Properties

Label 441.2.h.g.214.2
Level $441$
Weight $2$
Character 441.214
Analytic conductor $3.521$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,2,Mod(214,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.214");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 214.2
Root \(0.474636 - 0.274031i\) of defining polynomial
Character \(\chi\) \(=\) 441.214
Dual form 441.2.h.g.373.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.69963 q^{2} +(0.175815 + 1.72310i) q^{3} +0.888736 q^{4} +(0.474636 - 0.822093i) q^{5} +(-0.298820 - 2.92864i) q^{6} +1.88874 q^{8} +(-2.93818 + 0.605896i) q^{9} +(-0.806704 + 1.39725i) q^{10} +(0.294182 + 0.509538i) q^{11} +(0.156253 + 1.53138i) q^{12} +(2.50987 + 4.34722i) q^{13} +(1.50000 + 0.673310i) q^{15} -4.98762 q^{16} +(3.79121 - 6.56657i) q^{17} +(4.99381 - 1.02980i) q^{18} +(2.23061 + 3.86353i) q^{19} +(0.421826 - 0.730623i) q^{20} +(-0.500000 - 0.866025i) q^{22} +(-1.23855 + 2.14523i) q^{23} +(0.332068 + 3.25449i) q^{24} +(2.04944 + 3.54974i) q^{25} +(-4.26584 - 7.38866i) q^{26} +(-1.56060 - 4.95626i) q^{27} +(-2.73855 + 4.74331i) q^{29} +(-2.54944 - 1.14438i) q^{30} -6.07463 q^{31} +4.69963 q^{32} +(-0.826266 + 0.596491i) q^{33} +(-6.44364 + 11.1607i) q^{34} +(-2.61126 + 0.538481i) q^{36} +(3.49381 + 6.05146i) q^{37} +(-3.79121 - 6.56657i) q^{38} +(-7.04944 + 5.08907i) q^{39} +(0.896461 - 1.55272i) q^{40} +(0.527445 + 0.913562i) q^{41} +(-3.49381 + 6.05146i) q^{43} +(0.261450 + 0.452845i) q^{44} +(-0.896461 + 2.70303i) q^{45} +(2.10507 - 3.64610i) q^{46} -7.47680 q^{47} +(-0.876899 - 8.59419i) q^{48} +(-3.48329 - 6.03323i) q^{50} +(11.9814 + 5.37815i) q^{51} +(2.23061 + 3.86353i) q^{52} +(-3.46108 + 5.99476i) q^{53} +(2.65244 + 8.42380i) q^{54} +0.558517 q^{55} +(-6.26509 + 4.52284i) q^{57} +(4.65452 - 8.06186i) q^{58} +10.4302 q^{59} +(1.33310 + 0.598395i) q^{60} +11.6529 q^{61} +10.3246 q^{62} +1.98762 q^{64} +4.76509 q^{65} +(1.40434 - 1.01381i) q^{66} -11.8640 q^{67} +(3.36938 - 5.83594i) q^{68} +(-3.91421 - 1.75699i) q^{69} +4.30037 q^{71} +(-5.54944 + 1.14438i) q^{72} +(-2.23061 + 3.86353i) q^{73} +(-5.93818 - 10.2852i) q^{74} +(-5.75625 + 4.15550i) q^{75} +(1.98242 + 3.43366i) q^{76} +(11.9814 - 8.64953i) q^{78} -1.33379 q^{79} +(-2.36730 + 4.10029i) q^{80} +(8.26578 - 3.56046i) q^{81} +(-0.896461 - 1.55272i) q^{82} +(2.84194 - 4.92238i) q^{83} +(-3.59888 - 6.23345i) q^{85} +(5.93818 - 10.2852i) q^{86} +(-8.65469 - 3.88486i) q^{87} +(0.555632 + 0.962383i) q^{88} +(-0.421826 - 0.730623i) q^{89} +(1.52365 - 4.59415i) q^{90} +(-1.10074 + 1.90654i) q^{92} +(-1.06801 - 10.4672i) q^{93} +12.7078 q^{94} +4.23491 q^{95} +(0.826266 + 8.09795i) q^{96} +(1.70317 - 2.94997i) q^{97} +(-1.17309 - 1.31887i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 12 q^{4} + 24 q^{8} - 8 q^{11} + 18 q^{15} + 12 q^{16} + 24 q^{18} - 6 q^{22} - 4 q^{23} - 12 q^{25} - 22 q^{29} + 6 q^{30} + 32 q^{32} - 30 q^{36} + 6 q^{37} - 48 q^{39} - 6 q^{43} + 14 q^{44}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.69963 −1.20182 −0.600909 0.799317i \(-0.705195\pi\)
−0.600909 + 0.799317i \(0.705195\pi\)
\(3\) 0.175815 + 1.72310i 0.101507 + 0.994835i
\(4\) 0.888736 0.444368
\(5\) 0.474636 0.822093i 0.212263 0.367651i −0.740159 0.672432i \(-0.765250\pi\)
0.952423 + 0.304781i \(0.0985832\pi\)
\(6\) −0.298820 2.92864i −0.121993 1.19561i
\(7\) 0 0
\(8\) 1.88874 0.667769
\(9\) −2.93818 + 0.605896i −0.979393 + 0.201965i
\(10\) −0.806704 + 1.39725i −0.255102 + 0.441850i
\(11\) 0.294182 + 0.509538i 0.0886992 + 0.153632i 0.906962 0.421213i \(-0.138396\pi\)
−0.818262 + 0.574845i \(0.805062\pi\)
\(12\) 0.156253 + 1.53138i 0.0451064 + 0.442073i
\(13\) 2.50987 + 4.34722i 0.696112 + 1.20570i 0.969804 + 0.243885i \(0.0784218\pi\)
−0.273692 + 0.961817i \(0.588245\pi\)
\(14\) 0 0
\(15\) 1.50000 + 0.673310i 0.387298 + 0.173848i
\(16\) −4.98762 −1.24691
\(17\) 3.79121 6.56657i 0.919503 1.59263i 0.119332 0.992854i \(-0.461925\pi\)
0.800171 0.599772i \(-0.204742\pi\)
\(18\) 4.99381 1.02980i 1.17705 0.242726i
\(19\) 2.23061 + 3.86353i 0.511737 + 0.886355i 0.999907 + 0.0136063i \(0.00433116\pi\)
−0.488170 + 0.872748i \(0.662336\pi\)
\(20\) 0.421826 0.730623i 0.0943231 0.163372i
\(21\) 0 0
\(22\) −0.500000 0.866025i −0.106600 0.184637i
\(23\) −1.23855 + 2.14523i −0.258256 + 0.447312i −0.965775 0.259382i \(-0.916481\pi\)
0.707519 + 0.706694i \(0.249814\pi\)
\(24\) 0.332068 + 3.25449i 0.0677832 + 0.664320i
\(25\) 2.04944 + 3.54974i 0.409888 + 0.709948i
\(26\) −4.26584 7.38866i −0.836601 1.44904i
\(27\) −1.56060 4.95626i −0.300337 0.953833i
\(28\) 0 0
\(29\) −2.73855 + 4.74331i −0.508536 + 0.880810i 0.491415 + 0.870925i \(0.336480\pi\)
−0.999951 + 0.00988468i \(0.996854\pi\)
\(30\) −2.54944 1.14438i −0.465462 0.208934i
\(31\) −6.07463 −1.09104 −0.545518 0.838099i \(-0.683667\pi\)
−0.545518 + 0.838099i \(0.683667\pi\)
\(32\) 4.69963 0.830785
\(33\) −0.826266 + 0.596491i −0.143834 + 0.103836i
\(34\) −6.44364 + 11.1607i −1.10508 + 1.91405i
\(35\) 0 0
\(36\) −2.61126 + 0.538481i −0.435211 + 0.0897469i
\(37\) 3.49381 + 6.05146i 0.574379 + 0.994853i 0.996109 + 0.0881319i \(0.0280897\pi\)
−0.421730 + 0.906721i \(0.638577\pi\)
\(38\) −3.79121 6.56657i −0.615015 1.06524i
\(39\) −7.04944 + 5.08907i −1.12881 + 0.814904i
\(40\) 0.896461 1.55272i 0.141743 0.245506i
\(41\) 0.527445 + 0.913562i 0.0823731 + 0.142674i 0.904269 0.426964i \(-0.140417\pi\)
−0.821896 + 0.569638i \(0.807083\pi\)
\(42\) 0 0
\(43\) −3.49381 + 6.05146i −0.532801 + 0.922838i 0.466465 + 0.884540i \(0.345527\pi\)
−0.999266 + 0.0382990i \(0.987806\pi\)
\(44\) 0.261450 + 0.452845i 0.0394151 + 0.0682689i
\(45\) −0.896461 + 2.70303i −0.133637 + 0.402945i
\(46\) 2.10507 3.64610i 0.310376 0.537587i
\(47\) −7.47680 −1.09060 −0.545301 0.838240i \(-0.683585\pi\)
−0.545301 + 0.838240i \(0.683585\pi\)
\(48\) −0.876899 8.59419i −0.126569 1.24046i
\(49\) 0 0
\(50\) −3.48329 6.03323i −0.492612 0.853228i
\(51\) 11.9814 + 5.37815i 1.67774 + 0.753091i
\(52\) 2.23061 + 3.86353i 0.309330 + 0.535775i
\(53\) −3.46108 + 5.99476i −0.475416 + 0.823444i −0.999603 0.0281586i \(-0.991036\pi\)
0.524188 + 0.851603i \(0.324369\pi\)
\(54\) 2.65244 + 8.42380i 0.360951 + 1.14633i
\(55\) 0.558517 0.0753104
\(56\) 0 0
\(57\) −6.26509 + 4.52284i −0.829832 + 0.599065i
\(58\) 4.65452 8.06186i 0.611168 1.05857i
\(59\) 10.4302 1.35790 0.678950 0.734184i \(-0.262435\pi\)
0.678950 + 0.734184i \(0.262435\pi\)
\(60\) 1.33310 + 0.598395i 0.172103 + 0.0772525i
\(61\) 11.6529 1.49200 0.745999 0.665947i \(-0.231972\pi\)
0.745999 + 0.665947i \(0.231972\pi\)
\(62\) 10.3246 1.31123
\(63\) 0 0
\(64\) 1.98762 0.248453
\(65\) 4.76509 0.591037
\(66\) 1.40434 1.01381i 0.172863 0.124792i
\(67\) −11.8640 −1.44942 −0.724708 0.689056i \(-0.758025\pi\)
−0.724708 + 0.689056i \(0.758025\pi\)
\(68\) 3.36938 5.83594i 0.408598 0.707712i
\(69\) −3.91421 1.75699i −0.471216 0.211516i
\(70\) 0 0
\(71\) 4.30037 0.510360 0.255180 0.966894i \(-0.417865\pi\)
0.255180 + 0.966894i \(0.417865\pi\)
\(72\) −5.54944 + 1.14438i −0.654008 + 0.134866i
\(73\) −2.23061 + 3.86353i −0.261073 + 0.452192i −0.966527 0.256563i \(-0.917410\pi\)
0.705454 + 0.708756i \(0.250743\pi\)
\(74\) −5.93818 10.2852i −0.690299 1.19563i
\(75\) −5.75625 + 4.15550i −0.664674 + 0.479836i
\(76\) 1.98242 + 3.43366i 0.227400 + 0.393868i
\(77\) 0 0
\(78\) 11.9814 8.64953i 1.35663 0.979367i
\(79\) −1.33379 −0.150063 −0.0750317 0.997181i \(-0.523906\pi\)
−0.0750317 + 0.997181i \(0.523906\pi\)
\(80\) −2.36730 + 4.10029i −0.264672 + 0.458426i
\(81\) 8.26578 3.56046i 0.918420 0.395607i
\(82\) −0.896461 1.55272i −0.0989976 0.171469i
\(83\) 2.84194 4.92238i 0.311943 0.540301i −0.666840 0.745201i \(-0.732353\pi\)
0.978783 + 0.204900i \(0.0656868\pi\)
\(84\) 0 0
\(85\) −3.59888 6.23345i −0.390354 0.676113i
\(86\) 5.93818 10.2852i 0.640330 1.10908i
\(87\) −8.65469 3.88486i −0.927880 0.416501i
\(88\) 0.555632 + 0.962383i 0.0592306 + 0.102590i
\(89\) −0.421826 0.730623i −0.0447134 0.0774459i 0.842803 0.538223i \(-0.180904\pi\)
−0.887516 + 0.460777i \(0.847571\pi\)
\(90\) 1.52365 4.59415i 0.160607 0.484266i
\(91\) 0 0
\(92\) −1.10074 + 1.90654i −0.114760 + 0.198771i
\(93\) −1.06801 10.4672i −0.110748 1.08540i
\(94\) 12.7078 1.31071
\(95\) 4.23491 0.434492
\(96\) 0.826266 + 8.09795i 0.0843304 + 0.826494i
\(97\) 1.70317 2.94997i 0.172930 0.299524i −0.766513 0.642229i \(-0.778010\pi\)
0.939443 + 0.342705i \(0.111343\pi\)
\(98\) 0 0
\(99\) −1.17309 1.31887i −0.117900 0.132551i
\(100\) 1.82141 + 3.15478i 0.182141 + 0.315478i
\(101\) 4.79329 + 8.30222i 0.476950 + 0.826102i 0.999651 0.0264143i \(-0.00840890\pi\)
−0.522701 + 0.852516i \(0.675076\pi\)
\(102\) −20.3640 9.14085i −2.01633 0.905079i
\(103\) 5.82644 10.0917i 0.574096 0.994364i −0.422043 0.906576i \(-0.638687\pi\)
0.996139 0.0877882i \(-0.0279799\pi\)
\(104\) 4.74048 + 8.21075i 0.464842 + 0.805130i
\(105\) 0 0
\(106\) 5.88255 10.1889i 0.571363 0.989630i
\(107\) 1.89926 + 3.28961i 0.183608 + 0.318018i 0.943107 0.332491i \(-0.107889\pi\)
−0.759499 + 0.650509i \(0.774556\pi\)
\(108\) −1.38696 4.40481i −0.133460 0.423853i
\(109\) 6.43199 11.1405i 0.616073 1.06707i −0.374123 0.927379i \(-0.622056\pi\)
0.990195 0.139690i \(-0.0446106\pi\)
\(110\) −0.949271 −0.0905094
\(111\) −9.81303 + 7.08414i −0.931411 + 0.672397i
\(112\) 0 0
\(113\) −4.51052 7.81245i −0.424314 0.734934i 0.572042 0.820224i \(-0.306151\pi\)
−0.996356 + 0.0852908i \(0.972818\pi\)
\(114\) 10.6483 7.68715i 0.997307 0.719968i
\(115\) 1.17572 + 2.03641i 0.109636 + 0.189896i
\(116\) −2.43385 + 4.21555i −0.225977 + 0.391404i
\(117\) −10.0084 11.2522i −0.925277 1.04027i
\(118\) −17.7275 −1.63195
\(119\) 0 0
\(120\) 2.83310 + 1.27171i 0.258626 + 0.116090i
\(121\) 5.32691 9.22649i 0.484265 0.838771i
\(122\) −19.8056 −1.79311
\(123\) −1.48143 + 1.06946i −0.133576 + 0.0964301i
\(124\) −5.39874 −0.484821
\(125\) 8.63731 0.772544
\(126\) 0 0
\(127\) 6.43268 0.570808 0.285404 0.958407i \(-0.407872\pi\)
0.285404 + 0.958407i \(0.407872\pi\)
\(128\) −12.7775 −1.12938
\(129\) −11.0416 4.95626i −0.972155 0.436375i
\(130\) −8.09888 −0.710319
\(131\) −3.31657 + 5.74447i −0.289770 + 0.501897i −0.973755 0.227600i \(-0.926912\pi\)
0.683984 + 0.729497i \(0.260246\pi\)
\(132\) −0.734332 + 0.530123i −0.0639154 + 0.0461413i
\(133\) 0 0
\(134\) 20.1643 1.74193
\(135\) −4.81522 1.06946i −0.414428 0.0920446i
\(136\) 7.16059 12.4025i 0.614016 1.06351i
\(137\) −7.01671 12.1533i −0.599478 1.03833i −0.992898 0.118968i \(-0.962042\pi\)
0.393420 0.919359i \(-0.371292\pi\)
\(138\) 6.65271 + 2.98622i 0.566316 + 0.254204i
\(139\) −4.40254 7.62541i −0.373418 0.646779i 0.616671 0.787221i \(-0.288481\pi\)
−0.990089 + 0.140442i \(0.955148\pi\)
\(140\) 0 0
\(141\) −1.31453 12.8833i −0.110704 1.08497i
\(142\) −7.30903 −0.613360
\(143\) −1.47672 + 2.55775i −0.123489 + 0.213890i
\(144\) 14.6545 3.02198i 1.22121 0.251831i
\(145\) 2.59963 + 4.50268i 0.215887 + 0.373928i
\(146\) 3.79121 6.56657i 0.313763 0.543453i
\(147\) 0 0
\(148\) 3.10507 + 5.37815i 0.255236 + 0.442081i
\(149\) 2.18292 3.78092i 0.178832 0.309745i −0.762649 0.646813i \(-0.776102\pi\)
0.941481 + 0.337067i \(0.109435\pi\)
\(150\) 9.78348 7.06281i 0.798818 0.576676i
\(151\) 6.32691 + 10.9585i 0.514877 + 0.891793i 0.999851 + 0.0172645i \(0.00549573\pi\)
−0.484974 + 0.874529i \(0.661171\pi\)
\(152\) 4.21303 + 7.29719i 0.341722 + 0.591880i
\(153\) −7.16059 + 21.5908i −0.578899 + 1.74551i
\(154\) 0 0
\(155\) −2.88323 + 4.99391i −0.231587 + 0.401120i
\(156\) −6.26509 + 4.52284i −0.501609 + 0.362117i
\(157\) 11.2739 0.899754 0.449877 0.893091i \(-0.351468\pi\)
0.449877 + 0.893091i \(0.351468\pi\)
\(158\) 2.26695 0.180349
\(159\) −10.9381 4.90983i −0.867449 0.389375i
\(160\) 2.23061 3.86353i 0.176345 0.305439i
\(161\) 0 0
\(162\) −14.0488 + 6.05146i −1.10377 + 0.475447i
\(163\) 0.833104 + 1.44298i 0.0652537 + 0.113023i 0.896807 0.442423i \(-0.145881\pi\)
−0.831553 + 0.555446i \(0.812548\pi\)
\(164\) 0.468760 + 0.811916i 0.0366040 + 0.0634000i
\(165\) 0.0981957 + 0.962383i 0.00764453 + 0.0749214i
\(166\) −4.83024 + 8.36622i −0.374899 + 0.649344i
\(167\) −1.95135 3.37984i −0.151000 0.261540i 0.780595 0.625037i \(-0.214916\pi\)
−0.931595 + 0.363497i \(0.881583\pi\)
\(168\) 0 0
\(169\) −6.09888 + 10.5636i −0.469145 + 0.812583i
\(170\) 6.11677 + 10.5945i 0.469134 + 0.812565i
\(171\) −8.89483 10.0002i −0.680204 0.764736i
\(172\) −3.10507 + 5.37815i −0.236760 + 0.410080i
\(173\) 16.1141 1.22513 0.612566 0.790419i \(-0.290137\pi\)
0.612566 + 0.790419i \(0.290137\pi\)
\(174\) 14.7098 + 6.60282i 1.11514 + 0.500559i
\(175\) 0 0
\(176\) −1.46727 2.54138i −0.110599 0.191564i
\(177\) 1.83379 + 17.9724i 0.137836 + 1.35089i
\(178\) 0.716947 + 1.24179i 0.0537374 + 0.0930760i
\(179\) −7.14400 + 12.3738i −0.533967 + 0.924859i 0.465245 + 0.885182i \(0.345966\pi\)
−0.999213 + 0.0396767i \(0.987367\pi\)
\(180\) −0.796717 + 2.40228i −0.0593838 + 0.179056i
\(181\) 12.8873 0.957905 0.478952 0.877841i \(-0.341017\pi\)
0.478952 + 0.877841i \(0.341017\pi\)
\(182\) 0 0
\(183\) 2.04875 + 20.0791i 0.151448 + 1.48429i
\(184\) −2.33929 + 4.05178i −0.172455 + 0.298701i
\(185\) 6.63315 0.487679
\(186\) 1.81522 + 17.7904i 0.133099 + 1.30445i
\(187\) 4.46122 0.326237
\(188\) −6.64490 −0.484629
\(189\) 0 0
\(190\) −7.19777 −0.522181
\(191\) −2.16435 −0.156607 −0.0783034 0.996930i \(-0.524950\pi\)
−0.0783034 + 0.996930i \(0.524950\pi\)
\(192\) 0.349454 + 3.42488i 0.0252197 + 0.247169i
\(193\) 10.4313 0.750861 0.375431 0.926850i \(-0.377495\pi\)
0.375431 + 0.926850i \(0.377495\pi\)
\(194\) −2.89475 + 5.01385i −0.207831 + 0.359973i
\(195\) 0.837775 + 8.21075i 0.0599943 + 0.587984i
\(196\) 0 0
\(197\) −18.7848 −1.33836 −0.669179 0.743101i \(-0.733354\pi\)
−0.669179 + 0.743101i \(0.733354\pi\)
\(198\) 1.99381 + 2.24159i 0.141694 + 0.159303i
\(199\) −4.21303 + 7.29719i −0.298654 + 0.517284i −0.975828 0.218539i \(-0.929871\pi\)
0.677174 + 0.735823i \(0.263204\pi\)
\(200\) 3.87085 + 6.70452i 0.273711 + 0.474081i
\(201\) −2.08587 20.4429i −0.147126 1.44193i
\(202\) −8.14681 14.1107i −0.573208 0.992825i
\(203\) 0 0
\(204\) 10.6483 + 4.77975i 0.745532 + 0.334650i
\(205\) 1.00138 0.0699392
\(206\) −9.90278 + 17.1521i −0.689960 + 1.19505i
\(207\) 2.33929 7.05350i 0.162592 0.490252i
\(208\) −12.5183 21.6823i −0.867986 1.50340i
\(209\) −1.31241 + 2.27316i −0.0907814 + 0.157238i
\(210\) 0 0
\(211\) −5.61126 9.71899i −0.386295 0.669083i 0.605653 0.795729i \(-0.292912\pi\)
−0.991948 + 0.126646i \(0.959579\pi\)
\(212\) −3.07598 + 5.32776i −0.211259 + 0.365912i
\(213\) 0.756071 + 7.40999i 0.0518051 + 0.507724i
\(214\) −3.22803 5.59111i −0.220664 0.382200i
\(215\) 3.31657 + 5.74447i 0.226188 + 0.391770i
\(216\) −2.94756 9.36107i −0.200556 0.636940i
\(217\) 0 0
\(218\) −10.9320 + 18.9348i −0.740408 + 1.28242i
\(219\) −7.04944 3.16431i −0.476357 0.213824i
\(220\) 0.496374 0.0334655
\(221\) 38.0617 2.56031
\(222\) 16.6785 12.0404i 1.11939 0.808099i
\(223\) 10.3774 17.9742i 0.694923 1.20364i −0.275283 0.961363i \(-0.588772\pi\)
0.970206 0.242279i \(-0.0778951\pi\)
\(224\) 0 0
\(225\) −8.17240 9.18801i −0.544826 0.612534i
\(226\) 7.66621 + 13.2783i 0.509949 + 0.883257i
\(227\) 5.21512 + 9.03284i 0.346139 + 0.599531i 0.985560 0.169326i \(-0.0541591\pi\)
−0.639421 + 0.768857i \(0.720826\pi\)
\(228\) −5.56801 + 4.01961i −0.368751 + 0.266205i
\(229\) −7.52961 + 13.0417i −0.497570 + 0.861817i −0.999996 0.00280316i \(-0.999108\pi\)
0.502426 + 0.864620i \(0.332441\pi\)
\(230\) −1.99829 3.46113i −0.131763 0.228220i
\(231\) 0 0
\(232\) −5.17240 + 8.95886i −0.339585 + 0.588178i
\(233\) −2.19344 3.79915i −0.143697 0.248890i 0.785189 0.619256i \(-0.212566\pi\)
−0.928886 + 0.370366i \(0.879232\pi\)
\(234\) 17.0106 + 19.1245i 1.11202 + 1.25021i
\(235\) −3.54875 + 6.14662i −0.231495 + 0.400961i
\(236\) 9.26972 0.603407
\(237\) −0.234501 2.29826i −0.0152325 0.149288i
\(238\) 0 0
\(239\) 4.77561 + 8.27160i 0.308909 + 0.535046i 0.978124 0.208023i \(-0.0667029\pi\)
−0.669215 + 0.743069i \(0.733370\pi\)
\(240\) −7.48143 3.35822i −0.482924 0.216772i
\(241\) −5.26792 9.12431i −0.339337 0.587749i 0.644971 0.764207i \(-0.276869\pi\)
−0.984308 + 0.176458i \(0.943536\pi\)
\(242\) −9.05377 + 15.6816i −0.581999 + 1.00805i
\(243\) 7.58829 + 13.6168i 0.486789 + 0.873519i
\(244\) 10.3563 0.662996
\(245\) 0 0
\(246\) 2.51788 1.81769i 0.160534 0.115892i
\(247\) −11.1971 + 19.3939i −0.712453 + 1.23401i
\(248\) −11.4734 −0.728560
\(249\) 8.98143 + 4.03153i 0.569175 + 0.255488i
\(250\) −14.6802 −0.928458
\(251\) −24.4346 −1.54230 −0.771148 0.636656i \(-0.780317\pi\)
−0.771148 + 0.636656i \(0.780317\pi\)
\(252\) 0 0
\(253\) −1.45744 −0.0916282
\(254\) −10.9332 −0.686007
\(255\) 10.1081 7.29719i 0.632997 0.456968i
\(256\) 17.7417 1.10886
\(257\) −2.00416 + 3.47131i −0.125016 + 0.216534i −0.921739 0.387810i \(-0.873232\pi\)
0.796723 + 0.604345i \(0.206565\pi\)
\(258\) 18.7665 + 8.42380i 1.16835 + 0.524443i
\(259\) 0 0
\(260\) 4.23491 0.262638
\(261\) 5.17240 15.5960i 0.320163 0.965366i
\(262\) 5.63694 9.76347i 0.348251 0.603189i
\(263\) −8.84362 15.3176i −0.545321 0.944524i −0.998587 0.0531485i \(-0.983074\pi\)
0.453265 0.891376i \(-0.350259\pi\)
\(264\) −1.56060 + 1.12661i −0.0960482 + 0.0693383i
\(265\) 3.28550 + 5.69066i 0.201827 + 0.349574i
\(266\) 0 0
\(267\) 1.18478 0.855304i 0.0725072 0.0523438i
\(268\) −10.5439 −0.644074
\(269\) 7.11366 12.3212i 0.433727 0.751238i −0.563463 0.826141i \(-0.690531\pi\)
0.997191 + 0.0749032i \(0.0238648\pi\)
\(270\) 8.18409 + 1.81769i 0.498068 + 0.110621i
\(271\) 2.69937 + 4.67545i 0.163975 + 0.284013i 0.936291 0.351226i \(-0.114235\pi\)
−0.772316 + 0.635239i \(0.780902\pi\)
\(272\) −18.9091 + 32.7515i −1.14653 + 1.98585i
\(273\) 0 0
\(274\) 11.9258 + 20.6561i 0.720464 + 1.24788i
\(275\) −1.20582 + 2.08854i −0.0727136 + 0.125944i
\(276\) −3.47870 1.56150i −0.209393 0.0939911i
\(277\) −3.83310 6.63913i −0.230309 0.398907i 0.727590 0.686012i \(-0.240640\pi\)
−0.957899 + 0.287105i \(0.907307\pi\)
\(278\) 7.48267 + 12.9604i 0.448781 + 0.777311i
\(279\) 17.8483 3.68059i 1.06855 0.220351i
\(280\) 0 0
\(281\) 11.3312 19.6263i 0.675965 1.17081i −0.300220 0.953870i \(-0.597060\pi\)
0.976186 0.216936i \(-0.0696065\pi\)
\(282\) 2.23422 + 21.8968i 0.133046 + 1.30394i
\(283\) −31.8492 −1.89324 −0.946619 0.322353i \(-0.895526\pi\)
−0.946619 + 0.322353i \(0.895526\pi\)
\(284\) 3.82189 0.226788
\(285\) 0.744561 + 7.29719i 0.0441040 + 0.432248i
\(286\) 2.50987 4.34722i 0.148412 0.257057i
\(287\) 0 0
\(288\) −13.8083 + 2.84748i −0.813664 + 0.167790i
\(289\) −20.2465 35.0680i −1.19097 2.06282i
\(290\) −4.41840 7.65289i −0.259457 0.449393i
\(291\) 5.38255 + 2.41608i 0.315530 + 0.141633i
\(292\) −1.98242 + 3.43366i −0.116013 + 0.200940i
\(293\) −13.7468 23.8102i −0.803097 1.39100i −0.917568 0.397578i \(-0.869851\pi\)
0.114472 0.993427i \(-0.463483\pi\)
\(294\) 0 0
\(295\) 4.95056 8.57462i 0.288233 0.499234i
\(296\) 6.59888 + 11.4296i 0.383552 + 0.664332i
\(297\) 2.06630 2.25323i 0.119899 0.130746i
\(298\) −3.71015 + 6.42617i −0.214923 + 0.372258i
\(299\) −12.4344 −0.719099
\(300\) −5.11578 + 3.69314i −0.295360 + 0.213224i
\(301\) 0 0
\(302\) −10.7534 18.6254i −0.618789 1.07177i
\(303\) −13.4629 + 9.71899i −0.773421 + 0.558342i
\(304\) −11.1254 19.2698i −0.638088 1.10520i
\(305\) 5.53087 9.57975i 0.316697 0.548535i
\(306\) 12.1703 36.6964i 0.695732 2.09779i
\(307\) 14.8176 0.845683 0.422841 0.906204i \(-0.361033\pi\)
0.422841 + 0.906204i \(0.361033\pi\)
\(308\) 0 0
\(309\) 18.4134 + 8.26530i 1.04750 + 0.470196i
\(310\) 4.90043 8.48779i 0.278326 0.482074i
\(311\) 29.0635 1.64804 0.824021 0.566559i \(-0.191726\pi\)
0.824021 + 0.566559i \(0.191726\pi\)
\(312\) −13.3145 + 9.61192i −0.753787 + 0.544168i
\(313\) −24.4780 −1.38358 −0.691790 0.722099i \(-0.743178\pi\)
−0.691790 + 0.722099i \(0.743178\pi\)
\(314\) −19.1614 −1.08134
\(315\) 0 0
\(316\) −1.18539 −0.0666834
\(317\) −7.38688 −0.414888 −0.207444 0.978247i \(-0.566515\pi\)
−0.207444 + 0.978247i \(0.566515\pi\)
\(318\) 18.5907 + 8.34488i 1.04252 + 0.467958i
\(319\) −3.22253 −0.180427
\(320\) 0.943395 1.63401i 0.0527374 0.0913438i
\(321\) −5.33442 + 3.85098i −0.297738 + 0.214941i
\(322\) 0 0
\(323\) 33.8268 1.88218
\(324\) 7.34610 3.16431i 0.408116 0.175795i
\(325\) −10.2877 + 17.8188i −0.570657 + 0.988407i
\(326\) −1.41597 2.45253i −0.0784231 0.135833i
\(327\) 20.3271 + 9.12431i 1.12409 + 0.504576i
\(328\) 0.996205 + 1.72548i 0.0550062 + 0.0952736i
\(329\) 0 0
\(330\) −0.166896 1.63569i −0.00918734 0.0900419i
\(331\) 20.0617 1.10269 0.551347 0.834276i \(-0.314114\pi\)
0.551347 + 0.834276i \(0.314114\pi\)
\(332\) 2.52573 4.37470i 0.138618 0.240093i
\(333\) −13.9320 15.6634i −0.763468 0.858348i
\(334\) 3.31657 + 5.74447i 0.181475 + 0.314324i
\(335\) −5.63106 + 9.75329i −0.307658 + 0.532879i
\(336\) 0 0
\(337\) −3.20327 5.54823i −0.174493 0.302231i 0.765493 0.643445i \(-0.222495\pi\)
−0.939986 + 0.341214i \(0.889162\pi\)
\(338\) 10.3658 17.9542i 0.563827 0.976577i
\(339\) 12.6687 9.14565i 0.688067 0.496723i
\(340\) −3.19846 5.53989i −0.173461 0.300443i
\(341\) −1.78705 3.09526i −0.0967740 0.167617i
\(342\) 15.1179 + 16.9967i 0.817482 + 0.919074i
\(343\) 0 0
\(344\) −6.59888 + 11.4296i −0.355788 + 0.616243i
\(345\) −3.30223 + 2.38392i −0.177786 + 0.128346i
\(346\) −27.3880 −1.47239
\(347\) −29.1927 −1.56714 −0.783572 0.621300i \(-0.786605\pi\)
−0.783572 + 0.621300i \(0.786605\pi\)
\(348\) −7.69174 3.45262i −0.412320 0.185080i
\(349\) 2.17192 3.76188i 0.116260 0.201369i −0.802022 0.597294i \(-0.796243\pi\)
0.918283 + 0.395925i \(0.129576\pi\)
\(350\) 0 0
\(351\) 17.6291 19.2238i 0.940970 1.02609i
\(352\) 1.38255 + 2.39464i 0.0736899 + 0.127635i
\(353\) −12.8503 22.2574i −0.683955 1.18464i −0.973764 0.227560i \(-0.926925\pi\)
0.289809 0.957084i \(-0.406408\pi\)
\(354\) −3.11677 30.5464i −0.165654 1.62352i
\(355\) 2.04111 3.53530i 0.108331 0.187635i
\(356\) −0.374892 0.649331i −0.0198692 0.0344145i
\(357\) 0 0
\(358\) 12.1421 21.0308i 0.641732 1.11151i
\(359\) −10.3436 17.9157i −0.545916 0.945554i −0.998549 0.0538567i \(-0.982849\pi\)
0.452633 0.891697i \(-0.350485\pi\)
\(360\) −1.69318 + 5.10532i −0.0892383 + 0.269074i
\(361\) −0.451246 + 0.781582i −0.0237498 + 0.0411359i
\(362\) −21.9036 −1.15123
\(363\) 16.8348 + 7.55667i 0.883595 + 0.396622i
\(364\) 0 0
\(365\) 2.11745 + 3.66754i 0.110833 + 0.191968i
\(366\) −3.48212 34.1271i −0.182013 1.78385i
\(367\) 1.42391 + 2.46628i 0.0743273 + 0.128739i 0.900794 0.434248i \(-0.142986\pi\)
−0.826466 + 0.562986i \(0.809652\pi\)
\(368\) 6.17742 10.6996i 0.322020 0.557755i
\(369\) −2.10325 2.36463i −0.109491 0.123098i
\(370\) −11.2739 −0.586101
\(371\) 0 0
\(372\) −0.949180 9.30259i −0.0492127 0.482317i
\(373\) −10.7163 + 18.5612i −0.554871 + 0.961065i 0.443043 + 0.896501i \(0.353899\pi\)
−0.997914 + 0.0645641i \(0.979434\pi\)
\(374\) −7.58242 −0.392077
\(375\) 1.51857 + 14.8830i 0.0784186 + 0.768554i
\(376\) −14.1217 −0.728271
\(377\) −27.4936 −1.41599
\(378\) 0 0
\(379\) 27.0494 1.38943 0.694716 0.719284i \(-0.255530\pi\)
0.694716 + 0.719284i \(0.255530\pi\)
\(380\) 3.76371 0.193074
\(381\) 1.13096 + 11.0842i 0.0579409 + 0.567859i
\(382\) 3.67859 0.188213
\(383\) 7.21340 12.4940i 0.368588 0.638412i −0.620757 0.784003i \(-0.713175\pi\)
0.989345 + 0.145590i \(0.0465081\pi\)
\(384\) −2.24647 22.0169i −0.114640 1.12355i
\(385\) 0 0
\(386\) −17.7293 −0.902399
\(387\) 6.59888 19.8971i 0.335440 1.01143i
\(388\) 1.51366 2.62174i 0.0768446 0.133099i
\(389\) 3.05377 + 5.28929i 0.154832 + 0.268178i 0.932998 0.359882i \(-0.117183\pi\)
−0.778166 + 0.628059i \(0.783850\pi\)
\(390\) −1.42391 13.9552i −0.0721023 0.706650i
\(391\) 9.39120 + 16.2660i 0.474933 + 0.822609i
\(392\) 0 0
\(393\) −10.4814 4.70484i −0.528718 0.237328i
\(394\) 31.9271 1.60846
\(395\) −0.633065 + 1.09650i −0.0318530 + 0.0551710i
\(396\) −1.04256 1.17213i −0.0523908 0.0589016i
\(397\) 6.44364 + 11.1607i 0.323397 + 0.560140i 0.981187 0.193061i \(-0.0618417\pi\)
−0.657789 + 0.753202i \(0.728508\pi\)
\(398\) 7.16059 12.4025i 0.358928 0.621682i
\(399\) 0 0
\(400\) −10.2218 17.7047i −0.511092 0.885237i
\(401\) −4.19530 + 7.26647i −0.209503 + 0.362870i −0.951558 0.307469i \(-0.900518\pi\)
0.742055 + 0.670339i \(0.233851\pi\)
\(402\) 3.54520 + 34.7453i 0.176818 + 1.73294i
\(403\) −15.2465 26.4078i −0.759483 1.31546i
\(404\) 4.25997 + 7.37848i 0.211941 + 0.367093i
\(405\) 0.996205 8.48516i 0.0495018 0.421631i
\(406\) 0 0
\(407\) −2.05563 + 3.56046i −0.101894 + 0.176485i
\(408\) 22.6298 + 10.1579i 1.12034 + 0.502891i
\(409\) 6.81266 0.336864 0.168432 0.985713i \(-0.446130\pi\)
0.168432 + 0.985713i \(0.446130\pi\)
\(410\) −1.70197 −0.0840543
\(411\) 19.7078 14.2273i 0.972112 0.701779i
\(412\) 5.17817 8.96885i 0.255110 0.441864i
\(413\) 0 0
\(414\) −3.97593 + 11.9883i −0.195406 + 0.589194i
\(415\) −2.69777 4.67267i −0.132428 0.229372i
\(416\) 11.7955 + 20.4303i 0.578320 + 1.00168i
\(417\) 12.3654 8.92669i 0.605534 0.437142i
\(418\) 2.23061 3.86353i 0.109103 0.188971i
\(419\) 5.16231 + 8.94137i 0.252195 + 0.436815i 0.964130 0.265431i \(-0.0855142\pi\)
−0.711935 + 0.702246i \(0.752181\pi\)
\(420\) 0 0
\(421\) −1.56801 + 2.71588i −0.0764202 + 0.132364i −0.901703 0.432356i \(-0.857682\pi\)
0.825283 + 0.564720i \(0.191016\pi\)
\(422\) 9.53706 + 16.5187i 0.464257 + 0.804117i
\(423\) 21.9682 4.53016i 1.06813 0.220264i
\(424\) −6.53706 + 11.3225i −0.317468 + 0.549870i
\(425\) 31.0795 1.50757
\(426\) −1.28504 12.5942i −0.0622603 0.610192i
\(427\) 0 0
\(428\) 1.68794 + 2.92359i 0.0815895 + 0.141317i
\(429\) −4.66690 2.09485i −0.225320 0.101140i
\(430\) −5.63694 9.76347i −0.271837 0.470836i
\(431\) −15.9363 + 27.6025i −0.767625 + 1.32957i 0.171222 + 0.985233i \(0.445229\pi\)
−0.938847 + 0.344334i \(0.888105\pi\)
\(432\) 7.78367 + 24.7200i 0.374492 + 1.18934i
\(433\) 7.48855 0.359877 0.179938 0.983678i \(-0.442410\pi\)
0.179938 + 0.983678i \(0.442410\pi\)
\(434\) 0 0
\(435\) −7.30154 + 5.27107i −0.350082 + 0.252728i
\(436\) 5.71634 9.90099i 0.273763 0.474171i
\(437\) −11.0509 −0.528636
\(438\) 11.9814 + 5.37815i 0.572495 + 0.256978i
\(439\) 2.28930 0.109262 0.0546311 0.998507i \(-0.482602\pi\)
0.0546311 + 0.998507i \(0.482602\pi\)
\(440\) 1.05489 0.0502900
\(441\) 0 0
\(442\) −64.6908 −3.07703
\(443\) 37.3497 1.77454 0.887270 0.461251i \(-0.152599\pi\)
0.887270 + 0.461251i \(0.152599\pi\)
\(444\) −8.72119 + 6.29593i −0.413889 + 0.298791i
\(445\) −0.800854 −0.0379641
\(446\) −17.6378 + 30.5495i −0.835172 + 1.44656i
\(447\) 6.89872 + 3.09665i 0.326298 + 0.146467i
\(448\) 0 0
\(449\) −6.20286 −0.292731 −0.146366 0.989231i \(-0.546758\pi\)
−0.146366 + 0.989231i \(0.546758\pi\)
\(450\) 13.8900 + 15.6162i 0.654783 + 0.736155i
\(451\) −0.310330 + 0.537507i −0.0146129 + 0.0253102i
\(452\) −4.00866 6.94320i −0.188552 0.326581i
\(453\) −17.7703 + 12.8286i −0.834923 + 0.602741i
\(454\) −8.86376 15.3525i −0.415997 0.720527i
\(455\) 0 0
\(456\) −11.8331 + 8.54245i −0.554136 + 0.400037i
\(457\) 20.1716 0.943589 0.471795 0.881709i \(-0.343606\pi\)
0.471795 + 0.881709i \(0.343606\pi\)
\(458\) 12.7975 22.1660i 0.597989 1.03575i
\(459\) −38.4622 8.54245i −1.79526 0.398728i
\(460\) 1.04490 + 1.80983i 0.0487189 + 0.0843836i
\(461\) 11.2680 19.5168i 0.524803 0.908986i −0.474780 0.880105i \(-0.657472\pi\)
0.999583 0.0288813i \(-0.00919447\pi\)
\(462\) 0 0
\(463\) 13.8145 + 23.9275i 0.642016 + 1.11200i 0.984982 + 0.172656i \(0.0552350\pi\)
−0.342966 + 0.939348i \(0.611432\pi\)
\(464\) 13.6588 23.6578i 0.634096 1.09829i
\(465\) −9.11194 4.09011i −0.422556 0.189674i
\(466\) 3.72803 + 6.45714i 0.172698 + 0.299121i
\(467\) −10.0612 17.4265i −0.465577 0.806404i 0.533650 0.845705i \(-0.320820\pi\)
−0.999227 + 0.0393016i \(0.987487\pi\)
\(468\) −8.89483 10.0002i −0.411164 0.462261i
\(469\) 0 0
\(470\) 6.03156 10.4470i 0.278215 0.481883i
\(471\) 1.98212 + 19.4261i 0.0913312 + 0.895106i
\(472\) 19.6999 0.906764
\(473\) −4.11126 −0.189036
\(474\) 0.398564 + 3.90619i 0.0183067 + 0.179417i
\(475\) −9.14301 + 15.8362i −0.419510 + 0.726613i
\(476\) 0 0
\(477\) 6.53706 19.7107i 0.299312 0.902493i
\(478\) −8.11677 14.0586i −0.371252 0.643028i
\(479\) 4.79329 + 8.30222i 0.219011 + 0.379338i 0.954506 0.298192i \(-0.0963836\pi\)
−0.735495 + 0.677530i \(0.763050\pi\)
\(480\) 7.04944 + 3.16431i 0.321762 + 0.144430i
\(481\) −17.5380 + 30.3767i −0.799664 + 1.38506i
\(482\) 8.95351 + 15.5079i 0.407821 + 0.706367i
\(483\) 0 0
\(484\) 4.73422 8.19991i 0.215192 0.372723i
\(485\) −1.61677 2.80032i −0.0734135 0.127156i
\(486\) −12.8973 23.1435i −0.585032 1.04981i
\(487\) −6.53706 + 11.3225i −0.296223 + 0.513073i −0.975269 0.221023i \(-0.929060\pi\)
0.679046 + 0.734096i \(0.262394\pi\)
\(488\) 22.0092 0.996311
\(489\) −2.33993 + 1.68922i −0.105815 + 0.0763893i
\(490\) 0 0
\(491\) −7.67054 13.2858i −0.346167 0.599578i 0.639398 0.768876i \(-0.279183\pi\)
−0.985565 + 0.169298i \(0.945850\pi\)
\(492\) −1.31660 + 0.950469i −0.0593569 + 0.0428505i
\(493\) 20.7648 + 35.9657i 0.935201 + 1.61982i
\(494\) 19.0309 32.9624i 0.856239 1.48305i
\(495\) −1.64102 + 0.338403i −0.0737585 + 0.0152101i
\(496\) 30.2979 1.36042
\(497\) 0 0
\(498\) −15.2651 6.85210i −0.684045 0.307050i
\(499\) −2.43268 + 4.21352i −0.108902 + 0.188623i −0.915326 0.402715i \(-0.868067\pi\)
0.806424 + 0.591338i \(0.201400\pi\)
\(500\) 7.67628 0.343294
\(501\) 5.48074 3.95661i 0.244861 0.176768i
\(502\) 41.5297 1.85356
\(503\) 16.0085 0.713783 0.356892 0.934146i \(-0.383837\pi\)
0.356892 + 0.934146i \(0.383837\pi\)
\(504\) 0 0
\(505\) 9.10026 0.404956
\(506\) 2.47710 0.110121
\(507\) −19.2744 8.65178i −0.856007 0.384239i
\(508\) 5.71695 0.253649
\(509\) 15.5925 27.0071i 0.691127 1.19707i −0.280342 0.959900i \(-0.590448\pi\)
0.971469 0.237167i \(-0.0762188\pi\)
\(510\) −17.1801 + 12.4025i −0.760747 + 0.549192i
\(511\) 0 0
\(512\) −4.59937 −0.203265
\(513\) 15.6676 17.0849i 0.691741 0.754317i
\(514\) 3.40633 5.89994i 0.150247 0.260235i
\(515\) −5.53087 9.57975i −0.243719 0.422134i
\(516\) −9.81303 4.40481i −0.431994 0.193911i
\(517\) −2.19954 3.80971i −0.0967356 0.167551i
\(518\) 0 0
\(519\) 2.83310 + 27.7663i 0.124359 + 1.21880i
\(520\) 9.00000 0.394676
\(521\) −10.4830 + 18.1572i −0.459270 + 0.795480i −0.998923 0.0464085i \(-0.985222\pi\)
0.539652 + 0.841888i \(0.318556\pi\)
\(522\) −8.79115 + 26.5073i −0.384778 + 1.16019i
\(523\) −21.7821 37.7277i −0.952465 1.64972i −0.740064 0.672536i \(-0.765205\pi\)
−0.212401 0.977183i \(-0.568128\pi\)
\(524\) −2.94756 + 5.10532i −0.128765 + 0.223027i
\(525\) 0 0
\(526\) 15.0309 + 26.0342i 0.655377 + 1.13515i
\(527\) −23.0302 + 39.8894i −1.00321 + 1.73761i
\(528\) 4.12110 2.97507i 0.179348 0.129473i
\(529\) 8.43199 + 14.6046i 0.366608 + 0.634984i
\(530\) −5.58413 9.67200i −0.242559 0.420125i
\(531\) −30.6459 + 6.31963i −1.32992 + 0.274249i
\(532\) 0 0
\(533\) −2.64764 + 4.58584i −0.114682 + 0.198635i
\(534\) −2.01368 + 1.45370i −0.0871405 + 0.0629077i
\(535\) 3.60582 0.155893
\(536\) −22.4079 −0.967875
\(537\) −22.5773 10.1344i −0.974283 0.437330i
\(538\) −12.0906 + 20.9415i −0.521262 + 0.902852i
\(539\) 0 0
\(540\) −4.27946 0.950469i −0.184159 0.0409017i
\(541\) −4.93268 8.54365i −0.212072 0.367320i 0.740291 0.672287i \(-0.234688\pi\)
−0.952363 + 0.304967i \(0.901355\pi\)
\(542\) −4.58793 7.94652i −0.197068 0.341332i
\(543\) 2.26578 + 22.2061i 0.0972340 + 0.952957i
\(544\) 17.8173 30.8604i 0.763909 1.32313i
\(545\) −6.10570 10.5754i −0.261539 0.453000i
\(546\) 0 0
\(547\) −0.284350 + 0.492509i −0.0121579 + 0.0210582i −0.872040 0.489434i \(-0.837203\pi\)
0.859882 + 0.510492i \(0.170537\pi\)
\(548\) −6.23600 10.8011i −0.266389 0.461399i
\(549\) −34.2382 + 7.06043i −1.46125 + 0.301332i
\(550\) 2.04944 3.54974i 0.0873885 0.151361i
\(551\) −24.4346 −1.04095
\(552\) −7.39292 3.31848i −0.314663 0.141244i
\(553\) 0 0
\(554\) 6.51485 + 11.2841i 0.276789 + 0.479413i
\(555\) 1.16621 + 11.4296i 0.0495028 + 0.485160i
\(556\) −3.91269 6.77698i −0.165935 0.287408i
\(557\) 1.29349 2.24040i 0.0548071 0.0949286i −0.837320 0.546713i \(-0.815879\pi\)
0.892127 + 0.451784i \(0.149212\pi\)
\(558\) −30.3355 + 6.25564i −1.28421 + 0.264822i
\(559\) −35.0760 −1.48356
\(560\) 0 0
\(561\) 0.784350 + 7.68715i 0.0331153 + 0.324552i
\(562\) −19.2589 + 33.3574i −0.812388 + 1.40710i
\(563\) −33.2831 −1.40272 −0.701358 0.712809i \(-0.747422\pi\)
−0.701358 + 0.712809i \(0.747422\pi\)
\(564\) −1.16827 11.4499i −0.0491932 0.482126i
\(565\) −8.56341 −0.360265
\(566\) 54.1318 2.27533
\(567\) 0 0
\(568\) 8.12227 0.340803
\(569\) −5.35346 −0.224429 −0.112214 0.993684i \(-0.535794\pi\)
−0.112214 + 0.993684i \(0.535794\pi\)
\(570\) −1.26548 12.4025i −0.0530050 0.519484i
\(571\) 4.90112 0.205105 0.102553 0.994728i \(-0.467299\pi\)
0.102553 + 0.994728i \(0.467299\pi\)
\(572\) −1.31241 + 2.27316i −0.0548747 + 0.0950457i
\(573\) −0.380525 3.72940i −0.0158967 0.155798i
\(574\) 0 0
\(575\) −10.1533 −0.423424
\(576\) −5.83998 + 1.20429i −0.243333 + 0.0501788i
\(577\) 18.0378 31.2425i 0.750925 1.30064i −0.196450 0.980514i \(-0.562941\pi\)
0.947375 0.320127i \(-0.103725\pi\)
\(578\) 34.4116 + 59.6026i 1.43133 + 2.47914i
\(579\) 1.83398 + 17.9742i 0.0762176 + 0.746983i
\(580\) 2.31038 + 4.00170i 0.0959333 + 0.166161i
\(581\) 0 0
\(582\) −9.14833 4.10644i −0.379210 0.170217i
\(583\) −4.07275 −0.168676
\(584\) −4.21303 + 7.29719i −0.174337 + 0.301960i
\(585\) −14.0007 + 2.88715i −0.578857 + 0.119369i
\(586\) 23.3645 + 40.4684i 0.965177 + 1.67174i
\(587\) −0.527445 + 0.913562i −0.0217700 + 0.0377068i −0.876705 0.481028i \(-0.840263\pi\)
0.854935 + 0.518735i \(0.173597\pi\)
\(588\) 0 0
\(589\) −13.5501 23.4695i −0.558323 0.967045i
\(590\) −8.41411 + 14.5737i −0.346403 + 0.599988i
\(591\) −3.30264 32.3681i −0.135853 1.33145i
\(592\) −17.4258 30.1824i −0.716196 1.24049i
\(593\) 7.53548 + 13.0518i 0.309445 + 0.535975i 0.978241 0.207471i \(-0.0665233\pi\)
−0.668796 + 0.743446i \(0.733190\pi\)
\(594\) −3.51195 + 3.82965i −0.144097 + 0.157132i
\(595\) 0 0
\(596\) 1.94004 3.36024i 0.0794670 0.137641i
\(597\) −13.3145 5.97654i −0.544928 0.244604i
\(598\) 21.1338 0.864227
\(599\) 42.0566 1.71839 0.859194 0.511650i \(-0.170965\pi\)
0.859194 + 0.511650i \(0.170965\pi\)
\(600\) −10.8720 + 7.84864i −0.443849 + 0.320420i
\(601\) −9.44989 + 16.3677i −0.385469 + 0.667652i −0.991834 0.127534i \(-0.959294\pi\)
0.606365 + 0.795186i \(0.292627\pi\)
\(602\) 0 0
\(603\) 34.8585 7.18833i 1.41955 0.292732i
\(604\) 5.62296 + 9.73924i 0.228795 + 0.396284i
\(605\) −5.05669 8.75844i −0.205583 0.356081i
\(606\) 22.8819 16.5187i 0.929512 0.671025i
\(607\) 14.7213 25.4980i 0.597518 1.03493i −0.395668 0.918393i \(-0.629487\pi\)
0.993186 0.116538i \(-0.0371796\pi\)
\(608\) 10.4830 + 18.1572i 0.425143 + 0.736370i
\(609\) 0 0
\(610\) −9.40043 + 16.2820i −0.380612 + 0.659240i
\(611\) −18.7658 32.5033i −0.759182 1.31494i
\(612\) −6.36387 + 19.1885i −0.257244 + 0.775650i
\(613\) 5.83379 10.1044i 0.235625 0.408114i −0.723829 0.689979i \(-0.757620\pi\)
0.959454 + 0.281865i \(0.0909531\pi\)
\(614\) −25.1843 −1.01636
\(615\) 0.176057 + 1.72548i 0.00709932 + 0.0695780i
\(616\) 0 0
\(617\) 16.4054 + 28.4151i 0.660458 + 1.14395i 0.980495 + 0.196542i \(0.0629713\pi\)
−0.320037 + 0.947405i \(0.603695\pi\)
\(618\) −31.2960 14.0479i −1.25891 0.565091i
\(619\) 12.0806 + 20.9242i 0.485560 + 0.841014i 0.999862 0.0165947i \(-0.00528250\pi\)
−0.514303 + 0.857609i \(0.671949\pi\)
\(620\) −2.56243 + 4.43827i −0.102910 + 0.178245i
\(621\) 12.5652 + 2.79073i 0.504224 + 0.111988i
\(622\) −49.3972 −1.98065
\(623\) 0 0
\(624\) 35.1599 25.3824i 1.40752 1.01611i
\(625\) −6.14764 + 10.6480i −0.245906 + 0.425921i
\(626\) 41.6035 1.66281
\(627\) −4.14764 1.86176i −0.165641 0.0743517i
\(628\) 10.0195 0.399822
\(629\) 52.9830 2.11257
\(630\) 0 0
\(631\) −11.1003 −0.441894 −0.220947 0.975286i \(-0.570915\pi\)
−0.220947 + 0.975286i \(0.570915\pi\)
\(632\) −2.51918 −0.100208
\(633\) 15.7603 11.3775i 0.626416 0.452217i
\(634\) 12.5549 0.498620
\(635\) 3.05318 5.28826i 0.121162 0.209858i
\(636\) −9.72109 4.36354i −0.385466 0.173026i
\(637\) 0 0
\(638\) 5.47710 0.216840
\(639\) −12.6353 + 2.60558i −0.499843 + 0.103075i
\(640\) −6.06464 + 10.5043i −0.239726 + 0.415218i
\(641\) −3.65019 6.32231i −0.144174 0.249716i 0.784891 0.619634i \(-0.212719\pi\)
−0.929064 + 0.369918i \(0.879386\pi\)
\(642\) 9.06653 6.54523i 0.357827 0.258320i
\(643\) −10.6256 18.4041i −0.419033 0.725787i 0.576809 0.816879i \(-0.304298\pi\)
−0.995842 + 0.0910922i \(0.970964\pi\)
\(644\) 0 0
\(645\) −9.31522 + 6.72477i −0.366787 + 0.264787i
\(646\) −57.4930 −2.26203
\(647\) −8.47300 + 14.6757i −0.333108 + 0.576960i −0.983120 0.182964i \(-0.941431\pi\)
0.650011 + 0.759924i \(0.274764\pi\)
\(648\) 15.6119 6.72477i 0.613292 0.264174i
\(649\) 3.06839 + 5.31460i 0.120445 + 0.208616i
\(650\) 17.4852 30.2853i 0.685826 1.18789i
\(651\) 0 0
\(652\) 0.740409 + 1.28243i 0.0289967 + 0.0502237i
\(653\) 1.86652 3.23292i 0.0730427 0.126514i −0.827191 0.561921i \(-0.810062\pi\)
0.900233 + 0.435408i \(0.143396\pi\)
\(654\) −34.5486 15.5079i −1.35096 0.606408i
\(655\) 3.14833 + 5.45306i 0.123015 + 0.213069i
\(656\) −2.63070 4.55650i −0.102711 0.177902i
\(657\) 4.21303 12.7033i 0.164366 0.495601i
\(658\) 0 0
\(659\) 11.7992 20.4368i 0.459632 0.796105i −0.539310 0.842107i \(-0.681315\pi\)
0.998941 + 0.0460022i \(0.0146481\pi\)
\(660\) 0.0872701 + 0.855304i 0.00339698 + 0.0332927i
\(661\) 34.5175 1.34258 0.671288 0.741197i \(-0.265742\pi\)
0.671288 + 0.741197i \(0.265742\pi\)
\(662\) −34.0975 −1.32524
\(663\) 6.69183 + 65.5844i 0.259889 + 2.54709i
\(664\) 5.36767 9.29708i 0.208306 0.360796i
\(665\) 0 0
\(666\) 23.6792 + 26.6219i 0.917550 + 1.03158i
\(667\) −6.78366 11.7496i −0.262664 0.454948i
\(668\) −1.73424 3.00379i −0.0670996 0.116220i
\(669\) 32.7960 + 14.7212i 1.26797 + 0.569156i
\(670\) 9.57072 16.5770i 0.369749 0.640424i
\(671\) 3.42807 + 5.93759i 0.132339 + 0.229218i
\(672\) 0 0
\(673\) 12.2287 21.1808i 0.471382 0.816458i −0.528082 0.849194i \(-0.677088\pi\)
0.999464 + 0.0327353i \(0.0104218\pi\)
\(674\) 5.44437 + 9.42992i 0.209709 + 0.363227i
\(675\) 14.3951 15.6973i 0.554067 0.604189i
\(676\) −5.42030 + 9.38823i −0.208473 + 0.361086i
\(677\) −8.32045 −0.319781 −0.159890 0.987135i \(-0.551114\pi\)
−0.159890 + 0.987135i \(0.551114\pi\)
\(678\) −21.5320 + 15.5442i −0.826931 + 0.596971i
\(679\) 0 0
\(680\) −6.79734 11.7733i −0.260666 0.451487i
\(681\) −14.6476 + 10.5743i −0.561299 + 0.405208i
\(682\) 3.03731 + 5.26078i 0.116305 + 0.201446i
\(683\) 21.2312 36.7735i 0.812389 1.40710i −0.0987988 0.995107i \(-0.531500\pi\)
0.911188 0.411991i \(-0.135167\pi\)
\(684\) −7.90515 8.88756i −0.302261 0.339824i
\(685\) −13.3215 −0.508989
\(686\) 0 0
\(687\) −23.7960 10.6814i −0.907873 0.407520i
\(688\) 17.4258 30.1824i 0.664352 1.15069i
\(689\) −34.7474 −1.32377
\(690\) 5.61256 4.05178i 0.213667 0.154248i
\(691\) 35.3929 1.34641 0.673204 0.739456i \(-0.264917\pi\)
0.673204 + 0.739456i \(0.264917\pi\)
\(692\) 14.3212 0.544410
\(693\) 0 0
\(694\) 49.6167 1.88342
\(695\) −8.35840 −0.317052
\(696\) −16.3464 7.33748i −0.619610 0.278126i
\(697\) 7.99862 0.302969
\(698\) −3.69146 + 6.39380i −0.139724 + 0.242009i
\(699\) 6.16069 4.44747i 0.233019 0.168219i
\(700\) 0 0
\(701\) −7.00372 −0.264527 −0.132263 0.991215i \(-0.542224\pi\)
−0.132263 + 0.991215i \(0.542224\pi\)
\(702\) −29.9629 + 32.6734i −1.13088 + 1.23318i
\(703\) −15.5867 + 26.9969i −0.587862 + 1.01821i
\(704\) 0.584722 + 1.01277i 0.0220375 + 0.0381701i
\(705\) −11.2152 5.03420i −0.422389 0.189599i
\(706\) 21.8408 + 37.8294i 0.821989 + 1.42373i
\(707\) 0 0
\(708\) 1.62976 + 15.9727i 0.0612500 + 0.600291i
\(709\) −2.22253 −0.0834688 −0.0417344 0.999129i \(-0.513288\pi\)
−0.0417344 + 0.999129i \(0.513288\pi\)
\(710\) −3.46913 + 6.00870i −0.130194 + 0.225503i
\(711\) 3.91892 0.808139i 0.146971 0.0303076i
\(712\) −0.796717 1.37995i −0.0298582 0.0517160i
\(713\) 7.52373 13.0315i 0.281766 0.488033i
\(714\) 0 0
\(715\) 1.40180 + 2.42800i 0.0524245 + 0.0908019i
\(716\) −6.34913 + 10.9970i −0.237278 + 0.410977i
\(717\) −13.4132 + 9.68315i −0.500926 + 0.361624i
\(718\) 17.5803 + 30.4500i 0.656092 + 1.13638i
\(719\) −13.0088 22.5319i −0.485145 0.840296i 0.514709 0.857365i \(-0.327900\pi\)
−0.999854 + 0.0170686i \(0.994567\pi\)
\(720\) 4.47121 13.4817i 0.166632 0.502434i
\(721\) 0 0
\(722\) 0.766951 1.32840i 0.0285430 0.0494379i
\(723\) 14.7960 10.6814i 0.550268 0.397245i
\(724\) 11.4534 0.425662
\(725\) −22.4500 −0.833772
\(726\) −28.6128 12.8435i −1.06192 0.476668i
\(727\) 0.685875 1.18797i 0.0254377 0.0440594i −0.853026 0.521868i \(-0.825235\pi\)
0.878464 + 0.477809i \(0.158569\pi\)
\(728\) 0 0
\(729\) −22.1291 + 15.4695i −0.819595 + 0.572943i
\(730\) −3.59888 6.23345i −0.133201 0.230710i
\(731\) 26.4915 + 45.8847i 0.979824 + 1.69711i
\(732\) 1.82080 + 17.8450i 0.0672987 + 0.659572i
\(733\) 0.400087 0.692971i 0.0147776 0.0255955i −0.858542 0.512743i \(-0.828629\pi\)
0.873320 + 0.487148i \(0.161963\pi\)
\(734\) −2.42011 4.19176i −0.0893280 0.154721i
\(735\) 0 0
\(736\) −5.82072 + 10.0818i −0.214555 + 0.371620i
\(737\) −3.49017 6.04515i −0.128562 0.222676i
\(738\) 3.57475 + 4.01899i 0.131588 + 0.147941i
\(739\) −2.68547 + 4.65136i −0.0987865 + 0.171103i −0.911183 0.412003i \(-0.864829\pi\)
0.812396 + 0.583106i \(0.198163\pi\)
\(740\) 5.89511 0.216709
\(741\) −35.3864 15.8840i −1.29995 0.583513i
\(742\) 0 0
\(743\) 6.63162 + 11.4863i 0.243290 + 0.421391i 0.961650 0.274281i \(-0.0884399\pi\)
−0.718359 + 0.695672i \(0.755107\pi\)
\(744\) −2.01719 19.7698i −0.0739539 0.724797i
\(745\) −2.07218 3.58912i −0.0759188 0.131495i
\(746\) 18.2138 31.5472i 0.666854 1.15503i
\(747\) −5.36767 + 16.1847i −0.196393 + 0.592169i
\(748\) 3.96485 0.144969
\(749\) 0 0
\(750\) −2.58100 25.2955i −0.0942449 0.923662i
\(751\) −2.77816 + 4.81191i −0.101377 + 0.175589i −0.912252 0.409629i \(-0.865658\pi\)
0.810875 + 0.585219i \(0.198991\pi\)
\(752\) 37.2914 1.35988
\(753\) −4.29596 42.1033i −0.156554 1.53433i
\(754\) 46.7289 1.70177
\(755\) 12.0119 0.437158
\(756\) 0 0
\(757\) −13.3942 −0.486819 −0.243410 0.969924i \(-0.578266\pi\)
−0.243410 + 0.969924i \(0.578266\pi\)
\(758\) −45.9739 −1.66985
\(759\) −0.256239 2.51132i −0.00930090 0.0911550i
\(760\) 7.99862 0.290141
\(761\) 6.42191 11.1231i 0.232794 0.403211i −0.725835 0.687868i \(-0.758547\pi\)
0.958629 + 0.284658i \(0.0918799\pi\)
\(762\) −1.92221 18.8390i −0.0696345 0.682464i
\(763\) 0 0
\(764\) −1.92353 −0.0695910
\(765\) 14.3510 + 16.1344i 0.518861 + 0.583342i
\(766\) −12.2601 + 21.2351i −0.442975 + 0.767256i
\(767\) 26.1785 + 45.3425i 0.945251 + 1.63722i
\(768\) 3.11926 + 30.5708i 0.112557 + 1.10313i
\(769\) −1.48259 2.56793i −0.0534636 0.0926018i 0.838055 0.545586i \(-0.183693\pi\)
−0.891519 + 0.452984i \(0.850359\pi\)
\(770\) 0 0
\(771\) −6.33379 2.84307i −0.228106 0.102391i
\(772\) 9.27067 0.333659
\(773\) 9.63939 16.6959i 0.346705 0.600510i −0.638957 0.769242i \(-0.720634\pi\)
0.985662 + 0.168732i \(0.0539673\pi\)
\(774\) −11.2156 + 33.8177i −0.403138 + 1.21555i
\(775\) −12.4496 21.5633i −0.447203 0.774578i
\(776\) 3.21683 5.57171i 0.115477 0.200013i
\(777\) 0 0
\(778\) −5.19028 8.98983i −0.186080 0.322301i
\(779\) −2.35305 + 4.07560i −0.0843068 + 0.146024i
\(780\) 0.744561 + 7.29719i 0.0266596 + 0.261281i
\(781\) 1.26509 + 2.19120i 0.0452685 + 0.0784074i
\(782\) −15.9616 27.6462i −0.570784 0.988627i
\(783\) 27.7829 + 6.17058i 0.992878 + 0.220518i
\(784\) 0 0
\(785\) 5.35098 9.26818i 0.190985 0.330795i
\(786\) 17.8145 + 7.99647i 0.635423 + 0.285225i
\(787\) 13.6453 0.486402 0.243201 0.969976i \(-0.421803\pi\)
0.243201 + 0.969976i \(0.421803\pi\)
\(788\) −16.6947 −0.594724
\(789\) 24.8390 17.9316i 0.884292 0.638380i
\(790\) 1.07598 1.86364i 0.0382815 0.0663055i
\(791\) 0 0
\(792\) −2.21565 2.49100i −0.0787297 0.0885137i
\(793\) 29.2472 + 50.6577i 1.03860 + 1.79891i
\(794\) −10.9518 18.9691i −0.388665 0.673187i
\(795\) −9.22795 + 6.66177i −0.327282 + 0.236268i
\(796\) −3.74427 + 6.48527i −0.132712 + 0.229864i
\(797\) 11.4792 + 19.8826i 0.406616 + 0.704279i 0.994508 0.104660i \(-0.0333755\pi\)
−0.587892 + 0.808939i \(0.700042\pi\)
\(798\) 0 0
\(799\) −28.3461 + 49.0969i −1.00281 + 1.73692i
\(800\) 9.63162 + 16.6824i 0.340529 + 0.589814i
\(801\) 1.68208 + 1.89112i 0.0594334 + 0.0668194i
\(802\) 7.13045 12.3503i 0.251785 0.436104i
\(803\) −2.62482 −0.0926279
\(804\) −1.85378 18.1683i −0.0653779 0.640747i
\(805\) 0 0
\(806\) 25.9134 + 44.8834i 0.912761 + 1.58095i
\(807\) 22.4814 + 10.0913i 0.791384 + 0.355231i
\(808\) 9.05326 + 15.6807i 0.318492 + 0.551645i
\(809\) −19.7291 + 34.1718i −0.693639 + 1.20142i 0.276998 + 0.960870i \(0.410660\pi\)
−0.970637 + 0.240548i \(0.922673\pi\)
\(810\) −1.69318 + 14.4216i −0.0594922 + 0.506724i
\(811\) −0.496374 −0.0174300 −0.00871502 0.999962i \(-0.502774\pi\)
−0.00871502 + 0.999962i \(0.502774\pi\)
\(812\) 0 0
\(813\) −7.58169 + 5.47331i −0.265902 + 0.191957i
\(814\) 3.49381 6.05146i 0.122458 0.212103i
\(815\) 1.58168 0.0554039
\(816\) −59.7588 26.8242i −2.09198 0.939033i
\(817\) −31.1733 −1.09062
\(818\) −11.5790 −0.404850
\(819\) 0 0
\(820\) 0.889960 0.0310788
\(821\) 47.1038 1.64393 0.821967 0.569534i \(-0.192876\pi\)
0.821967 + 0.569534i \(0.192876\pi\)
\(822\) −33.4959 + 24.1810i −1.16830 + 0.843411i
\(823\) −2.19777 −0.0766094 −0.0383047 0.999266i \(-0.512196\pi\)
−0.0383047 + 0.999266i \(0.512196\pi\)
\(824\) 11.0046 19.0605i 0.383364 0.664005i
\(825\) −3.81077 1.71055i −0.132674 0.0595538i
\(826\) 0 0
\(827\) −55.3360 −1.92422 −0.962110 0.272661i \(-0.912096\pi\)
−0.962110 + 0.272661i \(0.912096\pi\)
\(828\) 2.07901 6.26870i 0.0722507 0.217852i
\(829\) 10.1603 17.5982i 0.352882 0.611209i −0.633871 0.773439i \(-0.718535\pi\)
0.986753 + 0.162229i \(0.0518684\pi\)
\(830\) 4.58520 + 7.94181i 0.159155 + 0.275664i
\(831\) 10.7660 7.77210i 0.373468 0.269611i
\(832\) 4.98867 + 8.64062i 0.172951 + 0.299560i
\(833\) 0 0
\(834\) −21.0165 + 15.1721i −0.727742 + 0.525365i
\(835\) −3.70472 −0.128207
\(836\) −1.16639 + 2.02024i −0.0403403 + 0.0698715i
\(837\) 9.48005 + 30.1075i 0.327679 + 1.04067i
\(838\) −8.77400 15.1970i −0.303093 0.524972i
\(839\) −12.2760 + 21.2626i −0.423813 + 0.734066i −0.996309 0.0858417i \(-0.972642\pi\)
0.572496 + 0.819908i \(0.305975\pi\)
\(840\) 0 0
\(841\) −0.499311 0.864833i −0.0172176 0.0298218i
\(842\) 2.66504 4.61598i 0.0918432 0.159077i
\(843\) 35.8104 + 16.0743i 1.23337 + 0.553629i
\(844\) −4.98693 8.63762i −0.171657 0.297319i
\(845\) 5.78949 + 10.0277i 0.199165 + 0.344963i
\(846\) −37.3377 + 7.69959i −1.28370 + 0.264717i
\(847\) 0 0
\(848\) 17.2625 29.8996i 0.592798 1.02676i
\(849\) −5.59957 54.8795i −0.192177 1.88346i
\(850\) −52.8235 −1.81183
\(851\) −17.3090 −0.593346
\(852\) 0.671947 + 6.58552i 0.0230205 + 0.225616i
\(853\) −26.7708 + 46.3684i −0.916614 + 1.58762i −0.112093 + 0.993698i \(0.535756\pi\)
−0.804521 + 0.593925i \(0.797578\pi\)
\(854\) 0 0
\(855\) −12.4429 + 2.56591i −0.425539 + 0.0877524i
\(856\) 3.58719 + 6.21320i 0.122608 + 0.212363i
\(857\) −27.0777 46.8999i −0.924955 1.60207i −0.791633 0.610996i \(-0.790769\pi\)
−0.133322 0.991073i \(-0.542564\pi\)
\(858\) 7.93199 + 3.56046i 0.270794 + 0.121552i
\(859\) 0.896461 1.55272i 0.0305869 0.0529780i −0.850327 0.526255i \(-0.823596\pi\)
0.880914 + 0.473277i \(0.156929\pi\)
\(860\) 2.94756 + 5.10532i 0.100511 + 0.174090i
\(861\) 0 0
\(862\) 27.0858 46.9140i 0.922547 1.59790i
\(863\) 16.2854 + 28.2072i 0.554363 + 0.960185i 0.997953 + 0.0639549i \(0.0203714\pi\)
−0.443590 + 0.896230i \(0.646295\pi\)
\(864\) −7.33423 23.2926i −0.249516 0.792430i
\(865\) 7.64833 13.2473i 0.260051 0.450421i
\(866\) −12.7277 −0.432506
\(867\) 56.8662 41.0524i 1.93128 1.39421i
\(868\) 0 0
\(869\) −0.392378 0.679618i −0.0133105 0.0230545i
\(870\) 12.4099 8.95886i 0.420735 0.303734i
\(871\) −29.7770 51.5753i −1.00896 1.74756i
\(872\) 12.1483 21.0415i 0.411394 0.712556i
\(873\) −3.21683 + 9.69947i −0.108873 + 0.328277i
\(874\) 18.7824 0.635324
\(875\) 0 0
\(876\) −6.26509 2.81223i −0.211678 0.0950166i
\(877\) 18.3647 31.8085i 0.620131 1.07410i −0.369330 0.929298i \(-0.620413\pi\)
0.989461 0.144800i \(-0.0462538\pi\)
\(878\) −3.89095 −0.131313
\(879\) 38.6105 27.8734i 1.30230 0.940145i
\(880\) −2.78567 −0.0939049
\(881\) −25.3721 −0.854807 −0.427403 0.904061i \(-0.640572\pi\)
−0.427403 + 0.904061i \(0.640572\pi\)
\(882\) 0 0
\(883\) −16.9381 −0.570012 −0.285006 0.958526i \(-0.591996\pi\)
−0.285006 + 0.958526i \(0.591996\pi\)
\(884\) 33.8268 1.13772
\(885\) 15.6453 + 7.02278i 0.525913 + 0.236068i
\(886\) −63.4807 −2.13267
\(887\) −24.0069 + 41.5811i −0.806071 + 1.39616i 0.109494 + 0.993987i \(0.465077\pi\)
−0.915566 + 0.402169i \(0.868256\pi\)
\(888\) −18.5342 + 13.3801i −0.621968 + 0.449006i
\(889\) 0 0
\(890\) 1.36115 0.0456260
\(891\) 4.24583 + 3.16431i 0.142241 + 0.106008i
\(892\) 9.22279 15.9743i 0.308802 0.534860i
\(893\) −16.6778 28.8868i −0.558102 0.966661i
\(894\) −11.7253 5.26316i −0.392151 0.176026i
\(895\) 6.78159 + 11.7461i 0.226684 + 0.392627i
\(896\) 0 0
\(897\) −2.18615 21.4258i −0.0729936 0.715385i
\(898\) 10.5426 0.351810
\(899\) 16.6357 28.8138i 0.554831 0.960995i
\(900\) −7.26310 8.16572i −0.242103 0.272191i
\(901\) 26.2433 + 45.4548i 0.874292 + 1.51432i
\(902\) 0.527445 0.913562i 0.0175620 0.0304183i
\(903\) 0 0
\(904\) −8.51918 14.7557i −0.283344 0.490766i
\(905\) 6.11677 10.5945i 0.203328 0.352175i
\(906\) 30.2030 21.8039i 1.00343 0.724385i
\(907\) 12.3887 + 21.4579i 0.411361 + 0.712499i 0.995039 0.0994869i \(-0.0317201\pi\)
−0.583678 + 0.811985i \(0.698387\pi\)
\(908\) 4.63486 + 8.02781i 0.153813 + 0.266412i
\(909\) −19.1138 21.4892i −0.633965 0.712751i
\(910\) 0 0
\(911\) −15.7916 + 27.3519i −0.523200 + 0.906209i 0.476435 + 0.879210i \(0.341929\pi\)
−0.999635 + 0.0269997i \(0.991405\pi\)
\(912\) 31.2479 22.5582i 1.03472 0.746977i
\(913\) 3.34419 0.110676
\(914\) −34.2843 −1.13402
\(915\) 17.4793 + 7.84601i 0.577849 + 0.259381i
\(916\) −6.69183 + 11.5906i −0.221104 + 0.382964i
\(917\) 0 0
\(918\) 65.3714 + 14.5190i 2.15758 + 0.479198i
\(919\) −0.796041 1.37878i −0.0262590 0.0454819i 0.852597 0.522569i \(-0.175026\pi\)
−0.878856 + 0.477087i \(0.841693\pi\)
\(920\) 2.22062 + 3.84623i 0.0732118 + 0.126807i
\(921\) 2.60515 + 25.5322i 0.0858426 + 0.841315i
\(922\) −19.1514 + 33.1712i −0.630718 + 1.09244i
\(923\) 10.7934 + 18.6947i 0.355268 + 0.615342i
\(924\) 0 0
\(925\) −14.3207 + 24.8042i −0.470863 + 0.815558i
\(926\) −23.4796 40.6678i −0.771587 1.33643i
\(927\) −11.0046 + 33.1814i −0.361439 + 1.08982i
\(928\) −12.8702 + 22.2918i −0.422484 + 0.731764i
\(929\) 27.0711 0.888175 0.444087 0.895983i \(-0.353528\pi\)
0.444087 + 0.895983i \(0.353528\pi\)
\(930\) 15.4869 + 6.95167i 0.507836 + 0.227954i
\(931\) 0 0
\(932\) −1.94939 3.37644i −0.0638543 0.110599i
\(933\) 5.10981 + 50.0795i 0.167288 + 1.63953i
\(934\) 17.1003 + 29.6186i 0.559540 + 0.969151i
\(935\) 2.11745 3.66754i 0.0692482 0.119941i
\(936\) −18.9032 21.2524i −0.617871 0.694657i
\(937\) 32.6624 1.06704 0.533518 0.845789i \(-0.320870\pi\)
0.533518 + 0.845789i \(0.320870\pi\)
\(938\) 0 0
\(939\) −4.30361 42.1782i −0.140443 1.37643i
\(940\) −3.15390 + 5.46272i −0.102869 + 0.178174i
\(941\) 4.72285 0.153961 0.0769803 0.997033i \(-0.475472\pi\)
0.0769803 + 0.997033i \(0.475472\pi\)
\(942\) −3.36887 33.0171i −0.109764 1.07576i
\(943\) −2.61307 −0.0850933
\(944\) −52.0220 −1.69317
\(945\) 0 0
\(946\) 6.98762 0.227187
\(947\) 56.7810 1.84514 0.922568 0.385835i \(-0.126087\pi\)
0.922568 + 0.385835i \(0.126087\pi\)
\(948\) −0.208409 2.04255i −0.00676882 0.0663389i
\(949\) −22.3942 −0.726945
\(950\) 15.5397 26.9156i 0.504175 0.873257i
\(951\) −1.29872 12.7284i −0.0421140 0.412745i
\(952\) 0 0
\(953\) −47.1693 −1.52796 −0.763982 0.645238i \(-0.776758\pi\)
−0.763982 + 0.645238i \(0.776758\pi\)
\(954\) −11.1106 + 33.5009i −0.359718 + 1.08463i
\(955\) −1.02728 + 1.77930i −0.0332419 + 0.0575766i
\(956\) 4.24426 + 7.35127i 0.137269 + 0.237757i
\(957\) −0.566569 5.55275i −0.0183146 0.179495i
\(958\) −8.14681 14.1107i −0.263211 0.455896i
\(959\) 0 0
\(960\) 2.98143 + 1.33829i 0.0962253 + 0.0431930i
\(961\) 5.90112 0.190359
\(962\) 29.8081 51.6291i 0.961052 1.66459i
\(963\) −7.57351 8.51470i −0.244053 0.274382i
\(964\) −4.68179 8.10910i −0.150790 0.261177i
\(965\) 4.95107 8.57550i 0.159380 0.276055i
\(966\) 0 0
\(967\) −23.6985 41.0469i −0.762091 1.31998i −0.941771 0.336255i \(-0.890840\pi\)
0.179680 0.983725i \(-0.442494\pi\)
\(968\) 10.0611 17.4264i 0.323377 0.560106i
\(969\) 5.94727 + 58.2872i 0.191054 + 1.87245i
\(970\) 2.74790 + 4.75950i 0.0882297 + 0.152818i
\(971\) −11.3736 19.6997i −0.364997 0.632193i 0.623779 0.781601i \(-0.285597\pi\)
−0.988776 + 0.149408i \(0.952263\pi\)
\(972\) 6.74399 + 12.1018i 0.216314 + 0.388164i
\(973\) 0 0
\(974\) 11.1106 19.2441i 0.356006 0.616620i
\(975\) −32.5123 14.5939i −1.04123 0.467379i
\(976\) −58.1202 −1.86038
\(977\) 35.6849 1.14166 0.570831 0.821068i \(-0.306621\pi\)
0.570831 + 0.821068i \(0.306621\pi\)
\(978\) 3.97701 2.87105i 0.127171 0.0918060i
\(979\) 0.248187 0.429872i 0.00793209 0.0137388i
\(980\) 0 0
\(981\) −12.1483 + 36.6300i −0.387866 + 1.16951i
\(982\) 13.0371 + 22.5809i 0.416029 + 0.720584i
\(983\) −12.0067 20.7962i −0.382954 0.663296i 0.608529 0.793532i \(-0.291760\pi\)
−0.991483 + 0.130236i \(0.958427\pi\)
\(984\) −2.79803 + 2.01993i −0.0891980 + 0.0643930i
\(985\) −8.91591 + 15.4428i −0.284085 + 0.492049i
\(986\) −35.2925 61.1284i −1.12394 1.94672i
\(987\) 0 0
\(988\) −9.95125 + 17.2361i −0.316591 + 0.548352i
\(989\) −8.65452 14.9901i −0.275198 0.476656i
\(990\) 2.78913 0.575159i 0.0886443 0.0182798i
\(991\) 22.2095 38.4679i 0.705507 1.22197i −0.261002 0.965338i \(-0.584053\pi\)
0.966508 0.256635i \(-0.0826139\pi\)
\(992\) −28.5485 −0.906416
\(993\) 3.52716 + 34.5685i 0.111931 + 1.09700i
\(994\) 0 0
\(995\) 3.99931 + 6.92701i 0.126787 + 0.219601i
\(996\) 7.98212 + 3.58296i 0.252923 + 0.113530i
\(997\) −4.52336 7.83470i −0.143256 0.248127i 0.785465 0.618906i \(-0.212424\pi\)
−0.928721 + 0.370779i \(0.879091\pi\)
\(998\) 4.13465 7.16142i 0.130880 0.226691i
\(999\) 24.5402 26.7601i 0.776417 0.846653i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.h.g.214.2 12
3.2 odd 2 1323.2.h.g.802.5 12
7.2 even 3 441.2.g.g.79.5 12
7.3 odd 6 441.2.f.g.295.5 yes 12
7.4 even 3 441.2.f.g.295.6 yes 12
7.5 odd 6 441.2.g.g.79.6 12
7.6 odd 2 inner 441.2.h.g.214.1 12
9.4 even 3 441.2.g.g.67.5 12
9.5 odd 6 1323.2.g.g.361.2 12
21.2 odd 6 1323.2.g.g.667.2 12
21.5 even 6 1323.2.g.g.667.1 12
21.11 odd 6 1323.2.f.g.883.1 12
21.17 even 6 1323.2.f.g.883.2 12
21.20 even 2 1323.2.h.g.802.6 12
63.4 even 3 441.2.f.g.148.6 yes 12
63.5 even 6 1323.2.h.g.226.6 12
63.11 odd 6 3969.2.a.bd.1.6 6
63.13 odd 6 441.2.g.g.67.6 12
63.23 odd 6 1323.2.h.g.226.5 12
63.25 even 3 3969.2.a.be.1.1 6
63.31 odd 6 441.2.f.g.148.5 12
63.32 odd 6 1323.2.f.g.442.1 12
63.38 even 6 3969.2.a.bd.1.5 6
63.40 odd 6 inner 441.2.h.g.373.1 12
63.41 even 6 1323.2.g.g.361.1 12
63.52 odd 6 3969.2.a.be.1.2 6
63.58 even 3 inner 441.2.h.g.373.2 12
63.59 even 6 1323.2.f.g.442.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.f.g.148.5 12 63.31 odd 6
441.2.f.g.148.6 yes 12 63.4 even 3
441.2.f.g.295.5 yes 12 7.3 odd 6
441.2.f.g.295.6 yes 12 7.4 even 3
441.2.g.g.67.5 12 9.4 even 3
441.2.g.g.67.6 12 63.13 odd 6
441.2.g.g.79.5 12 7.2 even 3
441.2.g.g.79.6 12 7.5 odd 6
441.2.h.g.214.1 12 7.6 odd 2 inner
441.2.h.g.214.2 12 1.1 even 1 trivial
441.2.h.g.373.1 12 63.40 odd 6 inner
441.2.h.g.373.2 12 63.58 even 3 inner
1323.2.f.g.442.1 12 63.32 odd 6
1323.2.f.g.442.2 12 63.59 even 6
1323.2.f.g.883.1 12 21.11 odd 6
1323.2.f.g.883.2 12 21.17 even 6
1323.2.g.g.361.1 12 63.41 even 6
1323.2.g.g.361.2 12 9.5 odd 6
1323.2.g.g.667.1 12 21.5 even 6
1323.2.g.g.667.2 12 21.2 odd 6
1323.2.h.g.226.5 12 63.23 odd 6
1323.2.h.g.226.6 12 63.5 even 6
1323.2.h.g.802.5 12 3.2 odd 2
1323.2.h.g.802.6 12 21.20 even 2
3969.2.a.bd.1.5 6 63.38 even 6
3969.2.a.bd.1.6 6 63.11 odd 6
3969.2.a.be.1.1 6 63.25 even 3
3969.2.a.be.1.2 6 63.52 odd 6