L(s) = 1 | − 1.60·2-s + 3-s + 0.574·4-s + (−2.22 + 0.232i)5-s − 1.60·6-s + 1.04i·7-s + 2.28·8-s + 9-s + (3.56 − 0.373i)10-s − 5.71i·11-s + 0.574·12-s + 4.68i·13-s − 1.66i·14-s + (−2.22 + 0.232i)15-s − 4.81·16-s + 2.22·17-s + ⋯ |
L(s) = 1 | − 1.13·2-s + 0.577·3-s + 0.287·4-s + (−0.994 + 0.104i)5-s − 0.655·6-s + 0.393i·7-s + 0.808·8-s + 0.333·9-s + (1.12 − 0.118i)10-s − 1.72i·11-s + 0.165·12-s + 1.30i·13-s − 0.446i·14-s + (−0.574 + 0.0601i)15-s − 1.20·16-s + 0.540·17-s + ⋯ |
Λ(s)=(=(435s/2ΓC(s)L(s)(0.362−0.931i)Λ(2−s)
Λ(s)=(=(435s/2ΓC(s+1/2)L(s)(0.362−0.931i)Λ(1−s)
Degree: |
2 |
Conductor: |
435
= 3⋅5⋅29
|
Sign: |
0.362−0.931i
|
Analytic conductor: |
3.47349 |
Root analytic conductor: |
1.86373 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ435(289,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 435, ( :1/2), 0.362−0.931i)
|
Particular Values
L(1) |
≈ |
0.538163+0.367960i |
L(21) |
≈ |
0.538163+0.367960i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1+(2.22−0.232i)T |
| 29 | 1+(2.46−4.78i)T |
good | 2 | 1+1.60T+2T2 |
| 7 | 1−1.04iT−7T2 |
| 11 | 1+5.71iT−11T2 |
| 13 | 1−4.68iT−13T2 |
| 17 | 1−2.22T+17T2 |
| 19 | 1−6.45iT−19T2 |
| 23 | 1−6.19iT−23T2 |
| 31 | 1−2.73iT−31T2 |
| 37 | 1−7.69T+37T2 |
| 41 | 1−2.07iT−41T2 |
| 43 | 1−0.0721T+43T2 |
| 47 | 1+3.86T+47T2 |
| 53 | 1−10.2iT−53T2 |
| 59 | 1−9.67T+59T2 |
| 61 | 1+5.68iT−61T2 |
| 67 | 1−8.51iT−67T2 |
| 71 | 1+9.26T+71T2 |
| 73 | 1+9.65T+73T2 |
| 79 | 1−1.03iT−79T2 |
| 83 | 1−1.94iT−83T2 |
| 89 | 1+16.4iT−89T2 |
| 97 | 1−1.12T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.24869530433448777204430292965, −10.25275089126027312428162722165, −9.223086915442980229426353337768, −8.623520737728335700659191823041, −7.948424647321346184809625963853, −7.16009073077967466686187376537, −5.76880923190783678204074329229, −4.19036805946356723940319472916, −3.24047970887480679852681138463, −1.37797590424918681095652665613,
0.64093105730469483870008168632, 2.49059251847074004020124858044, 4.09080023013695440289806481023, 4.86811452509713996987268291629, 6.93191317814994660038322608926, 7.60516535799834749076755397305, 8.160836174850975606635247122796, 9.135854474936574864693556159445, 9.976667654668664173127068478770, 10.60488252500010425991590545513