L(s) = 1 | − 1.69·2-s + (0.175 + 1.72i)3-s + 0.888·4-s + (0.474 − 0.822i)5-s + (−0.298 − 2.92i)6-s + 1.88·8-s + (−2.93 + 0.605i)9-s + (−0.806 + 1.39i)10-s + (0.294 + 0.509i)11-s + (0.156 + 1.53i)12-s + (2.50 + 4.34i)13-s + (1.5 + 0.673i)15-s − 4.98·16-s + (3.79 − 6.56i)17-s + (4.99 − 1.02i)18-s + (2.23 + 3.86i)19-s + ⋯ |
L(s) = 1 | − 1.20·2-s + (0.101 + 0.994i)3-s + 0.444·4-s + (0.212 − 0.367i)5-s + (−0.121 − 1.19i)6-s + 0.667·8-s + (−0.979 + 0.201i)9-s + (−0.255 + 0.441i)10-s + (0.0886 + 0.153i)11-s + (0.0451 + 0.442i)12-s + (0.696 + 1.20i)13-s + (0.387 + 0.173i)15-s − 1.24·16-s + (0.919 − 1.59i)17-s + (1.17 − 0.242i)18-s + (0.511 + 0.886i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.154 - 0.987i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.154 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.458210 + 0.535682i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.458210 + 0.535682i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.175 - 1.72i)T \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + 1.69T + 2T^{2} \) |
| 5 | \( 1 + (-0.474 + 0.822i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.294 - 0.509i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.50 - 4.34i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.79 + 6.56i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.23 - 3.86i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.23 - 2.14i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (2.73 - 4.74i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 6.07T + 31T^{2} \) |
| 37 | \( 1 + (-3.49 - 6.05i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.527 - 0.913i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.49 - 6.05i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 7.47T + 47T^{2} \) |
| 53 | \( 1 + (3.46 - 5.99i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 - 10.4T + 59T^{2} \) |
| 61 | \( 1 - 11.6T + 61T^{2} \) |
| 67 | \( 1 + 11.8T + 67T^{2} \) |
| 71 | \( 1 - 4.30T + 71T^{2} \) |
| 73 | \( 1 + (2.23 - 3.86i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + 1.33T + 79T^{2} \) |
| 83 | \( 1 + (-2.84 + 4.92i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (0.421 + 0.730i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.70 + 2.94i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.22116197663704349037386080188, −10.05128031632673280274990252485, −9.499756555602935691705799805779, −8.998856828782080792625965019814, −8.037284899142455764759125072043, −7.04598163848948017495439506938, −5.54450183014960597903742450518, −4.61819611761172619370292157909, −3.37034421877396565540693327987, −1.48517922615807702866077263518,
0.72318971294014726046419862601, 2.09330994365511835033269380961, 3.57571208621274936039268884031, 5.51110293983403985803222925369, 6.44118221603083359049984824188, 7.50169149488329629351164359801, 8.182712498916013788561657975683, 8.817253749687301389657331984886, 9.985450854574256241010860144722, 10.70049880153713799999447312897