gp: [N,k,chi] = [435,2,Mod(289,435)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(435, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("435.289");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [12,0,12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 11 1,\beta_1,\ldots,\beta_{11} 1 , β 1 , … , β 1 1 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 12 − x 11 − 11 x 9 + 55 x 8 − 66 x 7 + 328 x 6 − 214 x 5 + 207 x 4 + 383 x 3 + ⋯ + 209 x^{12} - x^{11} - 11 x^{9} + 55 x^{8} - 66 x^{7} + 328 x^{6} - 214 x^{5} + 207 x^{4} + 383 x^{3} + \cdots + 209 x 1 2 − x 1 1 − 1 1 x 9 + 5 5 x 8 − 6 6 x 7 + 3 2 8 x 6 − 2 1 4 x 5 + 2 0 7 x 4 + 3 8 3 x 3 + ⋯ + 2 0 9
x^12 - x^11 - 11*x^9 + 55*x^8 - 66*x^7 + 328*x^6 - 214*x^5 + 207*x^4 + 383*x^3 + 16*x^2 - 107*x + 209
:
β 1 \beta_{1} β 1 = = =
( 1397998659 ν 11 + 2925295595 ν 10 − 7051159320 ν 9 − 16202543074 ν 8 + ⋯ − 4008235081411 ) / 3213459622340 ( 1397998659 \nu^{11} + 2925295595 \nu^{10} - 7051159320 \nu^{9} - 16202543074 \nu^{8} + \cdots - 4008235081411 ) / 3213459622340 ( 1 3 9 7 9 9 8 6 5 9 ν 1 1 + 2 9 2 5 2 9 5 5 9 5 ν 1 0 − 7 0 5 1 1 5 9 3 2 0 ν 9 − 1 6 2 0 2 5 4 3 0 7 4 ν 8 + ⋯ − 4 0 0 8 2 3 5 0 8 1 4 1 1 ) / 3 2 1 3 4 5 9 6 2 2 3 4 0
(1397998659*v^11 + 2925295595*v^10 - 7051159320*v^9 - 16202543074*v^8 + 12622864171*v^7 + 158262562347*v^6 + 125074788459*v^5 + 1327313721943*v^4 - 1906016925784*v^3 + 197941781608*v^2 - 491520890193*v - 4008235081411) / 3213459622340
β 2 \beta_{2} β 2 = = =
( 438845871 ν 11 − 1612092568 ν 10 + 93438063 ν 9 − 3651448133 ν 8 + ⋯ − 852415781250 ) / 642691924468 ( 438845871 \nu^{11} - 1612092568 \nu^{10} + 93438063 \nu^{9} - 3651448133 \nu^{8} + \cdots - 852415781250 ) / 642691924468 ( 4 3 8 8 4 5 8 7 1 ν 1 1 − 1 6 1 2 0 9 2 5 6 8 ν 1 0 + 9 3 4 3 8 0 6 3 ν 9 − 3 6 5 1 4 4 8 1 3 3 ν 8 + ⋯ − 8 5 2 4 1 5 7 8 1 2 5 0 ) / 6 4 2 6 9 1 9 2 4 4 6 8
(438845871*v^11 - 1612092568*v^10 + 93438063*v^9 - 3651448133*v^8 + 40975525123*v^7 - 86600054135*v^6 + 150413062959*v^5 - 464110030659*v^4 + 229217482380*v^3 + 48797895497*v^2 + 79140591340*v - 852415781250) / 642691924468
β 3 \beta_{3} β 3 = = =
( − 6774498506 ν 11 + 11302364650 ν 10 − 14173819980 ν 9 + 62634263811 ν 8 + ⋯ − 3000675757541 ) / 3213459622340 ( - 6774498506 \nu^{11} + 11302364650 \nu^{10} - 14173819980 \nu^{9} + 62634263811 \nu^{8} + \cdots - 3000675757541 ) / 3213459622340 ( − 6 7 7 4 4 9 8 5 0 6 ν 1 1 + 1 1 3 0 2 3 6 4 6 5 0 ν 1 0 − 1 4 1 7 3 8 1 9 9 8 0 ν 9 + 6 2 6 3 4 2 6 3 8 1 1 ν 8 + ⋯ − 3 0 0 0 6 7 5 7 5 7 5 4 1 ) / 3 2 1 3 4 5 9 6 2 2 3 4 0
(-6774498506*v^11 + 11302364650*v^10 - 14173819980*v^9 + 62634263811*v^8 - 402715741289*v^7 + 847834249232*v^6 - 2762051697321*v^5 + 2197300745838*v^4 - 4695519142819*v^3 - 4571103630662*v^2 + 5453014482947*v - 3000675757541) / 3213459622340
β 4 \beta_{4} β 4 = = =
( 14834961346 ν 11 − 19830017805 ν 10 + 8761728055 ν 9 − 165086515566 ν 8 + ⋯ − 802809213514 ) / 3213459622340 ( 14834961346 \nu^{11} - 19830017805 \nu^{10} + 8761728055 \nu^{9} - 165086515566 \nu^{8} + \cdots - 802809213514 ) / 3213459622340 ( 1 4 8 3 4 9 6 1 3 4 6 ν 1 1 − 1 9 8 3 0 0 1 7 8 0 5 ν 1 0 + 8 7 6 1 7 2 8 0 5 5 ν 9 − 1 6 5 0 8 6 5 1 5 5 6 6 ν 8 + ⋯ − 8 0 2 8 0 9 2 1 3 5 1 4 ) / 3 2 1 3 4 5 9 6 2 2 3 4 0
(14834961346*v^11 - 19830017805*v^10 + 8761728055*v^9 - 165086515566*v^8 + 895774500149*v^7 - 1313192606262*v^6 + 5365102083441*v^5 - 5209732834548*v^4 + 6438006920199*v^3 + 4454497821127*v^2 + 5396904083698*v - 802809213514) / 3213459622340
β 5 \beta_{5} β 5 = = =
( − 15940407777 ν 11 + 23169062590 ν 10 + 3022410 ν 9 + 175231640332 ν 8 + ⋯ + 2271334684498 ) / 3213459622340 ( - 15940407777 \nu^{11} + 23169062590 \nu^{10} + 3022410 \nu^{9} + 175231640332 \nu^{8} + \cdots + 2271334684498 ) / 3213459622340 ( − 1 5 9 4 0 4 0 7 7 7 7 ν 1 1 + 2 3 1 6 9 0 6 2 5 9 0 ν 1 0 + 3 0 2 2 4 1 0 ν 9 + 1 7 5 2 3 1 6 4 0 3 3 2 ν 8 + ⋯ + 2 2 7 1 3 3 4 6 8 4 4 9 8 ) / 3 2 1 3 4 5 9 6 2 2 3 4 0
(-15940407777*v^11 + 23169062590*v^10 + 3022410*v^9 + 175231640332*v^8 - 951172524663*v^7 + 1342953712874*v^6 - 5371938150687*v^5 + 5652569350406*v^4 - 2115730805458*v^3 - 5944128492144*v^2 + 5714991881479*v + 2271334684498) / 3213459622340
β 6 \beta_{6} β 6 = = =
( − 9287830936 ν 11 + 18791211275 ν 10 − 7074036000 ν 9 + 97560593321 ν 8 + ⋯ + 1390587069839 ) / 1606729811170 ( - 9287830936 \nu^{11} + 18791211275 \nu^{10} - 7074036000 \nu^{9} + 97560593321 \nu^{8} + \cdots + 1390587069839 ) / 1606729811170 ( − 9 2 8 7 8 3 0 9 3 6 ν 1 1 + 1 8 7 9 1 2 1 1 2 7 5 ν 1 0 − 7 0 7 4 0 3 6 0 0 0 ν 9 + 9 7 5 6 0 5 9 3 3 2 1 ν 8 + ⋯ + 1 3 9 0 5 8 7 0 6 9 8 3 9 ) / 1 6 0 6 7 2 9 8 1 1 1 7 0
(-9287830936*v^11 + 18791211275*v^10 - 7074036000*v^9 + 97560593321*v^8 - 611600487534*v^7 + 1109826327087*v^6 - 3560781919841*v^5 + 4798956928898*v^4 - 2668067717064*v^3 - 1856218617732*v^2 + 3566958207707*v + 1390587069839) / 1606729811170
β 7 \beta_{7} β 7 = = =
( − 1814963223 ν 11 + 1826616705 ν 10 + 1608454605 ν 9 + 19032062228 ν 8 + ⋯ + 285575480212 ) / 292132692940 ( - 1814963223 \nu^{11} + 1826616705 \nu^{10} + 1608454605 \nu^{9} + 19032062228 \nu^{8} + \cdots + 285575480212 ) / 292132692940 ( − 1 8 1 4 9 6 3 2 2 3 ν 1 1 + 1 8 2 6 6 1 6 7 0 5 ν 1 0 + 1 6 0 8 4 5 4 6 0 5 ν 9 + 1 9 0 3 2 0 6 2 2 2 8 ν 8 + ⋯ + 2 8 5 5 7 5 4 8 0 2 1 2 ) / 2 9 2 1 3 2 6 9 2 9 4 0
(-1814963223*v^11 + 1826616705*v^10 + 1608454605*v^9 + 19032062228*v^8 - 101532722792*v^7 + 100334854386*v^6 - 510067673738*v^5 + 320704835404*v^4 + 45144095103*v^3 - 924345305991*v^2 + 557664272341*v + 285575480212) / 292132692940
β 8 \beta_{8} β 8 = = =
( 20053088776 ν 11 − 23152421330 ν 10 − 35040242445 ν 9 − 226992732701 ν 8 + ⋯ − 11720209576834 ) / 3213459622340 ( 20053088776 \nu^{11} - 23152421330 \nu^{10} - 35040242445 \nu^{9} - 226992732701 \nu^{8} + \cdots - 11720209576834 ) / 3213459622340 ( 2 0 0 5 3 0 8 8 7 7 6 ν 1 1 − 2 3 1 5 2 4 2 1 3 3 0 ν 1 0 − 3 5 0 4 0 2 4 2 4 4 5 ν 9 − 2 2 6 9 9 2 7 3 2 7 0 1 ν 8 + ⋯ − 1 1 7 2 0 2 0 9 5 7 6 8 3 4 ) / 3 2 1 3 4 5 9 6 2 2 3 4 0
(20053088776*v^11 - 23152421330*v^10 - 35040242445*v^9 - 226992732701*v^8 + 1159961702574*v^7 - 1016934126937*v^6 + 5245556591026*v^5 - 5041089270723*v^4 - 6462366964626*v^3 + 2965828611677*v^2 - 1205718754777*v - 11720209576834) / 3213459622340
β 9 \beta_{9} β 9 = = =
( 26830096707 ν 11 − 18124014990 ν 10 + 14433023630 ν 9 − 344432223437 ν 8 + ⋯ + 409628743007 ) / 3213459622340 ( 26830096707 \nu^{11} - 18124014990 \nu^{10} + 14433023630 \nu^{9} - 344432223437 \nu^{8} + \cdots + 409628743007 ) / 3213459622340 ( 2 6 8 3 0 0 9 6 7 0 7 ν 1 1 − 1 8 1 2 4 0 1 4 9 9 0 ν 1 0 + 1 4 4 3 3 0 2 3 6 3 0 ν 9 − 3 4 4 4 3 2 2 2 3 4 3 7 ν 8 + ⋯ + 4 0 9 6 2 8 7 4 3 0 0 7 ) / 3 2 1 3 4 5 9 6 2 2 3 4 0
(26830096707*v^11 - 18124014990*v^10 + 14433023630*v^9 - 344432223437*v^8 + 1369333675898*v^7 - 1543138855564*v^6 + 9859505847302*v^5 - 5376325857826*v^4 + 11294588209803*v^3 - 1361527673526*v^2 + 5652711329436*v + 409628743007) / 3213459622340
β 10 \beta_{10} β 1 0 = = =
( − 42580783394 ν 11 − 6474185680 ν 10 + 34133697850 ν 9 + 503681618779 ν 8 + ⋯ + 1277078933251 ) / 3213459622340 ( - 42580783394 \nu^{11} - 6474185680 \nu^{10} + 34133697850 \nu^{9} + 503681618779 \nu^{8} + \cdots + 1277078933251 ) / 3213459622340 ( − 4 2 5 8 0 7 8 3 3 9 4 ν 1 1 − 6 4 7 4 1 8 5 6 8 0 ν 1 0 + 3 4 1 3 3 6 9 7 8 5 0 ν 9 + 5 0 3 6 8 1 6 1 8 7 7 9 ν 8 + ⋯ + 1 2 7 7 0 7 8 9 3 3 2 5 1 ) / 3 2 1 3 4 5 9 6 2 2 3 4 0
(-42580783394*v^11 - 6474185680*v^10 + 34133697850*v^9 + 503681618779*v^8 - 1768024819631*v^7 + 265055664228*v^6 - 11852083344259*v^5 - 5491812347758*v^4 - 1630787402881*v^3 - 17148624270588*v^2 - 12536890370677*v + 1277078933251) / 3213459622340
β 11 \beta_{11} β 1 1 = = =
( 47064798624 ν 11 − 16749257055 ν 10 − 16699358825 ν 9 − 544078396489 ν 8 + ⋯ − 1811594761361 ) / 3213459622340 ( 47064798624 \nu^{11} - 16749257055 \nu^{10} - 16699358825 \nu^{9} - 544078396489 \nu^{8} + \cdots - 1811594761361 ) / 3213459622340 ( 4 7 0 6 4 7 9 8 6 2 4 ν 1 1 − 1 6 7 4 9 2 5 7 0 5 5 ν 1 0 − 1 6 6 9 9 3 5 8 8 2 5 ν 9 − 5 4 4 0 7 8 3 9 6 4 8 9 ν 8 + ⋯ − 1 8 1 1 5 9 4 7 6 1 3 6 1 ) / 3 2 1 3 4 5 9 6 2 2 3 4 0
(47064798624*v^11 - 16749257055*v^10 - 16699358825*v^9 - 544078396489*v^8 + 2254521501956*v^7 - 1580138940648*v^6 + 14335461220584*v^5 - 1579398287302*v^4 + 8076137926236*v^3 + 17521889223703*v^2 + 15002068011897*v - 1811594761361) / 3213459622340
ν \nu ν = = =
( 3 β 11 + 2 β 10 − β 9 + 2 β 8 + 3 β 7 + β 6 − 2 β 3 − 2 β 2 ) / 8 ( 3\beta_{11} + 2\beta_{10} - \beta_{9} + 2\beta_{8} + 3\beta_{7} + \beta_{6} - 2\beta_{3} - 2\beta_{2} ) / 8 ( 3 β 1 1 + 2 β 1 0 − β 9 + 2 β 8 + 3 β 7 + β 6 − 2 β 3 − 2 β 2 ) / 8
(3*b11 + 2*b10 - b9 + 2*b8 + 3*b7 + b6 - 2*b3 - 2*b2) / 8
ν 2 \nu^{2} ν 2 = = =
( − 5 β 11 − 2 β 10 − β 9 − 2 β 8 − β 7 + 5 β 6 − 8 β 5 + ⋯ + 8 β 1 ) / 8 ( - 5 \beta_{11} - 2 \beta_{10} - \beta_{9} - 2 \beta_{8} - \beta_{7} + 5 \beta_{6} - 8 \beta_{5} + \cdots + 8 \beta_1 ) / 8 ( − 5 β 1 1 − 2 β 1 0 − β 9 − 2 β 8 − β 7 + 5 β 6 − 8 β 5 + ⋯ + 8 β 1 ) / 8
(-5*b11 - 2*b10 - b9 - 2*b8 - b7 + 5*b6 - 8*b5 + 12*b4 + 2*b3 - 6*b2 + 8*b1) / 8
ν 3 \nu^{3} ν 3 = = =
( 5 β 11 + 5 β 10 + β 9 − 2 β 8 − 3 β 7 + β 6 − 3 β 4 + 2 β 3 + ⋯ + 4 ) / 2 ( 5 \beta_{11} + 5 \beta_{10} + \beta_{9} - 2 \beta_{8} - 3 \beta_{7} + \beta_{6} - 3 \beta_{4} + 2 \beta_{3} + \cdots + 4 ) / 2 ( 5 β 1 1 + 5 β 1 0 + β 9 − 2 β 8 − 3 β 7 + β 6 − 3 β 4 + 2 β 3 + ⋯ + 4 ) / 2
(5*b11 + 5*b10 + b9 - 2*b8 - 3*b7 + b6 - 3*b4 + 2*b3 - b2 + 7*b1 + 4) / 2
ν 4 \nu^{4} ν 4 = = =
( − 7 β 11 + 10 β 10 + 5 β 9 + 38 β 8 − 7 β 7 + 27 β 6 + 40 β 5 + ⋯ − 96 ) / 8 ( - 7 \beta_{11} + 10 \beta_{10} + 5 \beta_{9} + 38 \beta_{8} - 7 \beta_{7} + 27 \beta_{6} + 40 \beta_{5} + \cdots - 96 ) / 8 ( − 7 β 1 1 + 1 0 β 1 0 + 5 β 9 + 3 8 β 8 − 7 β 7 + 2 7 β 6 + 4 0 β 5 + ⋯ − 9 6 ) / 8
(-7*b11 + 10*b10 + 5*b9 + 38*b8 - 7*b7 + 27*b6 + 40*b5 + 44*b4 - 62*b3 - 90*b2 - 12*b1 - 96) / 8
ν 5 \nu^{5} ν 5 = = =
( − 85 β 11 − 30 β 10 + 7 β 9 − 130 β 8 − 145 β 7 − 83 β 6 + ⋯ + 128 ) / 8 ( - 85 \beta_{11} - 30 \beta_{10} + 7 \beta_{9} - 130 \beta_{8} - 145 \beta_{7} - 83 \beta_{6} + \cdots + 128 ) / 8 ( − 8 5 β 1 1 − 3 0 β 1 0 + 7 β 9 − 1 3 0 β 8 − 1 4 5 β 7 − 8 3 β 6 + ⋯ + 1 2 8 ) / 8
(-85*b11 - 30*b10 + 7*b9 - 130*b8 - 145*b7 - 83*b6 + 32*b5 + 176*b4 + 226*b3 - 114*b2 + 276*b1 + 128) / 8
ν 6 \nu^{6} ν 6 = = =
68 β 11 + 48 β 10 − 2 β 8 − 12 β 7 − 20 β 6 + 22 β 5 − 77 β 4 + ⋯ − 75 68 \beta_{11} + 48 \beta_{10} - 2 \beta_{8} - 12 \beta_{7} - 20 \beta_{6} + 22 \beta_{5} - 77 \beta_{4} + \cdots - 75 6 8 β 1 1 + 4 8 β 1 0 − 2 β 8 − 1 2 β 7 − 2 0 β 6 + 2 2 β 5 − 7 7 β 4 + ⋯ − 7 5
68*b11 + 48*b10 - 2*b8 - 12*b7 - 20*b6 + 22*b5 - 77*b4 + 15*b3 - 37*b2 - 37*b1 - 75
ν 7 \nu^{7} ν 7 = = =
( − 1577 β 11 − 1166 β 10 + 43 β 9 + 226 β 8 − 401 β 7 − 155 β 6 + ⋯ − 1768 ) / 8 ( - 1577 \beta_{11} - 1166 \beta_{10} + 43 \beta_{9} + 226 \beta_{8} - 401 \beta_{7} - 155 \beta_{6} + \cdots - 1768 ) / 8 ( − 1 5 7 7 β 1 1 − 1 1 6 6 β 1 0 + 4 3 β 9 + 2 2 6 β 8 − 4 0 1 β 7 − 1 5 5 β 6 + ⋯ − 1 7 6 8 ) / 8
(-1577*b11 - 1166*b10 + 43*b9 + 226*b8 - 401*b7 - 155*b6 + 824*b5 + 1544*b4 - 170*b3 - 434*b2 - 1408*b1 - 1768) / 8
ν 8 \nu^{8} ν 8 = = =
( 1631 β 11 + 310 β 10 − 381 β 9 − 3146 β 8 − 1533 β 7 − 3951 β 6 + ⋯ + 5088 ) / 8 ( 1631 \beta_{11} + 310 \beta_{10} - 381 \beta_{9} - 3146 \beta_{8} - 1533 \beta_{7} - 3951 \beta_{6} + \cdots + 5088 ) / 8 ( 1 6 3 1 β 1 1 + 3 1 0 β 1 0 − 3 8 1 β 9 − 3 1 4 6 β 8 − 1 5 3 3 β 7 − 3 9 5 1 β 6 + ⋯ + 5 0 8 8 ) / 8
(1631*b11 + 310*b10 - 381*b9 - 3146*b8 - 1533*b7 - 3951*b6 + 1064*b5 - 3612*b4 + 5170*b3 + 3914*b2 + 1952*b1 + 5088) / 8
ν 9 \nu^{9} ν 9 = = =
( 929 β 11 − 85 β 10 − 305 β 9 + 1956 β 8 + 2047 β 7 + 59 β 6 + ⋯ − 5514 ) / 2 ( 929 \beta_{11} - 85 \beta_{10} - 305 \beta_{9} + 1956 \beta_{8} + 2047 \beta_{7} + 59 \beta_{6} + \cdots - 5514 ) / 2 ( 9 2 9 β 1 1 − 8 5 β 1 0 − 3 0 5 β 9 + 1 9 5 6 β 8 + 2 0 4 7 β 7 + 5 9 β 6 + ⋯ − 5 5 1 4 ) / 2
(929*b11 - 85*b10 - 305*b9 + 1956*b8 + 2047*b7 + 59*b6 + 538*b5 - 2657*b4 - 2906*b3 + 309*b2 - 6289*b1 - 5514) / 2
ν 10 \nu^{10} ν 1 0 = = =
( − 42507 β 11 − 35934 β 10 − 911 β 9 − 11842 β 8 − 1675 β 7 − 7345 β 6 + ⋯ + 34784 ) / 8 ( - 42507 \beta_{11} - 35934 \beta_{10} - 911 \beta_{9} - 11842 \beta_{8} - 1675 \beta_{7} - 7345 \beta_{6} + \cdots + 34784 ) / 8 ( − 4 2 5 0 7 β 1 1 − 3 5 9 3 4 β 1 0 − 9 1 1 β 9 − 1 1 8 4 2 β 8 − 1 6 7 5 β 7 − 7 3 4 5 β 6 + ⋯ + 3 4 7 8 4 ) / 8
(-42507*b11 - 35934*b10 - 911*b9 - 11842*b8 - 1675*b7 - 7345*b6 - 7336*b5 + 32452*b4 + 17314*b3 + 35766*b2 + 2124*b1 + 34784) / 8
ν 11 \nu^{11} ν 1 1 = = =
( 122527 β 11 + 65570 β 10 − 9181 β 9 − 6818 β 8 + 45979 β 7 − 22831 β 6 + ⋯ + 83272 ) / 8 ( 122527 \beta_{11} + 65570 \beta_{10} - 9181 \beta_{9} - 6818 \beta_{8} + 45979 \beta_{7} - 22831 \beta_{6} + \cdots + 83272 ) / 8 ( 1 2 2 5 2 7 β 1 1 + 6 5 5 7 0 β 1 0 − 9 1 8 1 β 9 − 6 8 1 8 β 8 + 4 5 9 7 9 β 7 − 2 2 8 3 1 β 6 + ⋯ + 8 3 2 7 2 ) / 8
(122527*b11 + 65570*b10 - 9181*b9 - 6818*b8 + 45979*b7 - 22831*b6 - 28536*b5 - 183160*b4 + 1578*b3 + 104526*b2 - 20348*b1 + 83272) / 8
Character values
We give the values of χ \chi χ on generators for ( Z / 435 Z ) × \left(\mathbb{Z}/435\mathbb{Z}\right)^\times ( Z / 4 3 5 Z ) × .
n n n
31 31 3 1
146 146 1 4 6
262 262 2 6 2
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 2 6 − 10 T 2 4 + 22 T 2 2 + 4 T 2 − 1 T_{2}^{6} - 10T_{2}^{4} + 22T_{2}^{2} + 4T_{2} - 1 T 2 6 − 1 0 T 2 4 + 2 2 T 2 2 + 4 T 2 − 1
T2^6 - 10*T2^4 + 22*T2^2 + 4*T2 - 1
acting on S 2 n e w ( 435 , [ χ ] ) S_{2}^{\mathrm{new}}(435, [\chi]) S 2 n e w ( 4 3 5 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 6 − 10 T 4 + 22 T 2 + ⋯ − 1 ) 2 (T^{6} - 10 T^{4} + 22 T^{2} + \cdots - 1)^{2} ( T 6 − 1 0 T 4 + 2 2 T 2 + ⋯ − 1 ) 2
(T^6 - 10*T^4 + 22*T^2 + 4*T - 1)^2
3 3 3
( T − 1 ) 12 (T - 1)^{12} ( T − 1 ) 1 2
(T - 1)^12
5 5 5
T 12 + 6 T 11 + ⋯ + 15625 T^{12} + 6 T^{11} + \cdots + 15625 T 1 2 + 6 T 1 1 + ⋯ + 1 5 6 2 5
T^12 + 6*T^11 + 12*T^10 + 10*T^9 + 27*T^8 + 136*T^7 + 384*T^6 + 680*T^5 + 675*T^4 + 1250*T^3 + 7500*T^2 + 18750*T + 15625
7 7 7
T 12 + 44 T 10 + ⋯ + 16 T^{12} + 44 T^{10} + \cdots + 16 T 1 2 + 4 4 T 1 0 + ⋯ + 1 6
T^12 + 44*T^10 + 538*T^8 + 1420*T^6 + 1221*T^4 + 296*T^2 + 16
11 11 1 1
T 12 + 76 T 10 + ⋯ + 85264 T^{12} + 76 T^{10} + \cdots + 85264 T 1 2 + 7 6 T 1 0 + ⋯ + 8 5 2 6 4
T^12 + 76*T^10 + 2082*T^8 + 26092*T^6 + 151005*T^4 + 332680*T^2 + 85264
13 13 1 3
T 12 + 100 T 10 + ⋯ + 43264 T^{12} + 100 T^{10} + \cdots + 43264 T 1 2 + 1 0 0 T 1 0 + ⋯ + 4 3 2 6 4
T^12 + 100*T^10 + 3802*T^8 + 66460*T^6 + 491157*T^4 + 852512*T^2 + 43264
17 17 1 7
( T 6 + 4 T 5 + ⋯ − 1172 ) 2 (T^{6} + 4 T^{5} + \cdots - 1172)^{2} ( T 6 + 4 T 5 + ⋯ − 1 1 7 2 ) 2
(T^6 + 4*T^5 - 38*T^4 - 60*T^3 + 389*T^2 + 224*T - 1172)^2
19 19 1 9
T 12 + 160 T 10 + ⋯ + 6801664 T^{12} + 160 T^{10} + \cdots + 6801664 T 1 2 + 1 6 0 T 1 0 + ⋯ + 6 8 0 1 6 6 4
T^12 + 160*T^10 + 9832*T^8 + 286752*T^6 + 3914192*T^4 + 19981952*T^2 + 6801664
23 23 2 3
T 12 + 96 T 10 + ⋯ + 43264 T^{12} + 96 T^{10} + \cdots + 43264 T 1 2 + 9 6 T 1 0 + ⋯ + 4 3 2 6 4
T^12 + 96*T^10 + 2700*T^8 + 20320*T^6 + 62608*T^4 + 85632*T^2 + 43264
29 29 2 9
T 12 + ⋯ + 594823321 T^{12} + \cdots + 594823321 T 1 2 + ⋯ + 5 9 4 8 2 3 3 2 1
T^12 - 8*T^11 + 58*T^10 + 8*T^9 - 809*T^8 + 10656*T^7 - 42196*T^6 + 309024*T^5 - 680369*T^4 + 195112*T^3 + 41022298*T^2 - 164089192*T + 594823321
31 31 3 1
T 12 + 248 T 10 + ⋯ + 63744256 T^{12} + 248 T^{10} + \cdots + 63744256 T 1 2 + 2 4 8 T 1 0 + ⋯ + 6 3 7 4 4 2 5 6
T^12 + 248*T^10 + 21580*T^8 + 795968*T^6 + 12208912*T^4 + 63542912*T^2 + 63744256
37 37 3 7
( T 6 − 10 T 5 + ⋯ + 9328 ) 2 (T^{6} - 10 T^{5} + \cdots + 9328)^{2} ( T 6 − 1 0 T 5 + ⋯ + 9 3 2 8 ) 2
(T^6 - 10*T^5 - 50*T^4 + 828*T^3 - 2308*T^2 - 1616*T + 9328)^2
41 41 4 1
T 12 + ⋯ + 881852416 T^{12} + \cdots + 881852416 T 1 2 + ⋯ + 8 8 1 8 5 2 4 1 6
T^12 + 312*T^10 + 36080*T^8 + 1879936*T^6 + 42675456*T^4 + 356679680*T^2 + 881852416
43 43 4 3
( T 6 − 22 T 5 + ⋯ − 704 ) 2 (T^{6} - 22 T^{5} + \cdots - 704)^{2} ( T 6 − 2 2 T 5 + ⋯ − 7 0 4 ) 2
(T^6 - 22*T^5 + 126*T^4 + 292*T^3 - 4492*T^2 + 10080*T - 704)^2
47 47 4 7
( T 6 + 16 T 5 + ⋯ + 1408 ) 2 (T^{6} + 16 T^{5} + \cdots + 1408)^{2} ( T 6 + 1 6 T 5 + ⋯ + 1 4 0 8 ) 2
(T^6 + 16*T^5 + 10*T^4 - 616*T^3 - 2551*T^2 - 2424*T + 1408)^2
53 53 5 3
T 12 + ⋯ + 7721488384 T^{12} + \cdots + 7721488384 T 1 2 + ⋯ + 7 7 2 1 4 8 8 3 8 4
T^12 + 328*T^10 + 42072*T^8 + 2672032*T^6 + 86976336*T^4 + 1342226944*T^2 + 7721488384
59 59 5 9
( T 6 + 14 T 5 + ⋯ + 135232 ) 2 (T^{6} + 14 T^{5} + \cdots + 135232)^{2} ( T 6 + 1 4 T 5 + ⋯ + 1 3 5 2 3 2 ) 2
(T^6 + 14*T^5 - 150*T^4 - 2188*T^3 + 3604*T^2 + 84384*T + 135232)^2
61 61 6 1
T 12 + ⋯ + 104748027904 T^{12} + \cdots + 104748027904 T 1 2 + ⋯ + 1 0 4 7 4 8 0 2 7 9 0 4
T^12 + 536*T^10 + 108888*T^8 + 10577632*T^6 + 516473680*T^4 + 12011022848*T^2 + 104748027904
67 67 6 7
T 12 + ⋯ + 19142382736 T^{12} + \cdots + 19142382736 T 1 2 + ⋯ + 1 9 1 4 2 3 8 2 7 3 6
T^12 + 388*T^10 + 57522*T^8 + 4205748*T^6 + 159302893*T^4 + 2910682216*T^2 + 19142382736
71 71 7 1
( T 6 + 8 T 5 + ⋯ − 43264 ) 2 (T^{6} + 8 T^{5} + \cdots - 43264)^{2} ( T 6 + 8 T 5 + ⋯ − 4 3 2 6 4 ) 2
(T^6 + 8*T^5 - 184*T^4 - 1808*T^3 + 1636*T^2 + 28672*T - 43264)^2
73 73 7 3
( T 6 + 18 T 5 + ⋯ + 2864 ) 2 (T^{6} + 18 T^{5} + \cdots + 2864)^{2} ( T 6 + 1 8 T 5 + ⋯ + 2 8 6 4 ) 2
(T^6 + 18*T^5 + 58*T^4 - 420*T^3 - 1924*T^2 + 560*T + 2864)^2
79 79 7 9
T 12 + ⋯ + 342694144 T^{12} + \cdots + 342694144 T 1 2 + ⋯ + 3 4 2 6 9 4 1 4 4
T^12 + 528*T^10 + 94824*T^8 + 6336224*T^6 + 95491024*T^4 + 413724288*T^2 + 342694144
83 83 8 3
T 12 + ⋯ + 405780736 T^{12} + \cdots + 405780736 T 1 2 + ⋯ + 4 0 5 7 8 0 7 3 6
T^12 + 376*T^10 + 45084*T^8 + 2028032*T^6 + 32457616*T^4 + 203317376*T^2 + 405780736
89 89 8 9
T 12 + ⋯ + 1392185344 T^{12} + \cdots + 1392185344 T 1 2 + ⋯ + 1 3 9 2 1 8 5 3 4 4
T^12 + 468*T^10 + 65202*T^8 + 3382412*T^6 + 64977533*T^4 + 511769728*T^2 + 1392185344
97 97 9 7
( T 6 + 20 T 5 + ⋯ − 23504 ) 2 (T^{6} + 20 T^{5} + \cdots - 23504)^{2} ( T 6 + 2 0 T 5 + ⋯ − 2 3 5 0 4 ) 2
(T^6 + 20*T^5 - 92*T^4 - 2696*T^3 - 4876*T^2 + 29856*T - 23504)^2
show more
show less