L(s) = 1 | − 1.60·2-s + 3-s + 0.574·4-s + (−2.22 + 0.232i)5-s − 1.60·6-s + 1.04i·7-s + 2.28·8-s + 9-s + (3.56 − 0.373i)10-s − 5.71i·11-s + 0.574·12-s + 4.68i·13-s − 1.66i·14-s + (−2.22 + 0.232i)15-s − 4.81·16-s + 2.22·17-s + ⋯ |
L(s) = 1 | − 1.13·2-s + 0.577·3-s + 0.287·4-s + (−0.994 + 0.104i)5-s − 0.655·6-s + 0.393i·7-s + 0.808·8-s + 0.333·9-s + (1.12 − 0.118i)10-s − 1.72i·11-s + 0.165·12-s + 1.30i·13-s − 0.446i·14-s + (−0.574 + 0.0601i)15-s − 1.20·16-s + 0.540·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.362 - 0.931i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 435 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.362 - 0.931i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.538163 + 0.367960i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.538163 + 0.367960i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 5 | \( 1 + (2.22 - 0.232i)T \) |
| 29 | \( 1 + (2.46 - 4.78i)T \) |
good | 2 | \( 1 + 1.60T + 2T^{2} \) |
| 7 | \( 1 - 1.04iT - 7T^{2} \) |
| 11 | \( 1 + 5.71iT - 11T^{2} \) |
| 13 | \( 1 - 4.68iT - 13T^{2} \) |
| 17 | \( 1 - 2.22T + 17T^{2} \) |
| 19 | \( 1 - 6.45iT - 19T^{2} \) |
| 23 | \( 1 - 6.19iT - 23T^{2} \) |
| 31 | \( 1 - 2.73iT - 31T^{2} \) |
| 37 | \( 1 - 7.69T + 37T^{2} \) |
| 41 | \( 1 - 2.07iT - 41T^{2} \) |
| 43 | \( 1 - 0.0721T + 43T^{2} \) |
| 47 | \( 1 + 3.86T + 47T^{2} \) |
| 53 | \( 1 - 10.2iT - 53T^{2} \) |
| 59 | \( 1 - 9.67T + 59T^{2} \) |
| 61 | \( 1 + 5.68iT - 61T^{2} \) |
| 67 | \( 1 - 8.51iT - 67T^{2} \) |
| 71 | \( 1 + 9.26T + 71T^{2} \) |
| 73 | \( 1 + 9.65T + 73T^{2} \) |
| 79 | \( 1 - 1.03iT - 79T^{2} \) |
| 83 | \( 1 - 1.94iT - 83T^{2} \) |
| 89 | \( 1 + 16.4iT - 89T^{2} \) |
| 97 | \( 1 - 1.12T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.24869530433448777204430292965, −10.25275089126027312428162722165, −9.223086915442980229426353337768, −8.623520737728335700659191823041, −7.948424647321346184809625963853, −7.16009073077967466686187376537, −5.76880923190783678204074329229, −4.19036805946356723940319472916, −3.24047970887480679852681138463, −1.37797590424918681095652665613,
0.64093105730469483870008168632, 2.49059251847074004020124858044, 4.09080023013695440289806481023, 4.86811452509713996987268291629, 6.93191317814994660038322608926, 7.60516535799834749076755397305, 8.160836174850975606635247122796, 9.135854474936574864693556159445, 9.976667654668664173127068478770, 10.60488252500010425991590545513