Properties

Label 435.2.f.f
Level 435435
Weight 22
Character orbit 435.f
Analytic conductor 3.4733.473
Analytic rank 00
Dimension 1212
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [435,2,Mod(289,435)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(435, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("435.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 435=3529 435 = 3 \cdot 5 \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 435.f (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 3.473492487933.47349248793
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12x1111x9+55x866x7+328x6214x5+207x4+383x3++209 x^{12} - x^{11} - 11 x^{9} + 55 x^{8} - 66 x^{7} + 328 x^{6} - 214 x^{5} + 207 x^{4} + 383 x^{3} + \cdots + 209 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 26 2^{6}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β111,\beta_1,\ldots,\beta_{11} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ5q2+q3+(β3+1)q4+(β21)q5β5q6+β9q7+(β82β5+β3++1)q8+q9+(β7+β5)q10++(β11β2+β1)q99+O(q100) q - \beta_{5} q^{2} + q^{3} + ( - \beta_{3} + 1) q^{4} + (\beta_{2} - 1) q^{5} - \beta_{5} q^{6} + \beta_{9} q^{7} + ( - \beta_{8} - 2 \beta_{5} + \beta_{3} + \cdots + 1) q^{8} + q^{9} + (\beta_{7} + \beta_{5}) q^{10}+ \cdots + ( - \beta_{11} - \beta_{2} + \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+12q3+16q46q5+12q9+2q10+16q126q15+32q168q1720q20+12q25+12q27+8q29+2q3040q3252q34+14q35+16q36+112q98+O(q100) 12 q + 12 q^{3} + 16 q^{4} - 6 q^{5} + 12 q^{9} + 2 q^{10} + 16 q^{12} - 6 q^{15} + 32 q^{16} - 8 q^{17} - 20 q^{20} + 12 q^{25} + 12 q^{27} + 8 q^{29} + 2 q^{30} - 40 q^{32} - 52 q^{34} + 14 q^{35} + 16 q^{36}+ \cdots - 112 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x12x1111x9+55x866x7+328x6214x5+207x4+383x3++209 x^{12} - x^{11} - 11 x^{9} + 55 x^{8} - 66 x^{7} + 328 x^{6} - 214 x^{5} + 207 x^{4} + 383 x^{3} + \cdots + 209 : Copy content Toggle raw display

β1\beta_{1}== (1397998659ν11+2925295595ν107051159320ν916202543074ν8+4008235081411)/3213459622340 ( 1397998659 \nu^{11} + 2925295595 \nu^{10} - 7051159320 \nu^{9} - 16202543074 \nu^{8} + \cdots - 4008235081411 ) / 3213459622340 Copy content Toggle raw display
β2\beta_{2}== (438845871ν111612092568ν10+93438063ν93651448133ν8+852415781250)/642691924468 ( 438845871 \nu^{11} - 1612092568 \nu^{10} + 93438063 \nu^{9} - 3651448133 \nu^{8} + \cdots - 852415781250 ) / 642691924468 Copy content Toggle raw display
β3\beta_{3}== (6774498506ν11+11302364650ν1014173819980ν9+62634263811ν8+3000675757541)/3213459622340 ( - 6774498506 \nu^{11} + 11302364650 \nu^{10} - 14173819980 \nu^{9} + 62634263811 \nu^{8} + \cdots - 3000675757541 ) / 3213459622340 Copy content Toggle raw display
β4\beta_{4}== (14834961346ν1119830017805ν10+8761728055ν9165086515566ν8+802809213514)/3213459622340 ( 14834961346 \nu^{11} - 19830017805 \nu^{10} + 8761728055 \nu^{9} - 165086515566 \nu^{8} + \cdots - 802809213514 ) / 3213459622340 Copy content Toggle raw display
β5\beta_{5}== (15940407777ν11+23169062590ν10+3022410ν9+175231640332ν8++2271334684498)/3213459622340 ( - 15940407777 \nu^{11} + 23169062590 \nu^{10} + 3022410 \nu^{9} + 175231640332 \nu^{8} + \cdots + 2271334684498 ) / 3213459622340 Copy content Toggle raw display
β6\beta_{6}== (9287830936ν11+18791211275ν107074036000ν9+97560593321ν8++1390587069839)/1606729811170 ( - 9287830936 \nu^{11} + 18791211275 \nu^{10} - 7074036000 \nu^{9} + 97560593321 \nu^{8} + \cdots + 1390587069839 ) / 1606729811170 Copy content Toggle raw display
β7\beta_{7}== (1814963223ν11+1826616705ν10+1608454605ν9+19032062228ν8++285575480212)/292132692940 ( - 1814963223 \nu^{11} + 1826616705 \nu^{10} + 1608454605 \nu^{9} + 19032062228 \nu^{8} + \cdots + 285575480212 ) / 292132692940 Copy content Toggle raw display
β8\beta_{8}== (20053088776ν1123152421330ν1035040242445ν9226992732701ν8+11720209576834)/3213459622340 ( 20053088776 \nu^{11} - 23152421330 \nu^{10} - 35040242445 \nu^{9} - 226992732701 \nu^{8} + \cdots - 11720209576834 ) / 3213459622340 Copy content Toggle raw display
β9\beta_{9}== (26830096707ν1118124014990ν10+14433023630ν9344432223437ν8++409628743007)/3213459622340 ( 26830096707 \nu^{11} - 18124014990 \nu^{10} + 14433023630 \nu^{9} - 344432223437 \nu^{8} + \cdots + 409628743007 ) / 3213459622340 Copy content Toggle raw display
β10\beta_{10}== (42580783394ν116474185680ν10+34133697850ν9+503681618779ν8++1277078933251)/3213459622340 ( - 42580783394 \nu^{11} - 6474185680 \nu^{10} + 34133697850 \nu^{9} + 503681618779 \nu^{8} + \cdots + 1277078933251 ) / 3213459622340 Copy content Toggle raw display
β11\beta_{11}== (47064798624ν1116749257055ν1016699358825ν9544078396489ν8+1811594761361)/3213459622340 ( 47064798624 \nu^{11} - 16749257055 \nu^{10} - 16699358825 \nu^{9} - 544078396489 \nu^{8} + \cdots - 1811594761361 ) / 3213459622340 Copy content Toggle raw display
ν\nu== (3β11+2β10β9+2β8+3β7+β62β32β2)/8 ( 3\beta_{11} + 2\beta_{10} - \beta_{9} + 2\beta_{8} + 3\beta_{7} + \beta_{6} - 2\beta_{3} - 2\beta_{2} ) / 8 Copy content Toggle raw display
ν2\nu^{2}== (5β112β10β92β8β7+5β68β5++8β1)/8 ( - 5 \beta_{11} - 2 \beta_{10} - \beta_{9} - 2 \beta_{8} - \beta_{7} + 5 \beta_{6} - 8 \beta_{5} + \cdots + 8 \beta_1 ) / 8 Copy content Toggle raw display
ν3\nu^{3}== (5β11+5β10+β92β83β7+β63β4+2β3++4)/2 ( 5 \beta_{11} + 5 \beta_{10} + \beta_{9} - 2 \beta_{8} - 3 \beta_{7} + \beta_{6} - 3 \beta_{4} + 2 \beta_{3} + \cdots + 4 ) / 2 Copy content Toggle raw display
ν4\nu^{4}== (7β11+10β10+5β9+38β87β7+27β6+40β5+96)/8 ( - 7 \beta_{11} + 10 \beta_{10} + 5 \beta_{9} + 38 \beta_{8} - 7 \beta_{7} + 27 \beta_{6} + 40 \beta_{5} + \cdots - 96 ) / 8 Copy content Toggle raw display
ν5\nu^{5}== (85β1130β10+7β9130β8145β783β6++128)/8 ( - 85 \beta_{11} - 30 \beta_{10} + 7 \beta_{9} - 130 \beta_{8} - 145 \beta_{7} - 83 \beta_{6} + \cdots + 128 ) / 8 Copy content Toggle raw display
ν6\nu^{6}== 68β11+48β102β812β720β6+22β577β4+75 68 \beta_{11} + 48 \beta_{10} - 2 \beta_{8} - 12 \beta_{7} - 20 \beta_{6} + 22 \beta_{5} - 77 \beta_{4} + \cdots - 75 Copy content Toggle raw display
ν7\nu^{7}== (1577β111166β10+43β9+226β8401β7155β6+1768)/8 ( - 1577 \beta_{11} - 1166 \beta_{10} + 43 \beta_{9} + 226 \beta_{8} - 401 \beta_{7} - 155 \beta_{6} + \cdots - 1768 ) / 8 Copy content Toggle raw display
ν8\nu^{8}== (1631β11+310β10381β93146β81533β73951β6++5088)/8 ( 1631 \beta_{11} + 310 \beta_{10} - 381 \beta_{9} - 3146 \beta_{8} - 1533 \beta_{7} - 3951 \beta_{6} + \cdots + 5088 ) / 8 Copy content Toggle raw display
ν9\nu^{9}== (929β1185β10305β9+1956β8+2047β7+59β6+5514)/2 ( 929 \beta_{11} - 85 \beta_{10} - 305 \beta_{9} + 1956 \beta_{8} + 2047 \beta_{7} + 59 \beta_{6} + \cdots - 5514 ) / 2 Copy content Toggle raw display
ν10\nu^{10}== (42507β1135934β10911β911842β81675β77345β6++34784)/8 ( - 42507 \beta_{11} - 35934 \beta_{10} - 911 \beta_{9} - 11842 \beta_{8} - 1675 \beta_{7} - 7345 \beta_{6} + \cdots + 34784 ) / 8 Copy content Toggle raw display
ν11\nu^{11}== (122527β11+65570β109181β96818β8+45979β722831β6++83272)/8 ( 122527 \beta_{11} + 65570 \beta_{10} - 9181 \beta_{9} - 6818 \beta_{8} + 45979 \beta_{7} - 22831 \beta_{6} + \cdots + 83272 ) / 8 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/435Z)×\left(\mathbb{Z}/435\mathbb{Z}\right)^\times.

nn 3131 146146 262262
χ(n)\chi(n) 1-1 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
289.1
−0.177521 + 2.06715i
−0.177521 2.06715i
0.469890 0.575682i
0.469890 + 0.575682i
−2.21342 + 2.00212i
−2.21342 2.00212i
0.730544 1.10073i
0.730544 + 1.10073i
2.44773 + 1.33046i
2.44773 1.33046i
−0.757215 0.394074i
−0.757215 + 0.394074i
−2.67451 1.00000 5.15300 −0.347696 2.20887i −2.67451 1.33684i −8.43272 1.00000 0.929917 + 5.90764i
289.2 −2.67451 1.00000 5.15300 −0.347696 + 2.20887i −2.67451 1.33684i −8.43272 1.00000 0.929917 5.90764i
289.3 −1.60465 1.00000 0.574897 −2.22390 0.232983i −1.60465 1.04058i 2.28679 1.00000 3.56857 + 0.373856i
289.4 −1.60465 1.00000 0.574897 −2.22390 + 0.232983i −1.60465 1.04058i 2.28679 1.00000 3.56857 0.373856i
289.5 −0.334522 1.00000 −1.88809 1.95387 1.08739i −0.334522 0.275019i 1.30066 1.00000 −0.653612 + 0.363756i
289.6 −0.334522 1.00000 −1.88809 1.95387 + 1.08739i −0.334522 0.275019i 1.30066 1.00000 −0.653612 0.363756i
289.7 0.141254 1.00000 −1.98005 −1.62735 1.53353i 0.141254 4.11523i −0.562197 1.00000 −0.229870 0.216617i
289.8 0.141254 1.00000 −1.98005 −1.62735 + 1.53353i 0.141254 4.11523i −0.562197 1.00000 −0.229870 + 0.216617i
289.9 1.97264 1.00000 1.89129 1.38075 1.75885i 1.97264 0.520254i −0.214447 1.00000 2.72371 3.46956i
289.10 1.97264 1.00000 1.89129 1.38075 + 1.75885i 1.97264 0.520254i −0.214447 1.00000 2.72371 + 3.46956i
289.11 2.49979 1.00000 4.24896 −2.13567 0.662521i 2.49979 4.88350i 5.62192 1.00000 −5.33872 1.65616i
289.12 2.49979 1.00000 4.24896 −2.13567 + 0.662521i 2.49979 4.88350i 5.62192 1.00000 −5.33872 + 1.65616i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
145.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 435.2.f.f yes 12
3.b odd 2 1 1305.2.f.l 12
5.b even 2 1 435.2.f.e 12
5.c odd 4 2 2175.2.d.j 24
15.d odd 2 1 1305.2.f.k 12
29.b even 2 1 435.2.f.e 12
87.d odd 2 1 1305.2.f.k 12
145.d even 2 1 inner 435.2.f.f yes 12
145.h odd 4 2 2175.2.d.j 24
435.b odd 2 1 1305.2.f.l 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
435.2.f.e 12 5.b even 2 1
435.2.f.e 12 29.b even 2 1
435.2.f.f yes 12 1.a even 1 1 trivial
435.2.f.f yes 12 145.d even 2 1 inner
1305.2.f.k 12 15.d odd 2 1
1305.2.f.k 12 87.d odd 2 1
1305.2.f.l 12 3.b odd 2 1
1305.2.f.l 12 435.b odd 2 1
2175.2.d.j 24 5.c odd 4 2
2175.2.d.j 24 145.h odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T2610T24+22T22+4T21 T_{2}^{6} - 10T_{2}^{4} + 22T_{2}^{2} + 4T_{2} - 1 acting on S2new(435,[χ])S_{2}^{\mathrm{new}}(435, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T610T4+22T2+1)2 (T^{6} - 10 T^{4} + 22 T^{2} + \cdots - 1)^{2} Copy content Toggle raw display
33 (T1)12 (T - 1)^{12} Copy content Toggle raw display
55 T12+6T11++15625 T^{12} + 6 T^{11} + \cdots + 15625 Copy content Toggle raw display
77 T12+44T10++16 T^{12} + 44 T^{10} + \cdots + 16 Copy content Toggle raw display
1111 T12+76T10++85264 T^{12} + 76 T^{10} + \cdots + 85264 Copy content Toggle raw display
1313 T12+100T10++43264 T^{12} + 100 T^{10} + \cdots + 43264 Copy content Toggle raw display
1717 (T6+4T5+1172)2 (T^{6} + 4 T^{5} + \cdots - 1172)^{2} Copy content Toggle raw display
1919 T12+160T10++6801664 T^{12} + 160 T^{10} + \cdots + 6801664 Copy content Toggle raw display
2323 T12+96T10++43264 T^{12} + 96 T^{10} + \cdots + 43264 Copy content Toggle raw display
2929 T12++594823321 T^{12} + \cdots + 594823321 Copy content Toggle raw display
3131 T12+248T10++63744256 T^{12} + 248 T^{10} + \cdots + 63744256 Copy content Toggle raw display
3737 (T610T5++9328)2 (T^{6} - 10 T^{5} + \cdots + 9328)^{2} Copy content Toggle raw display
4141 T12++881852416 T^{12} + \cdots + 881852416 Copy content Toggle raw display
4343 (T622T5+704)2 (T^{6} - 22 T^{5} + \cdots - 704)^{2} Copy content Toggle raw display
4747 (T6+16T5++1408)2 (T^{6} + 16 T^{5} + \cdots + 1408)^{2} Copy content Toggle raw display
5353 T12++7721488384 T^{12} + \cdots + 7721488384 Copy content Toggle raw display
5959 (T6+14T5++135232)2 (T^{6} + 14 T^{5} + \cdots + 135232)^{2} Copy content Toggle raw display
6161 T12++104748027904 T^{12} + \cdots + 104748027904 Copy content Toggle raw display
6767 T12++19142382736 T^{12} + \cdots + 19142382736 Copy content Toggle raw display
7171 (T6+8T5+43264)2 (T^{6} + 8 T^{5} + \cdots - 43264)^{2} Copy content Toggle raw display
7373 (T6+18T5++2864)2 (T^{6} + 18 T^{5} + \cdots + 2864)^{2} Copy content Toggle raw display
7979 T12++342694144 T^{12} + \cdots + 342694144 Copy content Toggle raw display
8383 T12++405780736 T^{12} + \cdots + 405780736 Copy content Toggle raw display
8989 T12++1392185344 T^{12} + \cdots + 1392185344 Copy content Toggle raw display
9797 (T6+20T5+23504)2 (T^{6} + 20 T^{5} + \cdots - 23504)^{2} Copy content Toggle raw display
show more
show less