772 + 0.916615i \(0.369089\pi\)
\(42\) 0 0
\(43\) 5.50577 0.839623 0.419811 0.907611i \(-0.362096\pi\)
0.419811 + 0.907611i \(0.362096\pi\)
\(44\) −0.106699 + 0.165458i −0.0160854 + 0.0249438i
\(45\) 0 0
\(46\) 1.71924 5.83835i 0.253488 0.860817i
\(47\) 9.00709i 1.31382i −0.753969 0.656910i \(-0.771863\pi\)
0.753969 0.656910i \(-0.228137\pi\)
\(48\) 0 0
\(49\) 4.93980 0.705686
\(50\) −2.69896 + 6.53572i −0.381690 + 0.924290i
\(51\) 0 0
\(52\) −3.23084 2.08346i −0.448037 0.288924i
\(53\) −4.93699 −0.678148 −0.339074 0.940760i \(-0.610114\pi\)
−0.339074 + 0.940760i \(0.610114\pi\)
\(54\) 0 0
\(55\) −0.163617 + 0.147244i −0.0220622 + 0.0198544i
\(56\) −3.07437 + 2.65139i −0.410830 + 0.354307i
\(57\) 0 0
\(58\) 1.42490 4.83879i 0.187098 0.635364i
\(59\) 6.27246i 0.816605i −0.912847 0.408303i \(-0.866121\pi\)
0.912847 0.408303i \(-0.133879\pi\)
\(60\) 0 0
\(61\) 12.8449i 1.64463i 0.569035 + 0.822313i \(0.307317\pi\)
−0.569035 + 0.822313i \(0.692683\pi\)
\(62\) 1.93002 + 0.568340i 0.245113 + 0.0721792i
\(63\) 0 0
\(64\) −1.17556 + 7.91316i −0.146945 + 0.989145i
\(65\) −2.87517 3.19489i −0.356621 0.396277i
\(66\) 0 0
\(67\) −1.89027 −0.230933 −0.115466 0.993311i \(-0.536836\pi\)
−0.115466 + 0.993311i \(0.536836\pi\)
\(68\) −2.20835 + 3.42451i −0.267802 + 0.415283i
\(69\) 0 0
\(70\) −4.09416 + 1.95954i −0.489346 + 0.234210i
\(71\) 12.3259 1.46281 0.731406 0.681942i \(-0.238864\pi\)
0.731406 + 0.681942i \(0.238864\pi\)
\(72\) 0 0
\(73\) 5.62966i 0.658902i −0.944173 0.329451i \(-0.893136\pi\)
0.944173 0.329451i \(-0.106864\pi\)
\(74\) −11.2237 3.30508i −1.30473 0.384208i
\(75\) 0 0
\(76\) 1.08343 1.68008i 0.124277 0.192718i
\(77\) −0.141294 −0.0161019
\(78\) 0 0
\(79\) 2.48816 0.279939 0.139970 0.990156i \(-0.455299\pi\)
0.139970 + 0.990156i \(0.455299\pi\)
\(80\) −3.58774 + 8.19317i −0.401122 + 0.916025i
\(81\) 0 0
\(82\) 6.94531 + 2.04521i 0.766981 + 0.225856i
\(83\) −2.26930 −0.249088 −0.124544 0.992214i \(-0.539747\pi\)
−0.124544 + 0.992214i \(0.539747\pi\)
\(84\) 0 0
\(85\) −3.38640 + 3.04752i −0.367307 + 0.330550i
\(86\) 7.46923 + 2.19949i 0.805427 + 0.237177i
\(87\) 0 0
\(88\) −0.210848 + 0.181839i −0.0224765 + 0.0193841i
\(89\) 13.3550 1.41563 0.707815 0.706398i \(-0.249681\pi\)
0.707815 + 0.706398i \(0.249681\pi\)
\(90\) 0 0
\(91\) 2.75898i 0.289220i
\(92\) 4.66470 7.23359i 0.486329 0.754153i
\(93\) 0 0
\(94\) 3.59823 12.2192i 0.371129 1.26031i
\(95\) 1.66138 1.49512i 0.170454 0.153396i
\(96\) 0 0
\(97\) 14.7457i 1.49720i 0.663024 + 0.748598i \(0.269273\pi\)
−0.663024 + 0.748598i \(0.730727\pi\)
\(98\) 6.70142 + 1.97339i 0.676945 + 0.199343i
\(99\) 0 0
\(100\) −6.27239 + 7.78827i −0.627239 + 0.778827i
\(101\) 13.6218i 1.35542i −0.735328 0.677711i \(-0.762972\pi\)
0.735328 0.677711i \(-0.237028\pi\)
\(102\) 0 0
\(103\) 10.8458i 1.06867i −0.845272 0.534336i \(-0.820562\pi\)
0.845272 0.534336i \(-0.179438\pi\)
\(104\) −3.55069 4.11714i −0.348174 0.403719i
\(105\) 0 0
\(106\) −6.69761 1.97227i −0.650529 0.191564i
\(107\) −12.4915 −1.20760 −0.603798 0.797137i \(-0.706347\pi\)
−0.603798 + 0.797137i \(0.706347\pi\)
\(108\) 0 0
\(109\) 16.5739i 1.58749i 0.608250 + 0.793745i \(0.291872\pi\)
−0.608250 + 0.793745i \(0.708128\pi\)
\(110\) −0.280788 + 0.134390i −0.0267721 + 0.0128136i
\(111\) 0 0
\(112\) −5.22994 + 2.36874i −0.494183 + 0.223825i
\(113\) 9.15123i 0.860875i −0.902620 0.430438i \(-0.858359\pi\)
0.902620 0.430438i \(-0.141641\pi\)
\(114\) 0 0
\(115\) 7.15309 6.43727i 0.667029 0.600279i
\(116\) 3.86608 5.99515i 0.358956 0.556636i
\(117\) 0 0
\(118\) 2.50577 8.50933i 0.230675 0.783347i
\(119\) −2.92437 −0.268077
\(120\) 0 0
\(121\) 10.9903 0.999119
\(122\) −5.13140 + 17.4257i −0.464575 + 1.57765i
\(123\) 0 0
\(124\) 2.39125 + 1.54204i 0.214741 + 0.138479i
\(125\) −9.05026 + 6.56451i −0.809480 + 0.587148i
\(126\) 0 0
\(127\) 10.9648i 0.972972i 0.873688 + 0.486486i \(0.161722\pi\)
−0.873688 + 0.486486i \(0.838278\pi\)
\(128\) −4.75599 + 10.2655i −0.420374 + 0.907351i
\(129\) 0 0
\(130\) −2.62419 5.48284i −0.230156 0.480877i
\(131\) 22.1895i 1.93870i −0.245678 0.969352i \(-0.579011\pi\)
0.245678 0.969352i \(-0.420989\pi\)
\(132\) 0 0
\(133\) 1.43471 0.124405
\(134\) −2.56437 0.755139i −0.221528 0.0652340i
\(135\) 0 0
\(136\) −4.36394 + 3.76354i −0.374205 + 0.322721i
\(137\) 10.7851i 0.921431i −0.887548 0.460716i \(-0.847593\pi\)
0.887548 0.460716i \(-0.152407\pi\)
\(138\) 0 0
\(139\) 15.5743i 1.32100i −0.750827 0.660499i \(-0.770345\pi\)
0.750827 0.660499i \(-0.229655\pi\)
\(140\) −6.33703 + 1.02278i −0.535577 + 0.0864406i
\(141\) 0 0
\(142\) 16.7215 + 4.92404i 1.40324 + 0.413216i
\(143\) 0.189218i 0.0158232i
\(144\) 0 0
\(145\) 5.92844 5.33518i 0.492330 0.443062i
\(146\) 2.24898 7.63730i 0.186127 0.632067i
\(147\) 0 0
\(148\) −13.9059 8.96746i −1.14306 0.737121i
\(149\) 4.17528i 0.342052i −0.985266 0.171026i \(-0.945292\pi\)
0.985266 0.171026i \(-0.0547083\pi\)
\(150\) 0 0
\(151\) −3.18461 −0.259160 −0.129580 0.991569i \(-0.541363\pi\)
−0.129580 + 0.991569i \(0.541363\pi\)
\(152\) 2.14096 1.84640i 0.173655 0.149763i
\(153\) 0 0
\(154\) −0.191681 0.0564451i −0.0154461 0.00454848i
\(155\) 2.12801 + 2.36464i 0.170926 + 0.189933i
\(156\) 0 0
\(157\) −20.4342 −1.63083 −0.815414 0.578878i \(-0.803491\pi\)
−0.815414 + 0.578878i \(0.803491\pi\)
\(158\) 3.37547 + 0.993989i 0.268538 + 0.0790775i
\(159\) 0 0
\(160\) −8.14027 + 9.68174i −0.643545 + 0.765409i
\(161\) 6.17714 0.486827
\(162\) 0 0
\(163\) 19.5466 1.53101 0.765504 0.643432i \(-0.222490\pi\)
0.765504 + 0.643432i \(0.222490\pi\)
\(164\) 8.60508 + 5.54913i 0.671944 + 0.433315i
\(165\) 0 0
\(166\) −3.07857 0.906559i −0.238944 0.0703626i
\(167\) 1.16218i 0.0899322i −0.998989 0.0449661i \(-0.985682\pi\)
0.998989 0.0449661i \(-0.0143180\pi\)
\(168\) 0 0
\(169\) −9.30521 −0.715786
\(170\) −5.81150 + 2.78149i −0.445722 + 0.213331i
\(171\) 0 0
\(172\) 9.25421 + 5.96773i 0.705627 + 0.455035i
\(173\) −7.38888 −0.561766 −0.280883 0.959742i \(-0.590627\pi\)
−0.280883 + 0.959742i \(0.590627\pi\)
\(174\) 0 0
\(175\) −7.13699 0.753918i −0.539506 0.0569909i
\(176\) −0.358682 + 0.162454i −0.0270367 + 0.0122455i
\(177\) 0 0
\(178\) 18.1177 + 5.33518i 1.35798 + 0.399888i
\(179\) 18.4318i 1.37766i 0.724924 + 0.688828i \(0.241875\pi\)
−0.724924 + 0.688828i \(0.758125\pi\)
\(180\) 0 0
\(181\) 4.75079i 0.353123i −0.984290 0.176562i \(-0.943503\pi\)
0.984290 0.176562i \(-0.0564975\pi\)
\(182\) 1.10218 3.74289i 0.0816991 0.277441i
\(183\) 0 0
\(184\) 9.21794 7.94971i 0.679556 0.586061i
\(185\) −12.3751 13.7512i −0.909833 1.01101i
\(186\) 0 0
\(187\) −0.200561 −0.0146664
\(188\) 9.76283 15.1393i 0.712028 1.10415i
\(189\) 0 0
\(190\) 2.85114 1.36461i 0.206844 0.0989991i
\(191\) 13.1635 0.952479 0.476240 0.879316i \(-0.341999\pi\)
0.476240 + 0.879316i \(0.341999\pi\)
\(192\) 0 0
\(193\) 8.50034i 0.611868i −0.952053 0.305934i \(-0.901031\pi\)
0.952053 0.305934i \(-0.0989687\pi\)
\(194\) −5.89072 + 20.0042i −0.422929 + 1.43622i
\(195\) 0 0
\(196\) 8.30291 + 5.35427i 0.593065 + 0.382448i
\(197\) −4.46451 −0.318083 −0.159042 0.987272i \(-0.550840\pi\)
−0.159042 + 0.987272i \(0.550840\pi\)
\(198\) 0 0
\(199\) −19.2962 −1.36787 −0.683936 0.729542i \(-0.739733\pi\)
−0.683936 + 0.729542i \(0.739733\pi\)
\(200\) −11.6206 + 8.05995i −0.821697 + 0.569924i
\(201\) 0 0
\(202\) 5.44176 18.4796i 0.382881 1.30022i
\(203\) 5.11958 0.359324
\(204\) 0 0
\(205\) 7.65779 + 8.50933i 0.534843 + 0.594317i
\(206\) 4.33278 14.7136i 0.301879 1.02515i
\(207\) 0 0
\(208\) −3.17218 7.00384i −0.219951 0.485629i
\(209\) 0.0983957 0.00680617
\(210\) 0 0
\(211\) 22.4861i 1.54801i −0.633180 0.774005i \(-0.718251\pi\)
0.633180 0.774005i \(-0.281749\pi\)
\(212\) −8.29819 5.35123i −0.569922 0.367524i
\(213\) 0 0
\(214\) −16.9461 4.99019i −1.15841 0.341123i
\(215\) 8.23545 + 9.15123i 0.561653 + 0.624109i
\(216\) 0 0
\(217\) 2.04201i 0.138621i
\(218\) −6.62107 + 22.4844i −0.448436 + 1.52284i
\(219\) 0 0
\(220\) −0.434609 + 0.0701447i −0.0293014 + 0.00472916i
\(221\) 3.91627i 0.263437i
\(222\) 0 0
\(223\) 27.6890i 1.85419i −0.374822 0.927097i \(-0.622296\pi\)
0.374822 0.927097i \(-0.377704\pi\)
\(224\) −8.04131 + 1.12418i −0.537282 + 0.0751125i
\(225\) 0 0
\(226\) 3.65581 12.4147i 0.243181 0.825815i
\(227\) 8.25244 0.547734 0.273867 0.961768i \(-0.411697\pi\)
0.273867 + 0.961768i \(0.411697\pi\)
\(228\) 0 0
\(229\) 6.48061i 0.428251i −0.976806 0.214125i \(-0.931310\pi\)
0.976806 0.214125i \(-0.0686902\pi\)
\(230\) 12.2756 5.87534i 0.809430 0.387408i
\(231\) 0 0
\(232\) 7.63978 6.58868i 0.501576 0.432568i
\(233\) 8.27937i 0.542399i −0.962523 0.271200i \(-0.912580\pi\)
0.962523 0.271200i \(-0.0874204\pi\)
\(234\) 0 0
\(235\) 14.9708 13.4727i 0.976589 0.878861i
\(236\) 6.79875 10.5429i 0.442561 0.686283i
\(237\) 0 0
\(238\) −3.96725 1.16825i −0.257159 0.0757265i
\(239\) −26.3117 −1.70196 −0.850980 0.525198i \(-0.823991\pi\)
−0.850980 + 0.525198i \(0.823991\pi\)
\(240\) 0 0
\(241\) −24.8023 −1.59765 −0.798827 0.601560i \(-0.794546\pi\)
−0.798827 + 0.601560i \(0.794546\pi\)
\(242\) 14.9096 + 4.39050i 0.958428 + 0.282232i
\(243\) 0 0
\(244\) −13.9227 + 21.5900i −0.891309 + 1.38216i
\(245\) 7.38888 + 8.21052i 0.472058 + 0.524551i
\(246\) 0 0
\(247\) 1.92133i 0.122252i
\(248\) 2.62798 + 3.04723i 0.166877 + 0.193499i
\(249\) 0 0
\(250\) −14.9002 + 5.29005i −0.942370 + 0.334572i
\(251\) 0.277559i 0.0175194i −0.999962 0.00875968i \(-0.997212\pi\)
0.999962 0.00875968i \(-0.00278833\pi\)
\(252\) 0 0
\(253\) 0.423644 0.0266343
\(254\) −4.38032 + 14.8751i −0.274846 + 0.933346i
\(255\) 0 0
\(256\) −10.5530 + 12.0264i −0.659563 + 0.751649i
\(257\) 14.2367i 0.888062i 0.896011 + 0.444031i \(0.146452\pi\)
−0.896011 + 0.444031i \(0.853548\pi\)
\(258\) 0 0
\(259\) 11.8750i 0.737876i
\(260\) −1.36969 8.48644i −0.0849444 0.526307i
\(261\) 0 0
\(262\) 8.86443 30.1026i 0.547646 1.85975i
\(263\) 17.1353i 1.05661i 0.849056 + 0.528303i \(0.177172\pi\)
−0.849056 + 0.528303i \(0.822828\pi\)
\(264\) 0 0
\(265\) −7.38468 8.20585i −0.453637 0.504082i
\(266\) 1.94635 + 0.573148i 0.119338 + 0.0351419i
\(267\) 0 0
\(268\) −3.17719 2.04887i −0.194078 0.125155i
\(269\) 14.2417i 0.868333i 0.900833 + 0.434167i \(0.142957\pi\)
−0.900833 + 0.434167i \(0.857043\pi\)
\(270\) 0 0
\(271\) −16.1177 −0.979078 −0.489539 0.871981i \(-0.662835\pi\)
−0.489539 + 0.871981i \(0.662835\pi\)
\(272\) −7.42369 + 3.36234i −0.450127 + 0.203872i
\(273\) 0 0
\(274\) 4.30851 14.6312i 0.260287 0.883904i
\(275\) −0.489473 0.0517056i −0.0295163 0.00311797i
\(276\) 0 0
\(277\) −15.6307 −0.939156 −0.469578 0.882891i \(-0.655594\pi\)
−0.469578 + 0.882891i \(0.655594\pi\)
\(278\) 6.22176 21.1284i 0.373156 1.26720i
\(279\) 0 0
\(280\) −9.00551 1.14405i −0.538182 0.0683699i
\(281\) 5.65195 0.337167 0.168583 0.985687i \(-0.446081\pi\)
0.168583 + 0.985687i \(0.446081\pi\)
\(282\) 0 0
\(283\) 16.5466 0.983593 0.491796 0.870710i \(-0.336340\pi\)
0.491796 + 0.870710i \(0.336340\pi\)
\(284\) 20.7176 + 13.3601i 1.22936 + 0.792774i
\(285\) 0 0
\(286\) 0.0755904 0.256696i 0.00446975 0.0151788i
\(287\) 7.34833i 0.433758i
\(288\) 0 0
\(289\) 12.8490 0.755822
\(290\) 10.1740 4.86945i 0.597436 0.285944i
\(291\) 0 0
\(292\) 6.10202 9.46244i 0.357094 0.553748i
\(293\) 20.2544 1.18328 0.591638 0.806203i \(-0.298481\pi\)
0.591638 + 0.806203i \(0.298481\pi\)
\(294\) 0 0
\(295\) 10.4256 9.38226i 0.606999 0.546256i
\(296\) −15.2826 17.7207i −0.888283 1.02999i
\(297\) 0 0
\(298\) 1.66798 5.66426i 0.0966232 0.328122i
\(299\) 8.27232i 0.478401i
\(300\) 0 0
\(301\) 7.90265i 0.455501i
\(302\) −4.32029 1.27221i −0.248605 0.0732077i
\(303\) 0 0
\(304\) 3.64208 1.64957i 0.208888 0.0946095i
\(305\) −21.3498 + 19.2133i −1.22248 + 1.10015i
\(306\) 0 0
\(307\) −5.50772 −0.314342 −0.157171 0.987571i \(-0.550237\pi\)
−0.157171 + 0.987571i \(0.550237\pi\)
\(308\) −0.237489 0.153149i −0.0135322 0.00872646i
\(309\) 0 0
\(310\) 1.94225 + 4.05803i 0.110312 + 0.230480i
\(311\) 8.57632 0.486318 0.243159 0.969986i \(-0.421816\pi\)
0.243159 + 0.969986i \(0.421816\pi\)
\(312\) 0 0
\(313\) 9.83297i 0.555793i 0.960611 + 0.277896i \(0.0896372\pi\)
−0.960611 + 0.277896i \(0.910363\pi\)
\(314\) −27.7214 8.16323i −1.56441 0.460677i
\(315\) 0 0
\(316\) 4.18214 + 2.69692i 0.235264 + 0.151714i
\(317\) 7.38888 0.415001 0.207500 0.978235i \(-0.433467\pi\)
0.207500 + 0.978235i \(0.433467\pi\)
\(318\) 0 0
\(319\) 0.351114 0.0196586
\(320\) −14.9110 + 9.88247i −0.833548 + 0.552447i
\(321\) 0 0
\(322\) 8.38001 + 2.46769i 0.467000 + 0.137519i
\(323\) 2.03651 0.113314
\(324\) 0 0
\(325\) 1.00964 9.55774i 0.0560045 0.530168i
\(326\) 26.5172 + 7.80863i 1.46865 + 0.432480i
\(327\) 0 0
\(328\) 9.45699 + 10.9657i 0.522175 + 0.605478i
\(329\) 12.9282 0.712757
\(330\) 0 0
\(331\) 5.64764i 0.310422i −0.987881 0.155211i \(-0.950394\pi\)
0.987881 0.155211i \(-0.0496058\pi\)
\(332\) −3.81428 2.45971i −0.209336 0.134994i
\(333\) 0 0
\(334\) 0.464277 1.57663i 0.0254041 0.0862695i
\(335\) −2.82743 3.14184i −0.154479 0.171657i
\(336\) 0 0
\(337\) 7.91137i 0.430960i 0.976508 + 0.215480i \(0.0691315\pi\)
−0.976508 + 0.215480i \(0.930868\pi\)
\(338\) −12.6236 3.71732i −0.686634 0.202196i
\(339\) 0 0
\(340\) −8.99515 + 1.45179i −0.487831 + 0.0787345i
\(341\) 0.140046i 0.00758394i
\(342\) 0 0
\(343\) 17.1377i 0.925347i
\(344\) 10.1704 + 11.7929i 0.548350 + 0.635829i
\(345\) 0 0
\(346\) −10.0239 2.95177i −0.538887 0.158688i
\(347\) 25.8465 1.38751 0.693756 0.720210i \(-0.255954\pi\)
0.693756 + 0.720210i \(0.255954\pi\)
\(348\) 0 0
\(349\) 13.2897i 0.711382i 0.934604 + 0.355691i \(0.115754\pi\)
−0.934604 + 0.355691i \(0.884246\pi\)
\(350\) −9.38098 3.87392i −0.501434 0.207070i
\(351\) 0 0
\(352\) −0.551493 + 0.0770991i −0.0293947 + 0.00410940i
\(353\) 28.1761i 1.49966i 0.661629 + 0.749831i \(0.269865\pi\)
−0.661629 + 0.749831i \(0.730135\pi\)
\(354\) 0 0
\(355\) 18.4369 + 20.4870i 0.978527 + 1.08734i
\(356\) 22.4474 + 14.4756i 1.18971 + 0.767204i
\(357\) 0 0
\(358\) −7.36328 + 25.0049i −0.389162 + 1.32155i
\(359\) −27.5477 −1.45391 −0.726956 0.686684i \(-0.759066\pi\)
−0.726956 + 0.686684i \(0.759066\pi\)
\(360\) 0 0
\(361\) 18.0009 0.947415
\(362\) 1.89788 6.44500i 0.0997505 0.338742i
\(363\) 0 0
\(364\) 2.99048 4.63735i 0.156744 0.243063i
\(365\) 9.35715 8.42077i 0.489776 0.440763i
\(366\) 0 0
\(367\) 15.8778i 0.828815i −0.910091 0.414407i \(-0.863989\pi\)
0.910091 0.414407i \(-0.136011\pi\)
\(368\) 15.6810 7.10226i 0.817430 0.370231i
\(369\) 0 0
\(370\) −11.2948 23.5988i −0.587189 1.22684i
\(371\) 7.08626i 0.367900i
\(372\) 0 0
\(373\) −4.85063 −0.251156 −0.125578 0.992084i \(-0.540079\pi\)
−0.125578 + 0.992084i \(0.540079\pi\)
\(374\) −0.272084 0.0801216i −0.0140691 0.00414299i
\(375\) 0 0
\(376\) 19.2924 16.6381i 0.994929 0.858044i
\(377\) 6.85605i 0.353105i
\(378\) 0 0
\(379\) 16.0191i 0.822846i 0.911445 + 0.411423i \(0.134968\pi\)
−0.911445 + 0.411423i \(0.865032\pi\)
\(380\) 4.41305 0.712254i 0.226385 0.0365379i
\(381\) 0 0
\(382\) 17.8579 + 5.25867i 0.913688 + 0.269057i
\(383\) 6.83627i 0.349317i −0.984629 0.174658i \(-0.944118\pi\)
0.984629 0.174658i \(-0.0558821\pi\)
\(384\) 0 0
\(385\) −0.211345 0.234846i −0.0107711 0.0119689i
\(386\) 3.39579 11.5317i 0.172841 0.586948i
\(387\) 0 0
\(388\) −15.9829 + 24.7848i −0.811409 + 1.25826i
\(389\) 15.1004i 0.765623i 0.923827 + 0.382811i \(0.125044\pi\)
−0.923827 + 0.382811i \(0.874956\pi\)
\(390\) 0 0
\(391\) 8.76820 0.443427
\(392\) 9.12490 + 10.5806i 0.460877 + 0.534401i
\(393\) 0 0
\(394\) −6.05663 1.78352i −0.305129 0.0898524i
\(395\) 3.72175 + 4.13560i 0.187261 + 0.208085i
\(396\) 0 0
\(397\) −25.1307 −1.26127 −0.630636 0.776079i \(-0.717206\pi\)
−0.630636 + 0.776079i \(0.717206\pi\)
\(398\) −26.1776 7.70860i −1.31216 0.386397i
\(399\) 0 0
\(400\) −18.9845 + 6.29199i −0.949225 + 0.314599i
\(401\) −27.2424 −1.36042 −0.680211 0.733016i \(-0.738112\pi\)
−0.680211 + 0.733016i \(0.738112\pi\)
\(402\) 0 0
\(403\) −2.73463 −0.136222
\(404\) 14.7648 22.8958i 0.734574 1.13911i
\(405\) 0 0
\(406\) 6.94531 + 2.04521i 0.344690 + 0.101502i
\(407\) 0.814417i 0.0403691i
\(408\) 0 0
\(409\) −2.07322 −0.102514 −0.0512571 0.998685i \(-0.516323\pi\)
−0.0512571 + 0.998685i \(0.516323\pi\)
\(410\) 6.98931 + 14.6031i 0.345177 + 0.721195i
\(411\) 0 0
\(412\) 11.7558 18.2299i 0.579169 0.898121i
\(413\) 9.00311 0.443014
\(414\) 0 0
\(415\) −3.39439 3.77184i −0.166624 0.185152i
\(416\) −1.50548 10.7688i −0.0738124 0.527983i
\(417\) 0 0
\(418\) 0.133485 + 0.0393079i 0.00652898 + 0.00192261i
\(419\) 28.2449i 1.37985i 0.723880 + 0.689926i \(0.242357\pi\)
−0.723880 + 0.689926i \(0.757643\pi\)
\(420\) 0 0
\(421\) 4.94229i 0.240873i 0.992721 + 0.120436i \(0.0384294\pi\)
−0.992721 + 0.120436i \(0.961571\pi\)
\(422\) 8.98294 30.5051i 0.437283 1.48496i
\(423\) 0 0
\(424\) −9.11972 10.5746i −0.442893 0.513548i
\(425\) −10.1307 1.07016i −0.491410 0.0519102i
\(426\) 0 0
\(427\) −18.4369 −0.892222
\(428\) −20.9959 13.5396i −1.01487 0.654459i
\(429\) 0 0
\(430\) 7.51655 + 15.7047i 0.362480 + 0.757347i
\(431\) 5.01109 0.241376 0.120688 0.992691i \(-0.461490\pi\)
0.120688 + 0.992691i \(0.461490\pi\)
\(432\) 0 0
\(433\) 7.79967i 0.374828i −0.982281 0.187414i \(-0.939989\pi\)
0.982281 0.187414i \(-0.0600106\pi\)
\(434\) −0.815760 + 2.77023i −0.0391577 + 0.132975i
\(435\) 0 0
\(436\) −17.9645 + 27.8577i −0.860344 + 1.33414i
\(437\) −4.30171 −0.205779
\(438\) 0 0
\(439\) 34.9376 1.66748 0.833739 0.552158i \(-0.186196\pi\)
0.833739 + 0.552158i \(0.186196\pi\)
\(440\) −0.617620 0.0784617i −0.0294439 0.00374051i
\(441\) 0 0
\(442\) 1.56450 5.31288i 0.0744158 0.252708i
\(443\) −23.6112 −1.12180 −0.560900 0.827883i \(-0.689545\pi\)
−0.560900 + 0.827883i \(0.689545\pi\)
\(444\) 0 0
\(445\) 19.9763 + 22.1976i 0.946965 + 1.05227i
\(446\) 11.0614 37.5634i 0.523774 1.77868i
\(447\) 0 0
\(448\) −11.3581 1.68732i −0.536618 0.0797185i
\(449\) 9.39141 0.443208 0.221604 0.975137i \(-0.428871\pi\)
0.221604 + 0.975137i \(0.428871\pi\)
\(450\) 0 0
\(451\) 0.503967i 0.0237309i
\(452\) 9.91906 15.3816i 0.466553 0.723488i
\(453\) 0 0
\(454\) 11.1954 + 3.29675i 0.525426 + 0.154724i
\(455\) 4.58575 4.12685i 0.214983 0.193470i
\(456\) 0 0
\(457\) 31.0457i 1.45226i 0.687560 + 0.726128i \(0.258682\pi\)
−0.687560 + 0.726128i \(0.741318\pi\)
\(458\) 2.58893 8.79171i 0.120973 0.410810i
\(459\) 0 0
\(460\) 19.0004 3.06662i 0.885900 0.142982i
\(461\) 0.867775i 0.0404163i 0.999796 + 0.0202081i \(0.00643289\pi\)
−0.999796 + 0.0202081i \(0.993567\pi\)
\(462\) 0 0
\(463\) 31.0297i 1.44207i 0.692898 + 0.721035i \(0.256333\pi\)
−0.692898 + 0.721035i \(0.743667\pi\)
\(464\) 12.9964 5.88631i 0.603340 0.273265i
\(465\) 0 0
\(466\) 3.30751 11.2319i 0.153217 0.520309i
\(467\) −27.7060 −1.28208 −0.641040 0.767507i \(-0.721497\pi\)
−0.641040 + 0.767507i \(0.721497\pi\)
\(468\) 0 0
\(469\) 2.71317i 0.125283i
\(470\) 25.6919 12.2966i 1.18508 0.567200i
\(471\) 0 0
\(472\) 13.4351 11.5866i 0.618398 0.533317i
\(473\) 0.541984i 0.0249204i
\(474\) 0 0
\(475\) 4.97014 + 0.525022i 0.228046 + 0.0240897i
\(476\) −4.91534 3.16974i −0.225294 0.145285i
\(477\) 0 0
\(478\) −35.6949 10.5112i −1.63264 0.480771i
\(479\) −30.8989 −1.41181 −0.705903 0.708309i \(-0.749459\pi\)
−0.705903 + 0.708309i \(0.749459\pi\)
\(480\) 0 0
\(481\) 15.9028 0.725105
\(482\) −33.6472 9.90821i −1.53259 0.451307i
\(483\) 0 0
\(484\) 18.4727 + 11.9124i 0.839669 + 0.541475i
\(485\) −24.5090 + 22.0563i −1.11290 + 1.00153i
\(486\) 0 0
\(487\) 21.5162i 0.974991i 0.873125 + 0.487496i \(0.162090\pi\)
−0.873125 + 0.487496i \(0.837910\pi\)
\(488\) −27.5127 + 23.7274i −1.24544 + 1.07409i
\(489\) 0 0
\(490\) 6.74388 + 14.0903i 0.304657 + 0.636535i
\(491\) 9.74298i 0.439695i −0.975534 0.219847i \(-0.929444\pi\)
0.975534 0.219847i \(-0.0705559\pi\)
\(492\) 0 0
\(493\) 7.26704 0.327291
\(494\) −0.767550 + 2.60651i −0.0345337 + 0.117273i
\(495\) 0 0
\(496\) 2.34784 + 5.18377i 0.105421 + 0.232758i
\(497\) 17.6918i 0.793586i
\(498\) 0 0
\(499\) 6.91181i 0.309415i 0.987960 + 0.154708i \(0.0494435\pi\)
−0.987960 + 0.154708i \(0.950556\pi\)
\(500\) −22.3271 + 1.22413i −0.998500 + 0.0547448i
\(501\) 0 0
\(502\) 0.110881 0.376541i 0.00494888 0.0168059i
\(503\) 15.3213i 0.683142i −0.939856 0.341571i \(-0.889041\pi\)
0.939856 0.341571i \(-0.110959\pi\)
\(504\) 0 0
\(505\) 22.6411 20.3753i 1.00751 0.906690i
\(506\) 0.574722 + 0.169241i 0.0255495 + 0.00752366i
\(507\) 0 0
\(508\) −11.8848 + 18.4299i −0.527304 + 0.817695i
\(509\) 28.8669i 1.27950i −0.768582 0.639752i \(-0.779037\pi\)
0.768582 0.639752i \(-0.220963\pi\)
\(510\) 0 0
\(511\) 8.08048 0.357459
\(512\) −19.1208 + 12.0994i −0.845027 + 0.534723i
\(513\) 0 0
\(514\) −5.68740 + 19.3138i −0.250860 + 0.851894i
\(515\) 18.0270 16.2230i 0.794365 0.714872i
\(516\) 0 0
\(517\) 0.886651 0.0389949
\(518\) 4.74392 16.1098i 0.208436 0.707824i
\(519\) 0 0
\(520\) 1.53209 12.0600i 0.0671866 0.528867i
\(521\) −0.525190 −0.0230090 −0.0115045 0.999934i \(-0.503662\pi\)
−0.0115045 + 0.999934i \(0.503662\pi\)
\(522\) 0 0
\(523\) −11.1631 −0.488127 −0.244064 0.969759i \(-0.578481\pi\)
−0.244064 + 0.969759i \(0.578481\pi\)
\(524\) 24.0513 37.2965i 1.05068 1.62930i
\(525\) 0 0
\(526\) −6.84534 + 23.2460i −0.298471 + 1.01357i
\(527\) 2.89856i 0.126263i
\(528\) 0 0
\(529\) 4.47895 0.194737
\(530\) −6.74004 14.0823i −0.292769 0.611696i
\(531\) 0 0
\(532\) 2.41148 + 1.55508i 0.104551 + 0.0674214i
\(533\) −9.84076 −0.426251
\(534\) 0 0
\(535\) −18.6846 20.7623i −0.807804 0.897631i
\(536\) −3.49174 4.04878i −0.150820 0.174881i
\(537\) 0 0
\(538\) −5.68940 + 19.3206i −0.245287 + 0.832969i
\(539\) 0.486270i 0.0209451i
\(540\) 0 0
\(541\) 4.30602i 0.185130i 0.995707 + 0.0925651i \(0.0295066\pi\)
−0.995707 + 0.0925651i \(0.970493\pi\)
\(542\) −21.8655 6.43881i −0.939203 0.276571i
\(543\) 0 0
\(544\) −11.4143 + 1.59573i −0.489384 + 0.0684163i
\(545\) −27.5477 + 24.7910i −1.18001 + 1.06193i
\(546\) 0 0
\(547\) −40.0149 −1.71091 −0.855456 0.517875i \(-0.826723\pi\)
−0.855456 + 0.517875i \(0.826723\pi\)
\(548\) 11.6900 18.1278i 0.499372 0.774380i
\(549\) 0 0
\(550\) −0.643371 0.265683i −0.0274334 0.0113288i
\(551\) −3.56523 −0.151884
\(552\) 0 0
\(553\) 3.57135i 0.151869i
\(554\) −21.2048 6.24427i −0.900907 0.265293i
\(555\) 0 0
\(556\) 16.8811 26.1776i 0.715918 1.11018i
\(557\) 19.0641 0.807771 0.403886 0.914809i \(-0.367659\pi\)
0.403886 + 0.914809i \(0.367659\pi\)
\(558\) 0 0
\(559\) −10.5831 −0.447618
\(560\) −11.7600 5.14963i −0.496950 0.217611i
\(561\) 0 0
\(562\) 7.66753 + 2.25789i 0.323435 + 0.0952432i
\(563\) 6.40993 0.270147 0.135073 0.990836i \(-0.456873\pi\)
0.135073 + 0.990836i \(0.456873\pi\)
\(564\) 0 0
\(565\) 15.2104 13.6883i 0.639906 0.575870i
\(566\) 22.4474 + 6.61017i 0.943534 + 0.277846i
\(567\) 0 0
\(568\) 22.7686 + 26.4009i 0.955349 + 1.10776i
\(569\) 37.1532 1.55754 0.778771 0.627308i \(-0.215843\pi\)
0.778771 + 0.627308i \(0.215843\pi\)
\(570\) 0 0
\(571\) 28.7752i 1.20421i 0.798418 + 0.602103i \(0.205670\pi\)
−0.798418 + 0.602103i \(0.794330\pi\)
\(572\) 0.205094 0.318041i 0.00857543 0.0132980i
\(573\) 0 0
\(574\) −2.93557 + 9.96887i −0.122528 + 0.416093i
\(575\) 21.3990 + 2.26049i 0.892399 + 0.0942689i
\(576\) 0 0
\(577\) 20.0173i 0.833332i −0.909060 0.416666i \(-0.863198\pi\)
0.909060 0.416666i \(-0.136802\pi\)
\(578\) 17.4311 + 5.13301i 0.725040 + 0.213505i
\(579\) 0 0
\(580\) 15.7475 2.54160i 0.653878 0.105534i
\(581\) 3.25722i 0.135132i
\(582\) 0 0
\(583\) 0.485994i 0.0201278i
\(584\) 12.0582 10.3992i 0.498973 0.430323i
\(585\) 0 0
\(586\) 27.4775 + 8.09141i 1.13509 + 0.334253i
\(587\) 7.91407 0.326649 0.163324 0.986572i \(-0.447778\pi\)
0.163324 + 0.986572i \(0.447778\pi\)
\(588\) 0 0
\(589\) 1.42204i 0.0585942i
\(590\) 17.8916 8.56324i 0.736585 0.352543i
\(591\) 0 0
\(592\) −13.6534 30.1454i −0.561153 1.23897i
\(593\) 14.4728i 0.594325i 0.954827 + 0.297163i \(0.0960404\pi\)
−0.954827 + 0.297163i \(0.903960\pi\)
\(594\) 0 0
\(595\) −4.37423 4.86064i −0.179326 0.199267i
\(596\) 4.52561 7.01789i 0.185376 0.287464i
\(597\) 0 0
\(598\) −3.30469 + 11.2224i −0.135139 + 0.458917i
\(599\) −20.6597 −0.844133 −0.422067 0.906565i \(-0.638695\pi\)
−0.422067 + 0.906565i \(0.638695\pi\)
\(600\) 0 0
\(601\) −32.3742 −1.32057 −0.660286 0.751014i \(-0.729565\pi\)
−0.660286 + 0.751014i \(0.729565\pi\)
\(602\) −3.15702 + 10.7209i −0.128670 + 0.436950i
\(603\) 0 0
\(604\) −5.35275 3.45181i −0.217800 0.140452i
\(605\) 16.4391 + 18.2672i 0.668346 + 0.742666i
\(606\) 0 0
\(607\) 41.1110i 1.66865i 0.551276 + 0.834323i \(0.314141\pi\)
−0.551276 + 0.834323i \(0.685859\pi\)
\(608\) 5.59990 0.782870i 0.227106 0.0317496i
\(609\) 0 0
\(610\) −36.6390 + 17.5361i −1.48347 + 0.710015i
\(611\) 17.3133i 0.700420i
\(612\) 0 0
\(613\) −9.54708 −0.385603 −0.192801 0.981238i \(-0.561757\pi\)
−0.192801 + 0.981238i \(0.561757\pi\)
\(614\) −7.47187 2.20027i −0.301540 0.0887956i
\(615\) 0 0
\(616\) −0.261000 0.302638i −0.0105160 0.0121936i
\(617\) 26.7796i 1.07811i −0.842272 0.539053i \(-0.818782\pi\)
0.842272 0.539053i \(-0.181218\pi\)
\(618\) 0 0
\(619\) 19.1724i 0.770602i −0.922791 0.385301i \(-0.874098\pi\)
0.922791 0.385301i \(-0.125902\pi\)
\(620\) 1.01375 + 6.28109i 0.0407132 + 0.252255i
\(621\) 0 0
\(622\) 11.6348 + 3.42614i 0.466512 + 0.137376i
\(623\) 19.1690i 0.767990i
\(624\) 0 0
\(625\) −24.4482 5.22348i −0.977929 0.208939i
\(626\) −3.92816 + 13.3396i −0.157001 + 0.533157i
\(627\) 0 0
\(628\) −34.3462 22.1487i −1.37056 0.883831i
\(629\) 16.8561i 0.672095i
\(630\) 0 0
\(631\) −9.42121 −0.375052 −0.187526 0.982260i \(-0.560047\pi\)
−0.187526 + 0.982260i \(0.560047\pi\)
\(632\) 4.59617 + 5.32941i 0.182826 + 0.211992i
\(633\) 0 0
\(634\) 10.0239 + 2.95177i 0.398099 + 0.117230i
\(635\) −18.2248 + 16.4010i −0.723230 + 0.650856i
\(636\) 0 0
\(637\) −9.49520 −0.376214
\(638\) 0.476327 + 0.140266i 0.0188580 + 0.00555317i
\(639\) 0 0
\(640\) −24.1764 + 7.44998i −0.955656 + 0.294486i
\(641\) −36.5224 −1.44255 −0.721275 0.692649i \(-0.756443\pi\)
−0.721275 + 0.692649i \(0.756443\pi\)
\(642\) 0 0
\(643\) −11.6563 −0.459681 −0.229840 0.973228i \(-0.573820\pi\)
−0.229840 + 0.973228i \(0.573820\pi\)
\(644\) 10.3827 + 6.69543i 0.409134 + 0.263837i
\(645\) 0 0
\(646\) 2.76276 + 0.813560i 0.108699 + 0.0320091i
\(647\) 40.2063i 1.58067i 0.612673 + 0.790337i \(0.290094\pi\)
−0.612673 + 0.790337i \(0.709906\pi\)
\(648\) 0 0
\(649\) 0.617456 0.0242373
\(650\) 5.18789 12.5628i 0.203486 0.492755i
\(651\) 0 0
\(652\) 32.8543 + 21.1866i 1.28667 + 0.829733i
\(653\) 8.69902 0.340419 0.170209 0.985408i \(-0.445556\pi\)
0.170209 + 0.985408i \(0.445556\pi\)
\(654\) 0 0
\(655\) 36.8815 33.1907i 1.44108 1.29687i
\(656\) 8.44885 + 18.6542i 0.329872 + 0.728323i
\(657\) 0 0
\(658\) 17.5387 + 5.16468i 0.683728 + 0.201340i
\(659\) 22.2085i 0.865122i −0.901605 0.432561i \(-0.857610\pi\)
0.901605 0.432561i \(-0.142390\pi\)
\(660\) 0 0
\(661\) 32.1865i 1.25191i −0.779859 0.625956i \(-0.784709\pi\)
0.779859 0.625956i \(-0.215291\pi\)
\(662\) 2.25616 7.66168i 0.0876883 0.297780i
\(663\) 0 0
\(664\) −4.19190 4.86064i −0.162677 0.188629i
\(665\) 2.14601 + 2.38465i 0.0832187 + 0.0924726i
\(666\) 0 0
\(667\) −15.3501 −0.594360
\(668\) 1.25969 1.95341i 0.0487390 0.0755799i
\(669\) 0 0
\(670\) −2.58061 5.39180i −0.0996978 0.208303i
\(671\) −1.26445 −0.0488134
\(672\) 0 0
\(673\) 39.8887i 1.53760i 0.639492 + 0.768798i \(0.279145\pi\)
−0.639492 + 0.768798i \(0.720855\pi\)
\(674\) −3.16050 + 10.7327i −0.121738 + 0.413408i
\(675\) 0 0
\(676\) −15.6404 10.0860i −0.601553 0.387922i
\(677\) 4.46451 0.171585 0.0857925 0.996313i \(-0.472658\pi\)
0.0857925 + 0.996313i \(0.472658\pi\)
\(678\) 0 0
\(679\) −21.1650 −0.812240
\(680\) −12.7830 1.62393i −0.490204 0.0622749i
\(681\) 0 0
\(682\) −0.0559469 + 0.189989i −0.00214232 + 0.00727507i
\(683\) 42.7166 1.63450 0.817252 0.576281i \(-0.195497\pi\)
0.817252 + 0.576281i \(0.195497\pi\)
\(684\) 0 0
\(685\) 17.9260 16.1322i 0.684919 0.616378i
\(686\) −6.84629 + 23.2492i −0.261393 + 0.887660i
\(687\) 0 0
\(688\) 9.08619 + 20.0614i 0.346408 + 0.764832i
\(689\) 9.48981 0.361533
\(690\) 0 0
\(691\) 14.4881i 0.551153i 0.961279 + 0.275577i \(0.0888687\pi\)
−0.961279 + 0.275577i \(0.911131\pi\)
\(692\) −12.4194 8.00884i −0.472113 0.304450i
\(693\) 0 0
\(694\) 35.0638 + 10.3254i 1.33100 + 0.391946i
\(695\) 25.8863 23.2959i 0.981925 0.883662i
\(696\) 0 0
\(697\) 10.4307i 0.395090i
\(698\) −5.30908 + 18.0291i −0.200952 + 0.682410i
\(699\) 0 0
\(700\) −11.1788 9.00301i −0.422519 0.340282i
\(701\) 27.2562i 1.02945i 0.857355 + 0.514726i \(0.172106\pi\)
−0.857355 + 0.514726i \(0.827894\pi\)
\(702\) 0 0
\(703\) 8.26964i 0.311895i
\(704\) −0.778965 0.115721i −0.0293583 0.00436139i
\(705\) 0 0
\(706\) −11.2560 + 38.2242i −0.423626 + 1.43859i
\(707\) 19.5520 0.735327
\(708\) 0 0
\(709\) 18.4360i 0.692379i −0.938165 0.346190i \(-0.887475\pi\)
0.938165 0.346190i \(-0.112525\pi\)
\(710\) 16.8274 + 35.1583i 0.631522 + 1.31947i
\(711\) 0 0
\(712\) 24.6697 + 28.6053i 0.924535 + 1.07203i
\(713\) 6.12261i 0.229294i
\(714\) 0 0
\(715\) 0.314502 0.283030i 0.0117617 0.0105847i
\(716\) −19.9783 + 30.9805i −0.746624 + 1.15780i
\(717\) 0 0
\(718\) −37.3717 11.0050i −1.39470 0.410702i
\(719\) −20.2329 −0.754561 −0.377280 0.926099i \(-0.623141\pi\)
−0.377280 + 0.926099i \(0.623141\pi\)
\(720\) 0 0
\(721\) 15.5674 0.579762
\(722\) 24.4203 + 7.19114i 0.908830 + 0.267626i
\(723\) 0 0
\(724\) 5.14940 7.98521i 0.191376 0.296768i
\(725\) 17.7354 + 1.87348i 0.658675 + 0.0695793i
\(726\) 0 0
\(727\) 3.89252i 0.144366i 0.997391 + 0.0721828i \(0.0229965\pi\)
−0.997391 + 0.0721828i \(0.977003\pi\)
\(728\) 5.90950 5.09645i 0.219021 0.188887i
\(729\) 0 0
\(730\) 16.0581 7.68568i 0.594336 0.284460i
\(731\) 11.2175i 0.414894i
\(732\) 0 0
\(733\) 35.3194 1.30455 0.652276 0.757982i \(-0.273814\pi\)
0.652276 + 0.757982i \(0.273814\pi\)
\(734\) 6.34299 21.5401i 0.234124 0.795060i
\(735\) 0 0
\(736\) 24.1104 3.37065i 0.888722 0.124244i
\(737\) 0.186076i 0.00685421i
\(738\) 0 0
\(739\) 38.5052i 1.41644i 0.705993 + 0.708219i \(0.250501\pi\)
−0.705993 + 0.708219i \(0.749499\pi\)
\(740\) −5.89530 36.5266i −0.216715 1.34275i
\(741\) 0 0
\(742\) 2.83088 9.61334i 0.103925 0.352917i
\(743\) 19.4158i 0.712295i 0.934430 + 0.356148i \(0.115910\pi\)
−0.934430 + 0.356148i \(0.884090\pi\)
\(744\) 0 0
\(745\) 6.93980 6.24532i 0.254255 0.228811i
\(746\) −6.58044 1.93777i −0.240927 0.0709467i
\(747\) 0 0
\(748\) −0.337106 0.217389i −0.0123258 0.00794851i
\(749\) 17.9295i 0.655130i
\(750\) 0 0
\(751\) 36.4832 1.33129 0.665646 0.746267i \(-0.268156\pi\)
0.665646 + 0.746267i \(0.268156\pi\)
\(752\) 32.8191 14.8644i 1.19679 0.542050i
\(753\) 0 0
\(754\) −2.73891 + 9.30104i −0.0997453 + 0.338724i
\(755\) −4.76349 5.29319i −0.173361 0.192639i
\(756\) 0 0
\(757\) 10.9870 0.399329 0.199664 0.979864i \(-0.436015\pi\)
0.199664 + 0.979864i \(0.436015\pi\)
\(758\) −6.39944 + 21.7318i −0.232438 + 0.789334i
\(759\) 0 0
\(760\) 6.27136 + 0.796705i 0.227486 + 0.0288995i
\(761\) 12.1991 0.442216 0.221108 0.975249i \(-0.429033\pi\)
0.221108 + 0.975249i \(0.429033\pi\)
\(762\) 0 0
\(763\) −23.7892 −0.861225
\(764\) 22.1255 + 14.2680i 0.800472 + 0.516198i
\(765\) 0 0
\(766\) 2.73101 9.27419i 0.0986753 0.335090i
\(767\) 12.0568i 0.435347i
\(768\) 0 0
\(769\) −13.2424 −0.477531 −0.238766 0.971077i \(-0.576743\pi\)
−0.238766 + 0.971077i \(0.576743\pi\)
\(770\) −0.192896 0.403026i −0.00695148 0.0145241i
\(771\) 0 0
\(772\) 9.21356 14.2875i 0.331603 0.514220i
\(773\) −6.66412 −0.239692 −0.119846 0.992793i \(-0.538240\pi\)
−0.119846 + 0.992793i \(0.538240\pi\)
\(774\) 0 0
\(775\) −0.747264 + 7.07399i −0.0268425 + 0.254105i
\(776\) −31.5839 + 27.2385i −1.13380 + 0.977805i
\(777\) 0 0
\(778\) −6.03244 + 20.4855i −0.216274 + 0.734441i
\(779\) 5.11732i 0.183347i
\(780\) 0 0
\(781\) 1.21335i 0.0434170i
\(782\) 11.8951 + 3.50279i 0.425368 + 0.125260i
\(783\) 0 0
\(784\) 8.15216 + 17.9991i 0.291149 + 0.642826i
\(785\) −30.5652 33.9640i −1.09092 1.21223i
\(786\) 0 0
\(787\) 0.163075 0.00581301 0.00290650 0.999996i \(-0.499075\pi\)
0.00290650 + 0.999996i \(0.499075\pi\)
\(788\) −7.50403 4.83910i −0.267320 0.172386i
\(789\) 0 0
\(790\) 3.39686 + 7.09722i 0.120855 + 0.252508i
\(791\) 13.1351 0.467031
\(792\) 0 0
\(793\) 24.6903i 0.876780i
\(794\) −34.0927 10.0394i −1.20990 0.356285i
\(795\) 0 0
\(796\) −32.4334 20.9152i −1.14957 0.741321i
\(797\) −46.0750 −1.63206 −0.816031 0.578009i \(-0.803830\pi\)
−0.816031 + 0.578009i \(0.803830\pi\)
\(798\) 0 0
\(799\) 18.3511 0.649216
\(800\) −28.2683 + 0.951740i −0.999434 + 0.0336491i
\(801\) 0 0
\(802\) −36.9575 10.8830i −1.30502 0.384293i
\(803\) 0.554180 0.0195566
\(804\) 0 0
\(805\) 9.23967 + 10.2671i 0.325656 + 0.361868i
\(806\) −3.70985 1.09245i −0.130674 0.0384800i
\(807\) 0 0
\(808\) 29.1767 25.1625i 1.02643 0.885214i
\(809\) 48.0231 1.68840 0.844201 0.536026i \(-0.180075\pi\)
0.844201 + 0.536026i \(0.180075\pi\)
\(810\) 0 0
\(811\) 19.0427i 0.668680i 0.942453 + 0.334340i \(0.108513\pi\)
−0.942453 + 0.334340i \(0.891487\pi\)
\(812\) 8.60508 + 5.54913i 0.301979 + 0.194736i
\(813\) 0 0
\(814\) 0.325350 1.10485i 0.0114035 0.0387250i
\(815\) 29.2375 + 32.4887i 1.02414 + 1.13803i
\(816\) 0 0
\(817\) 5.50334i 0.192538i
\(818\) −2.81257 0.828228i −0.0983392 0.0289583i
\(819\) 0 0
\(820\) 3.64805 + 22.6029i 0.127396 + 0.789329i
\(821\) 26.1910i 0.914073i 0.889448 + 0.457037i \(0.151089\pi\)
−0.889448 + 0.457037i \(0.848911\pi\)
\(822\) 0 0
\(823\) 11.9142i 0.415302i −0.978203 0.207651i \(-0.933418\pi\)
0.978203 0.207651i \(-0.0665819\pi\)
\(824\) 23.2308 20.0346i 0.809283 0.697940i
\(825\) 0 0
\(826\) 12.2138 + 3.59664i 0.424972 + 0.125143i
\(827\) −20.2443 −0.703965 −0.351982 0.936007i \(-0.614492\pi\)
−0.351982 + 0.936007i \(0.614492\pi\)
\(828\) 0 0
\(829\) 32.5375i 1.13007i −0.825066 0.565037i \(-0.808862\pi\)
0.825066 0.565037i \(-0.191138\pi\)
\(830\) −3.09808 6.47296i −0.107536 0.224680i
\(831\) 0 0
\(832\) 2.25964 15.2105i 0.0783387 0.527330i
\(833\) 10.0644i 0.348710i
\(834\) 0 0
\(835\) 1.93168 1.73837i 0.0668484 0.0601588i
\(836\) 0.165385 + 0.106652i 0.00571997 + 0.00368862i
\(837\) 0 0
\(838\) −11.2835 + 38.3175i −0.389781 + 1.32365i
\(839\) −40.6959 −1.40498 −0.702489 0.711695i \(-0.747928\pi\)
−0.702489 + 0.711695i \(0.747928\pi\)
\(840\) 0 0
\(841\) 16.2779 0.561307
\(842\) −1.97439 + 6.70480i −0.0680419 + 0.231063i
\(843\) 0 0
\(844\) 24.3728 37.7951i 0.838947 1.30096i
\(845\) −13.9186 15.4663i −0.478814 0.532058i
\(846\) 0 0
\(847\) 15.7748i 0.542029i
\(848\) −8.14753 17.9889i −0.279787 0.617741i
\(849\) 0 0
\(850\) −13.3159 5.49887i −0.456732 0.188610i
\(851\) 35.6050i 1.22052i
\(852\) 0 0
\(853\) 18.5346 0.634611 0.317306 0.948323i \(-0.397222\pi\)
0.317306 + 0.948323i \(0.397222\pi\)
\(854\) −25.0118 7.36530i −0.855885 0.252036i
\(855\) 0 0
\(856\) −23.0745 26.7556i −0.788670 0.914488i
\(857\) 46.9004i 1.60209i −0.598607 0.801043i \(-0.704279\pi\)
0.598607 0.801043i \(-0.295721\pi\)
\(858\) 0 0
\(859\) 32.2074i 1.09890i 0.835526 + 0.549452i \(0.185163\pi\)
−0.835526 + 0.549452i \(0.814837\pi\)
\(860\) 3.92324 + 24.3080i 0.133782 + 0.828896i
\(861\) 0 0
\(862\) 6.79813 + 2.00187i 0.231545 + 0.0681840i
\(863\) 23.5848i 0.802836i −0.915895 0.401418i \(-0.868517\pi\)
0.915895 0.401418i \(-0.131483\pi\)
\(864\) 0 0
\(865\) −11.0522 12.2812i −0.375785 0.417572i
\(866\) 3.11588 10.5812i 0.105882 0.359563i
\(867\) 0 0
\(868\) −2.21335 + 3.43226i −0.0751259 + 0.116498i
\(869\) 0.244932i 0.00830875i
\(870\) 0 0
\(871\) 3.63344 0.123114
\(872\) −35.4998 + 30.6156i −1.20217 + 1.03678i
\(873\) 0 0
\(874\) −5.83577 1.71848i −0.197398 0.0581285i
\(875\) −9.42230 12.9902i −0.318532 0.439149i
\(876\) 0 0
\(877\) −6.16767 −0.208267 −0.104134 0.994563i \(-0.533207\pi\)
−0.104134 + 0.994563i \(0.533207\pi\)
\(878\) 47.3969 + 13.9571i 1.59957 + 0.471030i
\(879\) 0 0
\(880\) −0.806530 0.353174i −0.0271881 0.0119055i
\(881\) −48.3515 −1.62900 −0.814502 0.580161i \(-0.802990\pi\)
−0.814502 + 0.580161i \(0.802990\pi\)
\(882\) 0 0
\(883\) −7.17454 −0.241443 −0.120721 0.992686i \(-0.538521\pi\)
−0.120721 + 0.992686i \(0.538521\pi\)
\(884\) 4.24486 6.58254i 0.142770 0.221395i
\(885\) 0 0
\(886\) −32.0313 9.43238i −1.07611 0.316887i
\(887\) 33.8797i 1.13757i −0.822486 0.568785i \(-0.807414\pi\)
0.822486 0.568785i \(-0.192586\pi\)
\(888\) 0 0
\(889\) −15.7383 −0.527845
\(890\) 18.2324 + 38.0939i 0.611153 + 1.27691i
\(891\) 0 0
\(892\) 30.0122 46.5402i 1.00488 1.55828i
\(893\) −9.00311 −0.301278
\(894\) 0 0
\(895\) −30.6358 + 27.5700i −1.02404 + 0.921564i
\(896\) −14.7345 6.82646i −0.492244 0.228056i
\(897\) 0 0
\(898\) 12.7405 + 3.75176i 0.425158 + 0.125198i
\(899\) 5.07439i 0.169240i
\(900\) 0 0
\(901\) 10.0587i 0.335103i
\(902\) −0.201329 + 0.683690i −0.00670352 + 0.0227644i
\(903\) 0 0
\(904\) 19.6011 16.9043i 0.651923 0.562230i
\(905\) 7.89635 7.10615i 0.262484 0.236217i
\(906\) 0 0
\(907\) −25.4054 −0.843573 −0.421787 0.906695i \(-0.638597\pi\)
−0.421787 + 0.906695i \(0.638597\pi\)
\(908\) 13.8709 + 8.94486i 0.460321 + 0.296846i
\(909\) 0 0
\(910\) 7.86973 3.76660i 0.260879 0.124862i
\(911\) 12.7243 0.421574 0.210787 0.977532i \(-0.432397\pi\)
0.210787 + 0.977532i \(0.432397\pi\)
\(912\) 0 0
\(913\) 0.223388i 0.00739307i
\(914\) −12.4024 + 42.1171i −0.410234 + 1.39311i
\(915\) 0 0
\(916\) 7.02437 10.8927i 0.232092 0.359906i
\(917\) 31.8494 1.05176
\(918\) 0 0
\(919\) 10.1070 0.333399 0.166699 0.986008i \(-0.446689\pi\)
0.166699 + 0.986008i \(0.446689\pi\)
\(920\) 27.0014 + 3.43022i 0.890210 + 0.113091i
\(921\) 0 0
\(922\) −0.346666 + 1.17724i −0.0114168 + 0.0387703i
\(923\) −23.6926 −0.779851
\(924\) 0 0
\(925\) 4.34559 41.1376i 0.142882 1.35260i
\(926\) −12.3960 + 42.0954i −0.407357 + 1.38334i
\(927\) 0 0
\(928\) 19.9826 2.79358i 0.655960 0.0917037i
\(929\) 28.2928 0.928257 0.464129 0.885768i \(-0.346368\pi\)
0.464129 + 0.885768i \(0.346368\pi\)
\(930\) 0 0
\(931\) 4.93762i 0.161824i
\(932\) 8.97404 13.9161i 0.293955 0.455837i
\(933\) 0 0
\(934\) −37.5864 11.0682i −1.22987 0.362163i
\(935\) −0.299996 0.333355i −0.00981091 0.0109019i
\(936\) 0 0
\(937\) 21.5800i 0.704987i −0.935814 0.352493i \(-0.885334\pi\)
0.935814 0.352493i \(-0.114666\pi\)
\(938\) 1.08388 3.68074i 0.0353899 0.120180i
\(939\) 0 0
\(940\) 39.7663 6.41818i 1.29704 0.209338i
\(941\) 25.5990i 0.834503i 0.908791 + 0.417252i \(0.137007\pi\)
−0.908791 + 0.417252i \(0.862993\pi\)
\(942\) 0 0
\(943\) 22.0327i 0.717482i
\(944\) 22.8549 10.3515i 0.743865 0.336911i
\(945\) 0 0
\(946\) −0.216516 + 0.735265i −0.00703955 + 0.0239055i
\(947\) 26.0177 0.845461 0.422730 0.906256i \(-0.361072\pi\)
0.422730 + 0.906256i \(0.361072\pi\)
\(948\) 0 0
\(949\) 10.8212i 0.351272i
\(950\) 6.53283 + 2.69776i 0.211953 + 0.0875270i
\(951\) 0 0
\(952\) −5.40195 6.26374i −0.175078 0.203009i
\(953\) 58.0689i 1.88104i −0.339745 0.940518i \(-0.610341\pi\)
0.339745 0.940518i \(-0.389659\pi\)
\(954\) 0 0
\(955\) 19.6898 + 21.8793i 0.637147 + 0.707997i
\(956\) −44.2251 28.5193i −1.43034 0.922381i
\(957\) 0 0
\(958\) −41.9179 12.3437i −1.35431 0.398808i
\(959\) 15.4802 0.499883
\(960\) 0 0
\(961\) −28.9760 −0.934710
\(962\) 21.5740 + 6.35297i 0.695573 + 0.204828i
\(963\) 0 0
\(964\) −41.6881 26.8833i −1.34268 0.865853i
\(965\) 14.1285 12.7147i 0.454814 0.409300i
\(966\) 0 0
\(967\) 29.7133i 0.955516i −0.878491 0.477758i \(-0.841450\pi\)
0.878491 0.477758i \(-0.158550\pi\)
\(968\) 20.3015 + 23.5403i 0.652516 + 0.756612i
\(969\) 0 0
\(970\) −42.0606 + 20.1310i −1.35048 + 0.646366i
\(971\) 29.8380i 0.957547i −0.877938 0.478774i \(-0.841081\pi\)
0.877938 0.478774i \(-0.158919\pi\)
\(972\) 0 0
\(973\) 22.3545 0.716651
\(974\) −8.59546 + 29.1892i −0.275416 + 0.935283i
\(975\) 0 0
\(976\) −46.8030 + 21.1980i −1.49813 + 0.678533i
\(977\) 15.4533i 0.494394i 0.968965 + 0.247197i \(0.0795094\pi\)
−0.968965 + 0.247197i \(0.920491\pi\)
\(978\) 0 0
\(979\) 1.31466i 0.0420167i
\(980\) 3.51995 + 21.8092i 0.112441 + 0.696670i
\(981\) 0 0
\(982\) 3.89221 13.2175i 0.124205 0.421787i
\(983\) 5.17515i 0.165062i −0.996589 0.0825309i \(-0.973700\pi\)
0.996589 0.0825309i \(-0.0263003\pi\)
\(984\) 0 0
\(985\) −6.67795 7.42053i −0.212777 0.236438i
\(986\) 9.85858 + 2.90309i 0.313961 + 0.0924533i
\(987\) 0 0
\(988\) −2.08254 + 3.22941i −0.0662545 + 0.102741i
\(989\) 23.6947i 0.753448i
\(990\) 0 0
\(991\) −18.2392 −0.579388 −0.289694 0.957119i \(-0.593554\pi\)
−0.289694 + 0.957119i \(0.593554\pi\)
\(992\) 1.11426 + 7.97033i 0.0353777 + 0.253058i
\(993\) 0 0
\(994\) −7.06767 + 24.0010i −0.224173 + 0.761266i
\(995\) −28.8630 32.0725i −0.915018 1.01677i
\(996\) 0 0
\(997\) 40.5033 1.28275 0.641377 0.767226i \(-0.278364\pi\)
0.641377 + 0.767226i \(0.278364\pi\)
\(998\) −2.76119 + 9.37668i −0.0874038 + 0.296814i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.2.d.j.109.18 yes 20
3.2 odd 2 inner 1080.2.d.j.109.3 yes 20
4.3 odd 2 4320.2.d.j.3889.14 20
5.4 even 2 1080.2.d.i.109.3 20
8.3 odd 2 4320.2.d.i.3889.7 20
8.5 even 2 1080.2.d.i.109.4 yes 20
12.11 even 2 4320.2.d.j.3889.7 20
15.14 odd 2 1080.2.d.i.109.18 yes 20
20.19 odd 2 4320.2.d.i.3889.8 20
24.5 odd 2 1080.2.d.i.109.17 yes 20
24.11 even 2 4320.2.d.i.3889.14 20
40.19 odd 2 4320.2.d.j.3889.13 20
40.29 even 2 inner 1080.2.d.j.109.17 yes 20
60.59 even 2 4320.2.d.i.3889.13 20
120.29 odd 2 inner 1080.2.d.j.109.4 yes 20
120.59 even 2 4320.2.d.j.3889.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.2.d.i.109.3 20 5.4 even 2
1080.2.d.i.109.4 yes 20 8.5 even 2
1080.2.d.i.109.17 yes 20 24.5 odd 2
1080.2.d.i.109.18 yes 20 15.14 odd 2
1080.2.d.j.109.3 yes 20 3.2 odd 2 inner
1080.2.d.j.109.4 yes 20 120.29 odd 2 inner
1080.2.d.j.109.17 yes 20 40.29 even 2 inner
1080.2.d.j.109.18 yes 20 1.1 even 1 trivial
4320.2.d.i.3889.7 20 8.3 odd 2
4320.2.d.i.3889.8 20 20.19 odd 2
4320.2.d.i.3889.13 20 60.59 even 2
4320.2.d.i.3889.14 20 24.11 even 2
4320.2.d.j.3889.7 20 12.11 even 2
4320.2.d.j.3889.8 20 120.59 even 2
4320.2.d.j.3889.13 20 40.19 odd 2
4320.2.d.j.3889.14 20 4.3 odd 2