Properties

Label 441.2.f.g.295.6
Level $441$
Weight $2$
Character 441.295
Analytic conductor $3.521$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,2,Mod(148,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.148");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 37x^{8} - 78x^{6} + 123x^{4} - 36x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 295.6
Root \(-0.474636 - 0.274031i\) of defining polynomial
Character \(\chi\) \(=\) 441.295
Dual form 441.2.f.g.148.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.849814 - 1.47192i) q^{2} +(1.40434 - 1.01381i) q^{3} +(-0.444368 - 0.769668i) q^{4} +(0.474636 + 0.822093i) q^{5} +(-0.298820 - 2.92864i) q^{6} +1.88874 q^{8} +(0.944368 - 2.84748i) q^{9} +O(q^{10})\) \(q+(0.849814 - 1.47192i) q^{2} +(1.40434 - 1.01381i) q^{3} +(-0.444368 - 0.769668i) q^{4} +(0.474636 + 0.822093i) q^{5} +(-0.298820 - 2.92864i) q^{6} +1.88874 q^{8} +(0.944368 - 2.84748i) q^{9} +1.61341 q^{10} +(0.294182 - 0.509538i) q^{11} +(-1.40434 - 0.630373i) q^{12} +(2.50987 + 4.34722i) q^{13} +(1.50000 + 0.673310i) q^{15} +(2.49381 - 4.31941i) q^{16} -7.58242 q^{17} +(-3.38874 - 3.80987i) q^{18} -4.46122 q^{19} +(0.421826 - 0.730623i) q^{20} +(-0.500000 - 0.866025i) q^{22} +(-1.23855 - 2.14523i) q^{23} +(2.65244 - 1.91482i) q^{24} +(2.04944 - 3.54974i) q^{25} +8.53169 q^{26} +(-1.56060 - 4.95626i) q^{27} +(-2.73855 + 4.74331i) q^{29} +(2.26578 - 1.63569i) q^{30} +(3.03731 + 5.26078i) q^{31} +(-2.34981 - 4.07000i) q^{32} +(-0.103443 - 1.01381i) q^{33} +(-6.44364 + 11.1607i) q^{34} +(-2.61126 + 0.538481i) q^{36} -6.98762 q^{37} +(-3.79121 + 6.56657i) q^{38} +(7.93199 + 3.56046i) q^{39} +(0.896461 + 1.55272i) q^{40} +(0.527445 + 0.913562i) q^{41} +(-3.49381 + 6.05146i) q^{43} -0.522900 q^{44} +(2.78913 - 0.575159i) q^{45} -4.21015 q^{46} +(3.73840 - 6.47510i) q^{47} +(-0.876899 - 8.59419i) q^{48} +(-3.48329 - 6.03323i) q^{50} +(-10.6483 + 7.68715i) q^{51} +(2.23061 - 3.86353i) q^{52} +6.92216 q^{53} +(-8.62145 - 1.91482i) q^{54} +0.558517 q^{55} +(-6.26509 + 4.52284i) q^{57} +(4.65452 + 8.06186i) q^{58} +(-5.21512 - 9.03284i) q^{59} +(-0.148327 - 1.45370i) q^{60} +(-5.82644 + 10.0917i) q^{61} +10.3246 q^{62} +1.98762 q^{64} +(-2.38255 + 4.12669i) q^{65} +(-1.58016 - 0.709292i) q^{66} +(5.93199 + 10.2745i) q^{67} +(3.36938 + 5.83594i) q^{68} +(-3.91421 - 1.75699i) q^{69} +4.30037 q^{71} +(1.78366 - 5.37815i) q^{72} +4.46122 q^{73} +(-5.93818 + 10.2852i) q^{74} +(-0.720646 - 7.06281i) q^{75} +(1.98242 + 3.43366i) q^{76} +(11.9814 - 8.64953i) q^{78} +(0.666896 - 1.15510i) q^{79} +4.73460 q^{80} +(-7.21634 - 5.37815i) q^{81} +1.79292 q^{82} +(2.84194 - 4.92238i) q^{83} +(-3.59888 - 6.23345i) q^{85} +(5.93818 + 10.2852i) q^{86} +(0.962957 + 9.43762i) q^{87} +(0.555632 - 0.962383i) q^{88} +0.843651 q^{89} +(1.52365 - 4.59415i) q^{90} +(-1.10074 + 1.90654i) q^{92} +(9.59888 + 4.30868i) q^{93} +(-6.35389 - 11.0053i) q^{94} +(-2.11745 - 3.66754i) q^{95} +(-7.42616 - 3.33341i) q^{96} +(1.70317 - 2.94997i) q^{97} +(-1.17309 - 1.31887i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} - 6 q^{4} + 24 q^{8} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 2 q^{2} - 6 q^{4} + 24 q^{8} + 12 q^{9} - 8 q^{11} + 18 q^{15} - 6 q^{16} - 42 q^{18} - 6 q^{22} - 4 q^{23} - 12 q^{25} - 22 q^{29} - 48 q^{30} - 16 q^{32} - 30 q^{36} - 12 q^{37} + 24 q^{39} - 6 q^{43} - 28 q^{44} + 24 q^{46} - 56 q^{50} - 18 q^{51} + 56 q^{53} - 6 q^{57} - 18 q^{58} + 108 q^{60} - 48 q^{64} + 6 q^{65} + 76 q^{71} + 60 q^{72} - 36 q^{74} + 36 q^{78} + 6 q^{79} - 48 q^{81} + 30 q^{85} + 36 q^{86} + 6 q^{88} - 62 q^{92} + 42 q^{93} - 60 q^{95} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.849814 1.47192i 0.600909 1.04081i −0.391774 0.920061i \(-0.628139\pi\)
0.992684 0.120744i \(-0.0385280\pi\)
\(3\) 1.40434 1.01381i 0.810799 0.585325i
\(4\) −0.444368 0.769668i −0.222184 0.384834i
\(5\) 0.474636 + 0.822093i 0.212263 + 0.367651i 0.952423 0.304781i \(-0.0985832\pi\)
−0.740159 + 0.672432i \(0.765250\pi\)
\(6\) −0.298820 2.92864i −0.121993 1.19561i
\(7\) 0 0
\(8\) 1.88874 0.667769
\(9\) 0.944368 2.84748i 0.314789 0.949162i
\(10\) 1.61341 0.510204
\(11\) 0.294182 0.509538i 0.0886992 0.153632i −0.818262 0.574845i \(-0.805062\pi\)
0.906962 + 0.421213i \(0.138396\pi\)
\(12\) −1.40434 0.630373i −0.405399 0.181973i
\(13\) 2.50987 + 4.34722i 0.696112 + 1.20570i 0.969804 + 0.243885i \(0.0784218\pi\)
−0.273692 + 0.961817i \(0.588245\pi\)
\(14\) 0 0
\(15\) 1.50000 + 0.673310i 0.387298 + 0.173848i
\(16\) 2.49381 4.31941i 0.623453 1.07985i
\(17\) −7.58242 −1.83901 −0.919503 0.393083i \(-0.871409\pi\)
−0.919503 + 0.393083i \(0.871409\pi\)
\(18\) −3.38874 3.80987i −0.798733 0.897994i
\(19\) −4.46122 −1.02347 −0.511737 0.859142i \(-0.670998\pi\)
−0.511737 + 0.859142i \(0.670998\pi\)
\(20\) 0.421826 0.730623i 0.0943231 0.163372i
\(21\) 0 0
\(22\) −0.500000 0.866025i −0.106600 0.184637i
\(23\) −1.23855 2.14523i −0.258256 0.447312i 0.707519 0.706694i \(-0.249814\pi\)
−0.965775 + 0.259382i \(0.916481\pi\)
\(24\) 2.65244 1.91482i 0.541426 0.390862i
\(25\) 2.04944 3.54974i 0.409888 0.709948i
\(26\) 8.53169 1.67320
\(27\) −1.56060 4.95626i −0.300337 0.953833i
\(28\) 0 0
\(29\) −2.73855 + 4.74331i −0.508536 + 0.880810i 0.491415 + 0.870925i \(0.336480\pi\)
−0.999951 + 0.00988468i \(0.996854\pi\)
\(30\) 2.26578 1.63569i 0.413673 0.298635i
\(31\) 3.03731 + 5.26078i 0.545518 + 0.944865i 0.998574 + 0.0533826i \(0.0170003\pi\)
−0.453056 + 0.891482i \(0.649666\pi\)
\(32\) −2.34981 4.07000i −0.415392 0.719481i
\(33\) −0.103443 1.01381i −0.0180072 0.176482i
\(34\) −6.44364 + 11.1607i −1.10508 + 1.91405i
\(35\) 0 0
\(36\) −2.61126 + 0.538481i −0.435211 + 0.0897469i
\(37\) −6.98762 −1.14876 −0.574379 0.818590i \(-0.694756\pi\)
−0.574379 + 0.818590i \(0.694756\pi\)
\(38\) −3.79121 + 6.56657i −0.615015 + 1.06524i
\(39\) 7.93199 + 3.56046i 1.27013 + 0.570130i
\(40\) 0.896461 + 1.55272i 0.141743 + 0.245506i
\(41\) 0.527445 + 0.913562i 0.0823731 + 0.142674i 0.904269 0.426964i \(-0.140417\pi\)
−0.821896 + 0.569638i \(0.807083\pi\)
\(42\) 0 0
\(43\) −3.49381 + 6.05146i −0.532801 + 0.922838i 0.466465 + 0.884540i \(0.345527\pi\)
−0.999266 + 0.0382990i \(0.987806\pi\)
\(44\) −0.522900 −0.0788302
\(45\) 2.78913 0.575159i 0.415779 0.0857397i
\(46\) −4.21015 −0.620753
\(47\) 3.73840 6.47510i 0.545301 0.944490i −0.453286 0.891365i \(-0.649749\pi\)
0.998588 0.0531249i \(-0.0169181\pi\)
\(48\) −0.876899 8.59419i −0.126569 1.24046i
\(49\) 0 0
\(50\) −3.48329 6.03323i −0.492612 0.853228i
\(51\) −10.6483 + 7.68715i −1.49106 + 1.07642i
\(52\) 2.23061 3.86353i 0.309330 0.535775i
\(53\) 6.92216 0.950831 0.475416 0.879761i \(-0.342298\pi\)
0.475416 + 0.879761i \(0.342298\pi\)
\(54\) −8.62145 1.91482i −1.17323 0.260575i
\(55\) 0.558517 0.0753104
\(56\) 0 0
\(57\) −6.26509 + 4.52284i −0.829832 + 0.599065i
\(58\) 4.65452 + 8.06186i 0.611168 + 1.05857i
\(59\) −5.21512 9.03284i −0.678950 1.17598i −0.975297 0.220896i \(-0.929102\pi\)
0.296347 0.955080i \(-0.404231\pi\)
\(60\) −0.148327 1.45370i −0.0191489 0.187672i
\(61\) −5.82644 + 10.0917i −0.745999 + 1.29211i 0.203727 + 0.979028i \(0.434695\pi\)
−0.949726 + 0.313081i \(0.898639\pi\)
\(62\) 10.3246 1.31123
\(63\) 0 0
\(64\) 1.98762 0.248453
\(65\) −2.38255 + 4.12669i −0.295518 + 0.511853i
\(66\) −1.58016 0.709292i −0.194504 0.0873078i
\(67\) 5.93199 + 10.2745i 0.724708 + 1.25523i 0.959094 + 0.283087i \(0.0913585\pi\)
−0.234387 + 0.972143i \(0.575308\pi\)
\(68\) 3.36938 + 5.83594i 0.408598 + 0.707712i
\(69\) −3.91421 1.75699i −0.471216 0.211516i
\(70\) 0 0
\(71\) 4.30037 0.510360 0.255180 0.966894i \(-0.417865\pi\)
0.255180 + 0.966894i \(0.417865\pi\)
\(72\) 1.78366 5.37815i 0.210207 0.633821i
\(73\) 4.46122 0.522146 0.261073 0.965319i \(-0.415924\pi\)
0.261073 + 0.965319i \(0.415924\pi\)
\(74\) −5.93818 + 10.2852i −0.690299 + 1.19563i
\(75\) −0.720646 7.06281i −0.0832130 0.815543i
\(76\) 1.98242 + 3.43366i 0.227400 + 0.393868i
\(77\) 0 0
\(78\) 11.9814 8.64953i 1.35663 0.979367i
\(79\) 0.666896 1.15510i 0.0750317 0.129959i −0.826068 0.563570i \(-0.809428\pi\)
0.901100 + 0.433611i \(0.142761\pi\)
\(80\) 4.73460 0.529345
\(81\) −7.21634 5.37815i −0.801815 0.597572i
\(82\) 1.79292 0.197995
\(83\) 2.84194 4.92238i 0.311943 0.540301i −0.666840 0.745201i \(-0.732353\pi\)
0.978783 + 0.204900i \(0.0656868\pi\)
\(84\) 0 0
\(85\) −3.59888 6.23345i −0.390354 0.676113i
\(86\) 5.93818 + 10.2852i 0.640330 + 1.10908i
\(87\) 0.962957 + 9.43762i 0.103240 + 1.01182i
\(88\) 0.555632 0.962383i 0.0592306 0.102590i
\(89\) 0.843651 0.0894269 0.0447134 0.999000i \(-0.485763\pi\)
0.0447134 + 0.999000i \(0.485763\pi\)
\(90\) 1.52365 4.59415i 0.160607 0.484266i
\(91\) 0 0
\(92\) −1.10074 + 1.90654i −0.114760 + 0.198771i
\(93\) 9.59888 + 4.30868i 0.995358 + 0.446790i
\(94\) −6.35389 11.0053i −0.655353 1.13511i
\(95\) −2.11745 3.66754i −0.217246 0.376281i
\(96\) −7.42616 3.33341i −0.757930 0.340215i
\(97\) 1.70317 2.94997i 0.172930 0.299524i −0.766513 0.642229i \(-0.778010\pi\)
0.939443 + 0.342705i \(0.111343\pi\)
\(98\) 0 0
\(99\) −1.17309 1.31887i −0.117900 0.132551i
\(100\) −3.64283 −0.364283
\(101\) 4.79329 8.30222i 0.476950 0.826102i −0.522701 0.852516i \(-0.675076\pi\)
0.999651 + 0.0264143i \(0.00840890\pi\)
\(102\) 2.26578 + 22.2061i 0.224346 + 2.19874i
\(103\) 5.82644 + 10.0917i 0.574096 + 0.994364i 0.996139 + 0.0877882i \(0.0279799\pi\)
−0.422043 + 0.906576i \(0.638687\pi\)
\(104\) 4.74048 + 8.21075i 0.464842 + 0.805130i
\(105\) 0 0
\(106\) 5.88255 10.1889i 0.571363 0.989630i
\(107\) −3.79851 −0.367216 −0.183608 0.983000i \(-0.558778\pi\)
−0.183608 + 0.983000i \(0.558778\pi\)
\(108\) −3.12120 + 3.40355i −0.300337 + 0.327506i
\(109\) −12.8640 −1.23215 −0.616073 0.787689i \(-0.711277\pi\)
−0.616073 + 0.787689i \(0.711277\pi\)
\(110\) 0.474636 0.822093i 0.0452547 0.0783835i
\(111\) −9.81303 + 7.08414i −0.931411 + 0.672397i
\(112\) 0 0
\(113\) −4.51052 7.81245i −0.424314 0.734934i 0.572042 0.820224i \(-0.306151\pi\)
−0.996356 + 0.0852908i \(0.972818\pi\)
\(114\) 1.33310 + 13.0653i 0.124857 + 1.22368i
\(115\) 1.17572 2.03641i 0.109636 0.189896i
\(116\) 4.86769 0.451954
\(117\) 14.7489 3.04144i 1.36353 0.281181i
\(118\) −17.7275 −1.63195
\(119\) 0 0
\(120\) 2.83310 + 1.27171i 0.258626 + 0.116090i
\(121\) 5.32691 + 9.22649i 0.484265 + 0.838771i
\(122\) 9.90278 + 17.1521i 0.896556 + 1.55288i
\(123\) 1.66690 + 0.748226i 0.150299 + 0.0674652i
\(124\) 2.69937 4.67545i 0.242411 0.419867i
\(125\) 8.63731 0.772544
\(126\) 0 0
\(127\) 6.43268 0.570808 0.285404 0.958407i \(-0.407872\pi\)
0.285404 + 0.958407i \(0.407872\pi\)
\(128\) 6.38874 11.0656i 0.564690 0.978071i
\(129\) 1.22853 + 12.0404i 0.108166 + 1.06010i
\(130\) 4.04944 + 7.01384i 0.355160 + 0.615154i
\(131\) −3.31657 5.74447i −0.289770 0.501897i 0.683984 0.729497i \(-0.260246\pi\)
−0.973755 + 0.227600i \(0.926912\pi\)
\(132\) −0.734332 + 0.530123i −0.0639154 + 0.0461413i
\(133\) 0 0
\(134\) 20.1643 1.74193
\(135\) 3.33379 3.63537i 0.286927 0.312883i
\(136\) −14.3212 −1.22803
\(137\) −7.01671 + 12.1533i −0.599478 + 1.03833i 0.393420 + 0.919359i \(0.371292\pi\)
−0.992898 + 0.118968i \(0.962042\pi\)
\(138\) −5.91250 + 4.26830i −0.503305 + 0.363342i
\(139\) −4.40254 7.62541i −0.373418 0.646779i 0.616671 0.787221i \(-0.288481\pi\)
−0.990089 + 0.140442i \(0.955148\pi\)
\(140\) 0 0
\(141\) −1.31453 12.8833i −0.110704 1.08497i
\(142\) 3.65452 6.32981i 0.306680 0.531186i
\(143\) 2.95343 0.246978
\(144\) −9.94437 11.1802i −0.828697 0.931683i
\(145\) −5.19925 −0.431774
\(146\) 3.79121 6.56657i 0.313763 0.543453i
\(147\) 0 0
\(148\) 3.10507 + 5.37815i 0.255236 + 0.442081i
\(149\) 2.18292 + 3.78092i 0.178832 + 0.309745i 0.941481 0.337067i \(-0.109435\pi\)
−0.762649 + 0.646813i \(0.776102\pi\)
\(150\) −11.0083 4.94134i −0.898825 0.403459i
\(151\) 6.32691 10.9585i 0.514877 0.891793i −0.484974 0.874529i \(-0.661171\pi\)
0.999851 0.0172645i \(-0.00549573\pi\)
\(152\) −8.42607 −0.683444
\(153\) −7.16059 + 21.5908i −0.578899 + 1.74551i
\(154\) 0 0
\(155\) −2.88323 + 4.99391i −0.231587 + 0.401120i
\(156\) −0.784350 7.68715i −0.0627983 0.615465i
\(157\) −5.63694 9.76347i −0.449877 0.779210i 0.548501 0.836150i \(-0.315199\pi\)
−0.998378 + 0.0569405i \(0.981865\pi\)
\(158\) −1.13348 1.96324i −0.0901745 0.156187i
\(159\) 9.72109 7.01777i 0.770933 0.556545i
\(160\) 2.23061 3.86353i 0.176345 0.305439i
\(161\) 0 0
\(162\) −14.0488 + 6.05146i −1.10377 + 0.475447i
\(163\) −1.66621 −0.130507 −0.0652537 0.997869i \(-0.520786\pi\)
−0.0652537 + 0.997869i \(0.520786\pi\)
\(164\) 0.468760 0.811916i 0.0366040 0.0634000i
\(165\) 0.784350 0.566231i 0.0610616 0.0440811i
\(166\) −4.83024 8.36622i −0.374899 0.649344i
\(167\) −1.95135 3.37984i −0.151000 0.261540i 0.780595 0.625037i \(-0.214916\pi\)
−0.931595 + 0.363497i \(0.881583\pi\)
\(168\) 0 0
\(169\) −6.09888 + 10.5636i −0.469145 + 0.812583i
\(170\) −12.2335 −0.938269
\(171\) −4.21303 + 12.7033i −0.322179 + 0.971442i
\(172\) 6.21015 0.473519
\(173\) −8.05705 + 13.9552i −0.612566 + 1.06100i 0.378240 + 0.925708i \(0.376529\pi\)
−0.990806 + 0.135288i \(0.956804\pi\)
\(174\) 14.7098 + 6.60282i 1.11514 + 0.500559i
\(175\) 0 0
\(176\) −1.46727 2.54138i −0.110599 0.191564i
\(177\) −16.4814 7.39808i −1.23882 0.556074i
\(178\) 0.716947 1.24179i 0.0537374 0.0930760i
\(179\) 14.2880 1.06793 0.533967 0.845505i \(-0.320701\pi\)
0.533967 + 0.845505i \(0.320701\pi\)
\(180\) −1.68208 1.89112i −0.125375 0.140956i
\(181\) 12.8873 0.957905 0.478952 0.877841i \(-0.341017\pi\)
0.478952 + 0.877841i \(0.341017\pi\)
\(182\) 0 0
\(183\) 2.04875 + 20.0791i 0.151448 + 1.48429i
\(184\) −2.33929 4.05178i −0.172455 0.298701i
\(185\) −3.31657 5.74447i −0.243839 0.422342i
\(186\) 14.4993 10.4672i 1.06314 0.767494i
\(187\) −2.23061 + 3.86353i −0.163118 + 0.282529i
\(188\) −6.64490 −0.484629
\(189\) 0 0
\(190\) −7.19777 −0.522181
\(191\) 1.08217 1.87438i 0.0783034 0.135625i −0.824215 0.566277i \(-0.808383\pi\)
0.902518 + 0.430652i \(0.141716\pi\)
\(192\) 2.79130 2.01507i 0.201445 0.145425i
\(193\) −5.21565 9.03377i −0.375431 0.650265i 0.614961 0.788558i \(-0.289172\pi\)
−0.990391 + 0.138293i \(0.955839\pi\)
\(194\) −2.89475 5.01385i −0.207831 0.359973i
\(195\) 0.837775 + 8.21075i 0.0599943 + 0.587984i
\(196\) 0 0
\(197\) −18.7848 −1.33836 −0.669179 0.743101i \(-0.733354\pi\)
−0.669179 + 0.743101i \(0.733354\pi\)
\(198\) −2.93818 + 0.605896i −0.208807 + 0.0430591i
\(199\) 8.42607 0.597308 0.298654 0.954361i \(-0.403462\pi\)
0.298654 + 0.954361i \(0.403462\pi\)
\(200\) 3.87085 6.70452i 0.273711 0.474081i
\(201\) 18.7470 + 8.41502i 1.32231 + 0.593550i
\(202\) −8.14681 14.1107i −0.573208 0.992825i
\(203\) 0 0
\(204\) 10.6483 + 4.77975i 0.745532 + 0.334650i
\(205\) −0.500689 + 0.867218i −0.0349696 + 0.0605692i
\(206\) 19.8056 1.37992
\(207\) −7.27816 + 1.50086i −0.505867 + 0.104317i
\(208\) 25.0365 1.73597
\(209\) −1.31241 + 2.27316i −0.0907814 + 0.157238i
\(210\) 0 0
\(211\) −5.61126 9.71899i −0.386295 0.669083i 0.605653 0.795729i \(-0.292912\pi\)
−0.991948 + 0.126646i \(0.959579\pi\)
\(212\) −3.07598 5.32776i −0.211259 0.365912i
\(213\) 6.03920 4.35977i 0.413799 0.298727i
\(214\) −3.22803 + 5.59111i −0.220664 + 0.382200i
\(215\) −6.63315 −0.452377
\(216\) −2.94756 9.36107i −0.200556 0.636940i
\(217\) 0 0
\(218\) −10.9320 + 18.9348i −0.740408 + 1.28242i
\(219\) 6.26509 4.52284i 0.423356 0.305625i
\(220\) −0.248187 0.429872i −0.0167328 0.0289820i
\(221\) −19.0309 32.9624i −1.28016 2.21729i
\(222\) 2.08804 + 20.4642i 0.140140 + 1.37347i
\(223\) 10.3774 17.9742i 0.694923 1.20364i −0.275283 0.961363i \(-0.588772\pi\)
0.970206 0.242279i \(-0.0778951\pi\)
\(224\) 0 0
\(225\) −8.17240 9.18801i −0.544826 0.612534i
\(226\) −15.3324 −1.01990
\(227\) 5.21512 9.03284i 0.346139 0.599531i −0.639421 0.768857i \(-0.720826\pi\)
0.985560 + 0.169326i \(0.0541591\pi\)
\(228\) 6.26509 + 2.81223i 0.414916 + 0.186245i
\(229\) −7.52961 13.0417i −0.497570 0.861817i 0.502426 0.864620i \(-0.332441\pi\)
−0.999996 + 0.00280316i \(0.999108\pi\)
\(230\) −1.99829 3.46113i −0.131763 0.228220i
\(231\) 0 0
\(232\) −5.17240 + 8.95886i −0.339585 + 0.588178i
\(233\) 4.38688 0.287394 0.143697 0.989622i \(-0.454101\pi\)
0.143697 + 0.989622i \(0.454101\pi\)
\(234\) 8.05705 24.2939i 0.526706 1.58814i
\(235\) 7.09751 0.462990
\(236\) −4.63486 + 8.02781i −0.301704 + 0.522566i
\(237\) −0.234501 2.29826i −0.0152325 0.149288i
\(238\) 0 0
\(239\) 4.77561 + 8.27160i 0.308909 + 0.535046i 0.978124 0.208023i \(-0.0667029\pi\)
−0.669215 + 0.743069i \(0.733370\pi\)
\(240\) 6.64902 4.80000i 0.429192 0.309839i
\(241\) −5.26792 + 9.12431i −0.339337 + 0.587749i −0.984308 0.176458i \(-0.943536\pi\)
0.644971 + 0.764207i \(0.276869\pi\)
\(242\) 18.1075 1.16400
\(243\) −15.5867 0.236756i −0.999885 0.0151879i
\(244\) 10.3563 0.662996
\(245\) 0 0
\(246\) 2.51788 1.81769i 0.160534 0.115892i
\(247\) −11.1971 19.3939i −0.712453 1.23401i
\(248\) 5.73668 + 9.93623i 0.364280 + 0.630951i
\(249\) −0.999311 9.79391i −0.0633288 0.620664i
\(250\) 7.34011 12.7134i 0.464229 0.804068i
\(251\) −24.4346 −1.54230 −0.771148 0.636656i \(-0.780317\pi\)
−0.771148 + 0.636656i \(0.780317\pi\)
\(252\) 0 0
\(253\) −1.45744 −0.0916282
\(254\) 5.46658 9.46839i 0.343004 0.594100i
\(255\) −11.3736 5.10532i −0.712244 0.319707i
\(256\) −8.87085 15.3648i −0.554428 0.960298i
\(257\) −2.00416 3.47131i −0.125016 0.216534i 0.796723 0.604345i \(-0.206565\pi\)
−0.921739 + 0.387810i \(0.873232\pi\)
\(258\) 18.7665 + 8.42380i 1.16835 + 0.524443i
\(259\) 0 0
\(260\) 4.23491 0.262638
\(261\) 10.9203 + 12.2774i 0.675949 + 0.759952i
\(262\) −11.2739 −0.696503
\(263\) −8.84362 + 15.3176i −0.545321 + 0.944524i 0.453265 + 0.891376i \(0.350259\pi\)
−0.998587 + 0.0531485i \(0.983074\pi\)
\(264\) −0.195377 1.91482i −0.0120246 0.117849i
\(265\) 3.28550 + 5.69066i 0.201827 + 0.349574i
\(266\) 0 0
\(267\) 1.18478 0.855304i 0.0725072 0.0523438i
\(268\) 5.27197 9.13132i 0.322037 0.557784i
\(269\) −14.2273 −0.867455 −0.433727 0.901044i \(-0.642802\pi\)
−0.433727 + 0.901044i \(0.642802\pi\)
\(270\) −2.51788 7.99647i −0.153233 0.486650i
\(271\) −5.39874 −0.327950 −0.163975 0.986464i \(-0.552432\pi\)
−0.163975 + 0.986464i \(0.552432\pi\)
\(272\) −18.9091 + 32.7515i −1.14653 + 1.98585i
\(273\) 0 0
\(274\) 11.9258 + 20.6561i 0.720464 + 1.24788i
\(275\) −1.20582 2.08854i −0.0727136 0.125944i
\(276\) 0.387055 + 3.79339i 0.0232980 + 0.228335i
\(277\) −3.83310 + 6.63913i −0.230309 + 0.398907i −0.957899 0.287105i \(-0.907307\pi\)
0.727590 + 0.686012i \(0.240640\pi\)
\(278\) −14.9653 −0.897562
\(279\) 17.8483 3.68059i 1.06855 0.220351i
\(280\) 0 0
\(281\) 11.3312 19.6263i 0.675965 1.17081i −0.300220 0.953870i \(-0.597060\pi\)
0.976186 0.216936i \(-0.0696065\pi\)
\(282\) −20.0803 9.01352i −1.19577 0.536747i
\(283\) 15.9246 + 27.5822i 0.946619 + 1.63959i 0.752476 + 0.658620i \(0.228859\pi\)
0.194144 + 0.980973i \(0.437807\pi\)
\(284\) −1.91095 3.30986i −0.113394 0.196404i
\(285\) −6.69183 3.00379i −0.396390 0.177929i
\(286\) 2.50987 4.34722i 0.148412 0.257057i
\(287\) 0 0
\(288\) −13.8083 + 2.84748i −0.813664 + 0.167790i
\(289\) 40.4930 2.38194
\(290\) −4.41840 + 7.65289i −0.259457 + 0.449393i
\(291\) −0.598884 5.86946i −0.0351072 0.344074i
\(292\) −1.98242 3.43366i −0.116013 0.200940i
\(293\) −13.7468 23.8102i −0.803097 1.39100i −0.917568 0.397578i \(-0.869851\pi\)
0.114472 0.993427i \(-0.463483\pi\)
\(294\) 0 0
\(295\) 4.95056 8.57462i 0.288233 0.499234i
\(296\) −13.1978 −0.767105
\(297\) −2.98450 0.662859i −0.173179 0.0384630i
\(298\) 7.42030 0.429846
\(299\) 6.21720 10.7685i 0.359550 0.622758i
\(300\) −5.11578 + 3.69314i −0.295360 + 0.213224i
\(301\) 0 0
\(302\) −10.7534 18.6254i −0.618789 1.07177i
\(303\) −1.68547 16.5187i −0.0968275 0.948973i
\(304\) −11.1254 + 19.2698i −0.638088 + 1.10520i
\(305\) −11.0617 −0.633394
\(306\) 25.6948 + 28.8880i 1.46887 + 1.65142i
\(307\) 14.8176 0.845683 0.422841 0.906204i \(-0.361033\pi\)
0.422841 + 0.906204i \(0.361033\pi\)
\(308\) 0 0
\(309\) 18.4134 + 8.26530i 1.04750 + 0.470196i
\(310\) 4.90043 + 8.48779i 0.278326 + 0.482074i
\(311\) −14.5318 25.1698i −0.824021 1.42725i −0.902665 0.430343i \(-0.858392\pi\)
0.0786442 0.996903i \(-0.474941\pi\)
\(312\) 14.9814 + 6.72477i 0.848156 + 0.380715i
\(313\) 12.2390 21.1986i 0.691790 1.19822i −0.279461 0.960157i \(-0.590156\pi\)
0.971251 0.238058i \(-0.0765110\pi\)
\(314\) −19.1614 −1.08134
\(315\) 0 0
\(316\) −1.18539 −0.0666834
\(317\) 3.69344 6.39722i 0.207444 0.359304i −0.743465 0.668775i \(-0.766819\pi\)
0.950909 + 0.309472i \(0.100152\pi\)
\(318\) −2.06848 20.2725i −0.115995 1.13682i
\(319\) 1.61126 + 2.79079i 0.0902135 + 0.156254i
\(320\) 0.943395 + 1.63401i 0.0527374 + 0.0913438i
\(321\) −5.33442 + 3.85098i −0.297738 + 0.214941i
\(322\) 0 0
\(323\) 33.8268 1.88218
\(324\) −0.932677 + 7.94406i −0.0518154 + 0.441337i
\(325\) 20.5753 1.14131
\(326\) −1.41597 + 2.45253i −0.0784231 + 0.135833i
\(327\) −18.0655 + 13.0417i −0.999022 + 0.721206i
\(328\) 0.996205 + 1.72548i 0.0550062 + 0.0952736i
\(329\) 0 0
\(330\) −0.166896 1.63569i −0.00918734 0.0900419i
\(331\) −10.0309 + 17.3740i −0.551347 + 0.954960i 0.446831 + 0.894618i \(0.352552\pi\)
−0.998178 + 0.0603420i \(0.980781\pi\)
\(332\) −5.05146 −0.277235
\(333\) −6.59888 + 19.8971i −0.361617 + 1.09036i
\(334\) −6.63315 −0.362950
\(335\) −5.63106 + 9.75329i −0.307658 + 0.532879i
\(336\) 0 0
\(337\) −3.20327 5.54823i −0.174493 0.302231i 0.765493 0.643445i \(-0.222495\pi\)
−0.939986 + 0.341214i \(0.889162\pi\)
\(338\) 10.3658 + 17.9542i 0.563827 + 0.976577i
\(339\) −14.2547 6.39855i −0.774208 0.347522i
\(340\) −3.19846 + 5.53989i −0.173461 + 0.300443i
\(341\) 3.57409 0.193548
\(342\) 15.1179 + 16.9967i 0.817482 + 0.919074i
\(343\) 0 0
\(344\) −6.59888 + 11.4296i −0.355788 + 0.616243i
\(345\) −0.413419 4.05178i −0.0222577 0.218140i
\(346\) 13.6940 + 23.7187i 0.736194 + 1.27512i
\(347\) 14.5963 + 25.2816i 0.783572 + 1.35719i 0.929848 + 0.367943i \(0.119938\pi\)
−0.146276 + 0.989244i \(0.546729\pi\)
\(348\) 6.83592 4.93493i 0.366444 0.264540i
\(349\) 2.17192 3.76188i 0.116260 0.201369i −0.802022 0.597294i \(-0.796243\pi\)
0.918283 + 0.395925i \(0.129576\pi\)
\(350\) 0 0
\(351\) 17.6291 19.2238i 0.940970 1.02609i
\(352\) −2.76509 −0.147380
\(353\) −12.8503 + 22.2574i −0.683955 + 1.18464i 0.289809 + 0.957084i \(0.406408\pi\)
−0.973764 + 0.227560i \(0.926925\pi\)
\(354\) −24.8955 + 17.9724i −1.32318 + 0.955221i
\(355\) 2.04111 + 3.53530i 0.108331 + 0.187635i
\(356\) −0.374892 0.649331i −0.0198692 0.0344145i
\(357\) 0 0
\(358\) 12.1421 21.0308i 0.641732 1.11151i
\(359\) 20.6872 1.09183 0.545916 0.837840i \(-0.316182\pi\)
0.545916 + 0.837840i \(0.316182\pi\)
\(360\) 5.26792 1.08632i 0.277644 0.0572543i
\(361\) 0.902493 0.0474996
\(362\) 10.9518 18.9691i 0.575614 0.996992i
\(363\) 16.8348 + 7.55667i 0.883595 + 0.396622i
\(364\) 0 0
\(365\) 2.11745 + 3.66754i 0.110833 + 0.191968i
\(366\) 31.2960 + 14.0479i 1.63587 + 0.734297i
\(367\) 1.42391 2.46628i 0.0743273 0.128739i −0.826466 0.562986i \(-0.809652\pi\)
0.900794 + 0.434248i \(0.142986\pi\)
\(368\) −12.3548 −0.644040
\(369\) 3.09946 0.639154i 0.161351 0.0332730i
\(370\) −11.2739 −0.586101
\(371\) 0 0
\(372\) −0.949180 9.30259i −0.0492127 0.482317i
\(373\) −10.7163 18.5612i −0.554871 0.961065i −0.997914 0.0645641i \(-0.979434\pi\)
0.443043 0.896501i \(-0.353899\pi\)
\(374\) 3.79121 + 6.56657i 0.196039 + 0.339549i
\(375\) 12.1298 8.75661i 0.626378 0.452189i
\(376\) 7.06085 12.2297i 0.364135 0.630701i
\(377\) −27.4936 −1.41599
\(378\) 0 0
\(379\) 27.0494 1.38943 0.694716 0.719284i \(-0.255530\pi\)
0.694716 + 0.719284i \(0.255530\pi\)
\(380\) −1.88186 + 3.25947i −0.0965372 + 0.167207i
\(381\) 9.03370 6.52153i 0.462810 0.334108i
\(382\) −1.83929 3.18575i −0.0941064 0.162997i
\(383\) 7.21340 + 12.4940i 0.368588 + 0.638412i 0.989345 0.145590i \(-0.0465081\pi\)
−0.620757 + 0.784003i \(0.713175\pi\)
\(384\) −2.24647 22.0169i −0.114640 1.12355i
\(385\) 0 0
\(386\) −17.7293 −0.902399
\(387\) 13.9320 + 15.6634i 0.708203 + 0.796214i
\(388\) −3.02733 −0.153689
\(389\) 3.05377 5.28929i 0.154832 0.268178i −0.778166 0.628059i \(-0.783850\pi\)
0.932998 + 0.359882i \(0.117183\pi\)
\(390\) 12.7975 + 5.74447i 0.648028 + 0.290883i
\(391\) 9.39120 + 16.2660i 0.474933 + 0.822609i
\(392\) 0 0
\(393\) −10.4814 4.70484i −0.528718 0.237328i
\(394\) −15.9635 + 27.6497i −0.804232 + 1.39297i
\(395\) 1.26613 0.0637059
\(396\) −0.493810 + 1.48895i −0.0248149 + 0.0748226i
\(397\) −12.8873 −0.646794 −0.323397 0.946263i \(-0.604825\pi\)
−0.323397 + 0.946263i \(0.604825\pi\)
\(398\) 7.16059 12.4025i 0.358928 0.621682i
\(399\) 0 0
\(400\) −10.2218 17.7047i −0.511092 0.885237i
\(401\) −4.19530 7.26647i −0.209503 0.362870i 0.742055 0.670339i \(-0.233851\pi\)
−0.951558 + 0.307469i \(0.900518\pi\)
\(402\) 28.3177 20.4429i 1.41236 1.01960i
\(403\) −15.2465 + 26.4078i −0.759483 + 1.31546i
\(404\) −8.51994 −0.423883
\(405\) 0.996205 8.48516i 0.0495018 0.421631i
\(406\) 0 0
\(407\) −2.05563 + 3.56046i −0.101894 + 0.176485i
\(408\) −20.1119 + 14.5190i −0.995686 + 0.718797i
\(409\) −3.40633 5.89994i −0.168432 0.291733i 0.769437 0.638723i \(-0.220537\pi\)
−0.937869 + 0.346990i \(0.887204\pi\)
\(410\) 0.850985 + 1.47395i 0.0420271 + 0.0727931i
\(411\) 2.46729 + 24.1810i 0.121702 + 1.19276i
\(412\) 5.17817 8.96885i 0.255110 0.441864i
\(413\) 0 0
\(414\) −3.97593 + 11.9883i −0.195406 + 0.589194i
\(415\) 5.39554 0.264857
\(416\) 11.7955 20.4303i 0.578320 1.00168i
\(417\) −13.9134 6.24536i −0.681343 0.305837i
\(418\) 2.23061 + 3.86353i 0.109103 + 0.188971i
\(419\) 5.16231 + 8.94137i 0.252195 + 0.436815i 0.964130 0.265431i \(-0.0855142\pi\)
−0.711935 + 0.702246i \(0.752181\pi\)
\(420\) 0 0
\(421\) −1.56801 + 2.71588i −0.0764202 + 0.132364i −0.901703 0.432356i \(-0.857682\pi\)
0.825283 + 0.564720i \(0.191016\pi\)
\(422\) −19.0741 −0.928514
\(423\) −14.9073 16.7599i −0.724818 0.814894i
\(424\) 13.0741 0.634936
\(425\) −15.5397 + 26.9156i −0.753787 + 1.30560i
\(426\) −1.28504 12.5942i −0.0622603 0.610192i
\(427\) 0 0
\(428\) 1.68794 + 2.92359i 0.0815895 + 0.141317i
\(429\) 4.14764 2.99423i 0.200250 0.144563i
\(430\) −5.63694 + 9.76347i −0.271837 + 0.470836i
\(431\) 31.8726 1.53525 0.767625 0.640899i \(-0.221438\pi\)
0.767625 + 0.640899i \(0.221438\pi\)
\(432\) −25.2999 5.61912i −1.21724 0.270350i
\(433\) 7.48855 0.359877 0.179938 0.983678i \(-0.442410\pi\)
0.179938 + 0.983678i \(0.442410\pi\)
\(434\) 0 0
\(435\) −7.30154 + 5.27107i −0.350082 + 0.252728i
\(436\) 5.71634 + 9.90099i 0.273763 + 0.474171i
\(437\) 5.52544 + 9.57035i 0.264318 + 0.457812i
\(438\) −1.33310 13.0653i −0.0636982 0.624284i
\(439\) −1.14465 + 1.98259i −0.0546311 + 0.0946238i −0.892048 0.451941i \(-0.850732\pi\)
0.837417 + 0.546565i \(0.184065\pi\)
\(440\) 1.05489 0.0502900
\(441\) 0 0
\(442\) −64.6908 −3.07703
\(443\) −18.6749 + 32.3458i −0.887270 + 1.53680i −0.0441800 + 0.999024i \(0.514067\pi\)
−0.843090 + 0.537773i \(0.819266\pi\)
\(444\) 9.81303 + 4.40481i 0.465706 + 0.209043i
\(445\) 0.400427 + 0.693560i 0.0189821 + 0.0328779i
\(446\) −17.6378 30.5495i −0.835172 1.44656i
\(447\) 6.89872 + 3.09665i 0.326298 + 0.146467i
\(448\) 0 0
\(449\) −6.20286 −0.292731 −0.146366 0.989231i \(-0.546758\pi\)
−0.146366 + 0.989231i \(0.546758\pi\)
\(450\) −20.4691 + 4.22102i −0.964920 + 0.198981i
\(451\) 0.620660 0.0292257
\(452\) −4.00866 + 6.94320i −0.188552 + 0.326581i
\(453\) −2.22473 21.8039i −0.104527 1.02444i
\(454\) −8.86376 15.3525i −0.415997 0.720527i
\(455\) 0 0
\(456\) −11.8331 + 8.54245i −0.554136 + 0.400037i
\(457\) −10.0858 + 17.4691i −0.471795 + 0.817172i −0.999479 0.0322682i \(-0.989727\pi\)
0.527685 + 0.849440i \(0.323060\pi\)
\(458\) −25.5951 −1.19598
\(459\) 11.8331 + 37.5804i 0.552322 + 1.75410i
\(460\) −2.08981 −0.0974378
\(461\) 11.2680 19.5168i 0.524803 0.908986i −0.474780 0.880105i \(-0.657472\pi\)
0.999583 0.0288813i \(-0.00919447\pi\)
\(462\) 0 0
\(463\) 13.8145 + 23.9275i 0.642016 + 1.11200i 0.984982 + 0.172656i \(0.0552350\pi\)
−0.342966 + 0.939348i \(0.611432\pi\)
\(464\) 13.6588 + 23.6578i 0.634096 + 1.09829i
\(465\) 1.01383 + 9.93623i 0.0470154 + 0.460782i
\(466\) 3.72803 6.45714i 0.172698 0.299121i
\(467\) 20.1224 0.931155 0.465577 0.885007i \(-0.345847\pi\)
0.465577 + 0.885007i \(0.345847\pi\)
\(468\) −8.89483 10.0002i −0.411164 0.462261i
\(469\) 0 0
\(470\) 6.03156 10.4470i 0.278215 0.481883i
\(471\) −17.8145 7.99647i −0.820850 0.368458i
\(472\) −9.84997 17.0607i −0.453382 0.785280i
\(473\) 2.05563 + 3.56046i 0.0945181 + 0.163710i
\(474\) −3.58215 1.60793i −0.164533 0.0738547i
\(475\) −9.14301 + 15.8362i −0.419510 + 0.726613i
\(476\) 0 0
\(477\) 6.53706 19.7107i 0.299312 0.902493i
\(478\) 16.2335 0.742504
\(479\) 4.79329 8.30222i 0.219011 0.379338i −0.735495 0.677530i \(-0.763050\pi\)
0.954506 + 0.298192i \(0.0963836\pi\)
\(480\) −0.784350 7.68715i −0.0358005 0.350869i
\(481\) −17.5380 30.3767i −0.799664 1.38506i
\(482\) 8.95351 + 15.5079i 0.407821 + 0.706367i
\(483\) 0 0
\(484\) 4.73422 8.19991i 0.215192 0.372723i
\(485\) 3.23353 0.146827
\(486\) −13.5942 + 22.7411i −0.616648 + 1.03156i
\(487\) 13.0741 0.592445 0.296223 0.955119i \(-0.404273\pi\)
0.296223 + 0.955119i \(0.404273\pi\)
\(488\) −11.0046 + 19.0605i −0.498155 + 0.862830i
\(489\) −2.33993 + 1.68922i −0.105815 + 0.0763893i
\(490\) 0 0
\(491\) −7.67054 13.2858i −0.346167 0.599578i 0.639398 0.768876i \(-0.279183\pi\)
−0.985565 + 0.169298i \(0.945850\pi\)
\(492\) −0.164830 1.61544i −0.00743112 0.0728298i
\(493\) 20.7648 35.9657i 0.935201 1.61982i
\(494\) −38.0617 −1.71248
\(495\) 0.527445 1.59037i 0.0237069 0.0714817i
\(496\) 30.2979 1.36042
\(497\) 0 0
\(498\) −15.2651 6.85210i −0.684045 0.307050i
\(499\) −2.43268 4.21352i −0.108902 0.188623i 0.806424 0.591338i \(-0.201400\pi\)
−0.915326 + 0.402715i \(0.868067\pi\)
\(500\) −3.83814 6.64786i −0.171647 0.297301i
\(501\) −6.16690 2.76816i −0.275517 0.123672i
\(502\) −20.7648 + 35.9657i −0.926780 + 1.60523i
\(503\) 16.0085 0.713783 0.356892 0.934146i \(-0.383837\pi\)
0.356892 + 0.934146i \(0.383837\pi\)
\(504\) 0 0
\(505\) 9.10026 0.404956
\(506\) −1.23855 + 2.14523i −0.0550603 + 0.0953672i
\(507\) 2.14455 + 21.0180i 0.0952429 + 0.933443i
\(508\) −2.85848 4.95102i −0.126824 0.219666i
\(509\) 15.5925 + 27.0071i 0.691127 + 1.19707i 0.971469 + 0.237167i \(0.0762188\pi\)
−0.280342 + 0.959900i \(0.590448\pi\)
\(510\) −17.1801 + 12.4025i −0.760747 + 0.549192i
\(511\) 0 0
\(512\) −4.59937 −0.203265
\(513\) 6.96217 + 22.1110i 0.307387 + 0.976224i
\(514\) −6.81266 −0.300494
\(515\) −5.53087 + 9.57975i −0.243719 + 0.422134i
\(516\) 8.72119 6.29593i 0.383929 0.277163i
\(517\) −2.19954 3.80971i −0.0967356 0.167551i
\(518\) 0 0
\(519\) 2.83310 + 27.7663i 0.124359 + 1.21880i
\(520\) −4.50000 + 7.79423i −0.197338 + 0.341800i
\(521\) 20.9661 0.918541 0.459270 0.888297i \(-0.348111\pi\)
0.459270 + 0.888297i \(0.348111\pi\)
\(522\) 27.3516 5.64030i 1.19715 0.246869i
\(523\) 43.5642 1.90493 0.952465 0.304647i \(-0.0985383\pi\)
0.952465 + 0.304647i \(0.0985383\pi\)
\(524\) −2.94756 + 5.10532i −0.128765 + 0.223027i
\(525\) 0 0
\(526\) 15.0309 + 26.0342i 0.655377 + 1.13515i
\(527\) −23.0302 39.8894i −1.00321 1.73761i
\(528\) −4.63704 2.08144i −0.201801 0.0905832i
\(529\) 8.43199 14.6046i 0.366608 0.634984i
\(530\) 11.1683 0.485118
\(531\) −30.6459 + 6.31963i −1.32992 + 0.274249i
\(532\) 0 0
\(533\) −2.64764 + 4.58584i −0.114682 + 0.198635i
\(534\) −0.252100 2.47075i −0.0109094 0.106920i
\(535\) −1.80291 3.12273i −0.0779466 0.135007i
\(536\) 11.2040 + 19.4058i 0.483937 + 0.838204i
\(537\) 20.0653 14.4853i 0.865880 0.625089i
\(538\) −12.0906 + 20.9415i −0.521262 + 0.902852i
\(539\) 0 0
\(540\) −4.27946 0.950469i −0.184159 0.0409017i
\(541\) 9.86535 0.424145 0.212072 0.977254i \(-0.431979\pi\)
0.212072 + 0.977254i \(0.431979\pi\)
\(542\) −4.58793 + 7.94652i −0.197068 + 0.341332i
\(543\) 18.0982 13.0653i 0.776668 0.560686i
\(544\) 17.8173 + 30.8604i 0.763909 + 1.32313i
\(545\) −6.10570 10.5754i −0.261539 0.453000i
\(546\) 0 0
\(547\) −0.284350 + 0.492509i −0.0121579 + 0.0210582i −0.872040 0.489434i \(-0.837203\pi\)
0.859882 + 0.510492i \(0.170537\pi\)
\(548\) 12.4720 0.532778
\(549\) 23.2336 + 26.1210i 0.991587 + 1.11482i
\(550\) −4.09888 −0.174777
\(551\) 12.2173 21.1609i 0.520473 0.901487i
\(552\) −7.39292 3.31848i −0.314663 0.141244i
\(553\) 0 0
\(554\) 6.51485 + 11.2841i 0.276789 + 0.479413i
\(555\) −10.4814 4.70484i −0.444912 0.199709i
\(556\) −3.91269 + 6.77698i −0.165935 + 0.287408i
\(557\) −2.58699 −0.109614 −0.0548071 0.998497i \(-0.517454\pi\)
−0.0548071 + 0.998497i \(0.517454\pi\)
\(558\) 9.75023 29.3992i 0.412760 1.24457i
\(559\) −35.0760 −1.48356
\(560\) 0 0
\(561\) 0.784350 + 7.68715i 0.0331153 + 0.324552i
\(562\) −19.2589 33.3574i −0.812388 1.40710i
\(563\) 16.6416 + 28.8240i 0.701358 + 1.21479i 0.967990 + 0.250989i \(0.0807558\pi\)
−0.266632 + 0.963798i \(0.585911\pi\)
\(564\) −9.33173 + 6.73668i −0.392937 + 0.283665i
\(565\) 4.28171 7.41613i 0.180133 0.311999i
\(566\) 54.1318 2.27533
\(567\) 0 0
\(568\) 8.12227 0.340803
\(569\) 2.67673 4.63623i 0.112214 0.194361i −0.804448 0.594022i \(-0.797539\pi\)
0.916663 + 0.399662i \(0.130872\pi\)
\(570\) −10.1081 + 7.29719i −0.423384 + 0.305646i
\(571\) −2.45056 4.24449i −0.102553 0.177626i 0.810183 0.586177i \(-0.199368\pi\)
−0.912736 + 0.408551i \(0.866034\pi\)
\(572\) −1.31241 2.27316i −0.0548747 0.0950457i
\(573\) −0.380525 3.72940i −0.0158967 0.155798i
\(574\) 0 0
\(575\) −10.1533 −0.423424
\(576\) 1.87704 5.65972i 0.0782102 0.235822i
\(577\) −36.0757 −1.50185 −0.750925 0.660387i \(-0.770392\pi\)
−0.750925 + 0.660387i \(0.770392\pi\)
\(578\) 34.4116 59.6026i 1.43133 2.47914i
\(579\) −16.4831 7.39884i −0.685015 0.307485i
\(580\) 2.31038 + 4.00170i 0.0959333 + 0.166161i
\(581\) 0 0
\(582\) −9.14833 4.10644i −0.379210 0.170217i
\(583\) 2.03637 3.52710i 0.0843380 0.146078i
\(584\) 8.42607 0.348673
\(585\) 9.50069 + 10.6814i 0.392805 + 0.441621i
\(586\) −46.7289 −1.93035
\(587\) −0.527445 + 0.913562i −0.0217700 + 0.0377068i −0.876705 0.481028i \(-0.840263\pi\)
0.854935 + 0.518735i \(0.173597\pi\)
\(588\) 0 0
\(589\) −13.5501 23.4695i −0.558323 0.967045i
\(590\) −8.41411 14.5737i −0.346403 0.599988i
\(591\) −26.3803 + 19.0442i −1.08514 + 0.783375i
\(592\) −17.4258 + 30.1824i −0.716196 + 1.24049i
\(593\) −15.0710 −0.618890 −0.309445 0.950917i \(-0.600143\pi\)
−0.309445 + 0.950917i \(0.600143\pi\)
\(594\) −3.51195 + 3.82965i −0.144097 + 0.157132i
\(595\) 0 0
\(596\) 1.94004 3.36024i 0.0794670 0.137641i
\(597\) 11.8331 8.54245i 0.484297 0.349619i
\(598\) −10.5669 18.3024i −0.432114 0.748443i
\(599\) −21.0283 36.4221i −0.859194 1.48817i −0.872699 0.488259i \(-0.837632\pi\)
0.0135047 0.999909i \(-0.495701\pi\)
\(600\) −1.36111 13.3398i −0.0555671 0.544594i
\(601\) −9.44989 + 16.3677i −0.385469 + 0.667652i −0.991834 0.127534i \(-0.959294\pi\)
0.606365 + 0.795186i \(0.292627\pi\)
\(602\) 0 0
\(603\) 34.8585 7.18833i 1.41955 0.292732i
\(604\) −11.2459 −0.457590
\(605\) −5.05669 + 8.75844i −0.205583 + 0.356081i
\(606\) −25.7465 11.5569i −1.04588 0.469468i
\(607\) 14.7213 + 25.4980i 0.597518 + 1.03493i 0.993186 + 0.116538i \(0.0371796\pi\)
−0.395668 + 0.918393i \(0.629487\pi\)
\(608\) 10.4830 + 18.1572i 0.425143 + 0.736370i
\(609\) 0 0
\(610\) −9.40043 + 16.2820i −0.380612 + 0.659240i
\(611\) 37.5316 1.51836
\(612\) 19.7997 4.08299i 0.800355 0.165045i
\(613\) −11.6676 −0.471249 −0.235625 0.971844i \(-0.575714\pi\)
−0.235625 + 0.971844i \(0.575714\pi\)
\(614\) 12.5922 21.8103i 0.508179 0.880191i
\(615\) 0.176057 + 1.72548i 0.00709932 + 0.0695780i
\(616\) 0 0
\(617\) 16.4054 + 28.4151i 0.660458 + 1.14395i 0.980495 + 0.196542i \(0.0629713\pi\)
−0.320037 + 0.947405i \(0.603695\pi\)
\(618\) 27.8138 20.0791i 1.11884 0.807701i
\(619\) 12.0806 20.9242i 0.485560 0.841014i −0.514303 0.857609i \(-0.671949\pi\)
0.999862 + 0.0165947i \(0.00528250\pi\)
\(620\) 5.12487 0.205820
\(621\) −8.69945 + 9.48642i −0.349097 + 0.380677i
\(622\) −49.3972 −1.98065
\(623\) 0 0
\(624\) 35.1599 25.3824i 1.40752 1.01611i
\(625\) −6.14764 10.6480i −0.245906 0.425921i
\(626\) −20.8018 36.0297i −0.831406 1.44004i
\(627\) 0.461483 + 4.52284i 0.0184299 + 0.180625i
\(628\) −5.00975 + 8.67714i −0.199911 + 0.346256i
\(629\) 52.9830 2.11257
\(630\) 0 0
\(631\) −11.1003 −0.441894 −0.220947 0.975286i \(-0.570915\pi\)
−0.220947 + 0.975286i \(0.570915\pi\)
\(632\) 1.25959 2.18168i 0.0501038 0.0867824i
\(633\) −17.7334 7.96005i −0.704839 0.316383i
\(634\) −6.27747 10.8729i −0.249310 0.431818i
\(635\) 3.05318 + 5.28826i 0.121162 + 0.209858i
\(636\) −9.72109 4.36354i −0.385466 0.173026i
\(637\) 0 0
\(638\) 5.47710 0.216840
\(639\) 4.06113 12.2452i 0.160656 0.484414i
\(640\) 12.1293 0.479452
\(641\) −3.65019 + 6.32231i −0.144174 + 0.249716i −0.929064 0.369918i \(-0.879386\pi\)
0.784891 + 0.619634i \(0.212719\pi\)
\(642\) 1.13507 + 11.1245i 0.0447978 + 0.439048i
\(643\) −10.6256 18.4041i −0.419033 0.725787i 0.576809 0.816879i \(-0.304298\pi\)
−0.995842 + 0.0910922i \(0.970964\pi\)
\(644\) 0 0
\(645\) −9.31522 + 6.72477i −0.366787 + 0.264787i
\(646\) 28.7465 49.7904i 1.13102 1.95898i
\(647\) 16.9460 0.666216 0.333108 0.942889i \(-0.391903\pi\)
0.333108 + 0.942889i \(0.391903\pi\)
\(648\) −13.6298 10.1579i −0.535427 0.399040i
\(649\) −6.13677 −0.240889
\(650\) 17.4852 30.2853i 0.685826 1.18789i
\(651\) 0 0
\(652\) 0.740409 + 1.28243i 0.0289967 + 0.0502237i
\(653\) 1.86652 + 3.23292i 0.0730427 + 0.126514i 0.900233 0.435408i \(-0.143396\pi\)
−0.827191 + 0.561921i \(0.810062\pi\)
\(654\) 3.84402 + 37.6739i 0.150313 + 1.47317i
\(655\) 3.14833 5.45306i 0.123015 0.213069i
\(656\) 5.26140 0.205423
\(657\) 4.21303 12.7033i 0.164366 0.495601i
\(658\) 0 0
\(659\) 11.7992 20.4368i 0.459632 0.796105i −0.539310 0.842107i \(-0.681315\pi\)
0.998941 + 0.0460022i \(0.0146481\pi\)
\(660\) −0.784350 0.352074i −0.0305308 0.0137045i
\(661\) −17.2588 29.8930i −0.671288 1.16270i −0.977539 0.210754i \(-0.932408\pi\)
0.306252 0.951951i \(-0.400925\pi\)
\(662\) 17.0488 + 29.5293i 0.662619 + 1.14769i
\(663\) −60.1436 26.9969i −2.33579 1.04847i
\(664\) 5.36767 9.29708i 0.208306 0.360796i
\(665\) 0 0
\(666\) 23.6792 + 26.6219i 0.917550 + 1.03158i
\(667\) 13.5673 0.525329
\(668\) −1.73424 + 3.00379i −0.0670996 + 0.116220i
\(669\) −3.64902 35.7628i −0.141079 1.38267i
\(670\) 9.57072 + 16.5770i 0.369749 + 0.640424i
\(671\) 3.42807 + 5.93759i 0.132339 + 0.229218i
\(672\) 0 0
\(673\) 12.2287 21.1808i 0.471382 0.816458i −0.528082 0.849194i \(-0.677088\pi\)
0.999464 + 0.0327353i \(0.0104218\pi\)
\(674\) −10.8887 −0.419418
\(675\) −20.7918 4.61786i −0.800276 0.177741i
\(676\) 10.8406 0.416946
\(677\) 4.16022 7.20572i 0.159890 0.276938i −0.774939 0.632037i \(-0.782219\pi\)
0.934829 + 0.355098i \(0.115553\pi\)
\(678\) −21.5320 + 15.5442i −0.826931 + 0.596971i
\(679\) 0 0
\(680\) −6.79734 11.7733i −0.260666 0.451487i
\(681\) −1.83379 17.9724i −0.0702711 0.688703i
\(682\) 3.03731 5.26078i 0.116305 0.201446i
\(683\) −42.4624 −1.62478 −0.812389 0.583116i \(-0.801833\pi\)
−0.812389 + 0.583116i \(0.801833\pi\)
\(684\) 11.6494 2.40228i 0.445427 0.0918536i
\(685\) −13.3215 −0.508989
\(686\) 0 0
\(687\) −23.7960 10.6814i −0.907873 0.407520i
\(688\) 17.4258 + 30.1824i 0.664352 + 1.15069i
\(689\) 17.3737 + 30.0921i 0.661885 + 1.14642i
\(690\) −6.31522 2.83474i −0.240416 0.107917i
\(691\) −17.6964 + 30.6511i −0.673204 + 1.16602i 0.303786 + 0.952740i \(0.401749\pi\)
−0.976990 + 0.213284i \(0.931584\pi\)
\(692\) 14.3212 0.544410
\(693\) 0 0
\(694\) 49.6167 1.88342
\(695\) 4.17920 7.23859i 0.158526 0.274575i
\(696\) 1.81877 + 17.8252i 0.0689404 + 0.675661i
\(697\) −3.99931 6.92701i −0.151485 0.262379i
\(698\) −3.69146 6.39380i −0.139724 0.242009i
\(699\) 6.16069 4.44747i 0.233019 0.168219i
\(700\) 0 0
\(701\) −7.00372 −0.264527 −0.132263 0.991215i \(-0.542224\pi\)
−0.132263 + 0.991215i \(0.542224\pi\)
\(702\) −13.3145 42.2853i −0.502525 1.59596i
\(703\) 31.1733 1.17572
\(704\) 0.584722 1.01277i 0.0220375 0.0381701i
\(705\) 9.96735 7.19554i 0.375392 0.271000i
\(706\) 21.8408 + 37.8294i 0.821989 + 1.42373i
\(707\) 0 0
\(708\) 1.62976 + 15.9727i 0.0612500 + 0.600291i
\(709\) 1.11126 1.92477i 0.0417344 0.0722861i −0.844404 0.535707i \(-0.820045\pi\)
0.886138 + 0.463421i \(0.153378\pi\)
\(710\) 6.93825 0.260388
\(711\) −2.65933 2.98981i −0.0997326 0.112127i
\(712\) 1.59343 0.0597165
\(713\) 7.52373 13.0315i 0.281766 0.488033i
\(714\) 0 0
\(715\) 1.40180 + 2.42800i 0.0524245 + 0.0908019i
\(716\) −6.34913 10.9970i −0.237278 0.410977i
\(717\) 15.0925 + 6.77461i 0.563638 + 0.253002i
\(718\) 17.5803 30.4500i 0.656092 1.13638i
\(719\) 26.0175 0.970291 0.485145 0.874434i \(-0.338767\pi\)
0.485145 + 0.874434i \(0.338767\pi\)
\(720\) 4.47121 13.4817i 0.166632 0.502434i
\(721\) 0 0
\(722\) 0.766951 1.32840i 0.0285430 0.0494379i
\(723\) 1.85236 + 18.1544i 0.0688901 + 0.675168i
\(724\) −5.72670 9.91893i −0.212831 0.368634i
\(725\) 11.2250 + 19.4423i 0.416886 + 0.722068i
\(726\) 25.4292 18.3577i 0.943767 0.681317i
\(727\) 0.685875 1.18797i 0.0254377 0.0440594i −0.853026 0.521868i \(-0.825235\pi\)
0.878464 + 0.477809i \(0.158569\pi\)
\(728\) 0 0
\(729\) −22.1291 + 15.4695i −0.819595 + 0.572943i
\(730\) 7.19777 0.266401
\(731\) 26.4915 45.8847i 0.979824 1.69711i
\(732\) 14.5439 10.4994i 0.537557 0.388068i
\(733\) 0.400087 + 0.692971i 0.0147776 + 0.0255955i 0.873320 0.487148i \(-0.161963\pi\)
−0.858542 + 0.512743i \(0.828629\pi\)
\(734\) −2.42011 4.19176i −0.0893280 0.154721i
\(735\) 0 0
\(736\) −5.82072 + 10.0818i −0.214555 + 0.371620i
\(737\) 6.98034 0.257124
\(738\) 1.69318 5.10532i 0.0623268 0.187929i
\(739\) 5.37093 0.197573 0.0987865 0.995109i \(-0.468504\pi\)
0.0987865 + 0.995109i \(0.468504\pi\)
\(740\) −2.94756 + 5.10532i −0.108354 + 0.187675i
\(741\) −35.3864 15.8840i −1.29995 0.583513i
\(742\) 0 0
\(743\) 6.63162 + 11.4863i 0.243290 + 0.421391i 0.961650 0.274281i \(-0.0884399\pi\)
−0.718359 + 0.695672i \(0.755107\pi\)
\(744\) 18.1298 + 8.13797i 0.664669 + 0.298352i
\(745\) −2.07218 + 3.58912i −0.0759188 + 0.131495i
\(746\) −36.4276 −1.33371
\(747\) −11.3326 12.7409i −0.414637 0.466166i
\(748\) 3.96485 0.144969
\(749\) 0 0
\(750\) −2.58100 25.2955i −0.0942449 0.923662i
\(751\) −2.77816 4.81191i −0.101377 0.175589i 0.810875 0.585219i \(-0.198991\pi\)
−0.912252 + 0.409629i \(0.865658\pi\)
\(752\) −18.6457 32.2953i −0.679939 1.17769i
\(753\) −34.3145 + 24.7721i −1.25049 + 0.902744i
\(754\) −23.3645 + 40.4684i −0.850883 + 1.47377i
\(755\) 12.0119 0.437158
\(756\) 0 0
\(757\) −13.3942 −0.486819 −0.243410 0.969924i \(-0.578266\pi\)
−0.243410 + 0.969924i \(0.578266\pi\)
\(758\) 22.9869 39.8145i 0.834923 1.44613i
\(759\) −2.04674 + 1.47757i −0.0742921 + 0.0536323i
\(760\) −3.99931 6.92701i −0.145070 0.251269i
\(761\) 6.42191 + 11.1231i 0.232794 + 0.403211i 0.958629 0.284658i \(-0.0918799\pi\)
−0.725835 + 0.687868i \(0.758547\pi\)
\(762\) −1.92221 18.8390i −0.0696345 0.682464i
\(763\) 0 0
\(764\) −1.92353 −0.0695910
\(765\) −21.1483 + 4.36110i −0.764619 + 0.157676i
\(766\) 24.5202 0.885951
\(767\) 26.1785 45.3425i 0.945251 1.63722i
\(768\) −28.0347 12.5841i −1.01162 0.454088i
\(769\) −1.48259 2.56793i −0.0534636 0.0926018i 0.838055 0.545586i \(-0.183693\pi\)
−0.891519 + 0.452984i \(0.850359\pi\)
\(770\) 0 0
\(771\) −6.33379 2.84307i −0.228106 0.102391i
\(772\) −4.63533 + 8.02864i −0.166829 + 0.288957i
\(773\) −19.2788 −0.693409 −0.346705 0.937974i \(-0.612699\pi\)
−0.346705 + 0.937974i \(0.612699\pi\)
\(774\) 34.8948 7.19583i 1.25427 0.258649i
\(775\) 24.8992 0.894406
\(776\) 3.21683 5.57171i 0.115477 0.200013i
\(777\) 0 0
\(778\) −5.19028 8.98983i −0.186080 0.322301i
\(779\) −2.35305 4.07560i −0.0843068 0.146024i
\(780\) 5.94727 4.29340i 0.212946 0.153728i
\(781\) 1.26509 2.19120i 0.0452685 0.0784074i
\(782\) 31.9231 1.14157
\(783\) 27.7829 + 6.17058i 0.992878 + 0.220518i
\(784\) 0 0
\(785\) 5.35098 9.26818i 0.190985 0.330795i
\(786\) −15.8324 + 11.4296i −0.564724 + 0.407680i
\(787\) −6.82265 11.8172i −0.243201 0.421237i 0.718423 0.695606i \(-0.244864\pi\)
−0.961624 + 0.274370i \(0.911531\pi\)
\(788\) 8.34734 + 14.4580i 0.297362 + 0.515046i
\(789\) 3.10969 + 30.4770i 0.110708 + 1.08501i
\(790\) 1.07598 1.86364i 0.0382815 0.0663055i
\(791\) 0 0
\(792\) −2.21565 2.49100i −0.0787297 0.0885137i
\(793\) −58.4944 −2.07720
\(794\) −10.9518 + 18.9691i −0.388665 + 0.673187i
\(795\) 10.3832 + 4.66076i 0.368255 + 0.165300i
\(796\) −3.74427 6.48527i −0.132712 0.229864i
\(797\) 11.4792 + 19.8826i 0.406616 + 0.704279i 0.994508 0.104660i \(-0.0333755\pi\)
−0.587892 + 0.808939i \(0.700042\pi\)
\(798\) 0 0
\(799\) −28.3461 + 49.0969i −1.00281 + 1.73692i
\(800\) −19.2632 −0.681058
\(801\) 0.796717 2.40228i 0.0281506 0.0848805i
\(802\) −14.2609 −0.503570
\(803\) 1.31241 2.27316i 0.0463140 0.0802182i
\(804\) −1.85378 18.1683i −0.0653779 0.640747i
\(805\) 0 0
\(806\) 25.9134 + 44.8834i 0.912761 + 1.58095i
\(807\) −19.9801 + 14.4238i −0.703331 + 0.507743i
\(808\) 9.05326 15.6807i 0.318492 0.551645i
\(809\) 39.4582 1.38728 0.693639 0.720323i \(-0.256006\pi\)
0.693639 + 0.720323i \(0.256006\pi\)
\(810\) −11.6429 8.67714i −0.409090 0.304884i
\(811\) −0.496374 −0.0174300 −0.00871502 0.999962i \(-0.502774\pi\)
−0.00871502 + 0.999962i \(0.502774\pi\)
\(812\) 0 0
\(813\) −7.58169 + 5.47331i −0.265902 + 0.191957i
\(814\) 3.49381 + 6.05146i 0.122458 + 0.212103i
\(815\) −0.790841 1.36978i −0.0277020 0.0479812i
\(816\) 6.64902 + 65.1647i 0.232762 + 2.28122i
\(817\) 15.5867 26.9969i 0.545308 0.944501i
\(818\) −11.5790 −0.404850
\(819\) 0 0
\(820\) 0.889960 0.0310788
\(821\) −23.5519 + 40.7931i −0.821967 + 1.42369i 0.0822476 + 0.996612i \(0.473790\pi\)
−0.904215 + 0.427077i \(0.859543\pi\)
\(822\) 37.6893 + 16.9177i 1.31457 + 0.590074i
\(823\) 1.09888 + 1.90332i 0.0383047 + 0.0663457i 0.884542 0.466460i \(-0.154471\pi\)
−0.846237 + 0.532806i \(0.821138\pi\)
\(824\) 11.0046 + 19.0605i 0.383364 + 0.664005i
\(825\) −3.81077 1.71055i −0.132674 0.0595538i
\(826\) 0 0
\(827\) −55.3360 −1.92422 −0.962110 0.272661i \(-0.912096\pi\)
−0.962110 + 0.272661i \(0.912096\pi\)
\(828\) 4.38935 + 4.93483i 0.152540 + 0.171497i
\(829\) −20.3206 −0.705764 −0.352882 0.935668i \(-0.614798\pi\)
−0.352882 + 0.935668i \(0.614798\pi\)
\(830\) 4.58520 7.94181i 0.159155 0.275664i
\(831\) 1.34784 + 13.2097i 0.0467559 + 0.458239i
\(832\) 4.98867 + 8.64062i 0.172951 + 0.299560i
\(833\) 0 0
\(834\) −21.0165 + 15.1721i −0.727742 + 0.525365i
\(835\) 1.85236 3.20839i 0.0641036 0.111031i
\(836\) 2.33277 0.0806806
\(837\) 21.3338 23.2637i 0.737404 0.804111i
\(838\) 17.5480 0.606186
\(839\) −12.2760 + 21.2626i −0.423813 + 0.734066i −0.996309 0.0858417i \(-0.972642\pi\)
0.572496 + 0.819908i \(0.305975\pi\)
\(840\) 0 0
\(841\) −0.499311 0.864833i −0.0172176 0.0298218i
\(842\) 2.66504 + 4.61598i 0.0918432 + 0.159077i
\(843\) −3.98441 39.0498i −0.137230 1.34495i
\(844\) −4.98693 + 8.63762i −0.171657 + 0.297319i
\(845\) −11.5790 −0.398329
\(846\) −37.3377 + 7.69959i −1.28370 + 0.264717i
\(847\) 0 0
\(848\) 17.2625 29.8996i 0.592798 1.02676i
\(849\) 50.3268 + 22.5904i 1.72721 + 0.775300i
\(850\) 26.4118 + 45.7465i 0.905916 + 1.56909i
\(851\) 8.65452 + 14.9901i 0.296673 + 0.513853i
\(852\) −6.03920 2.71084i −0.206900 0.0928718i
\(853\) −26.7708 + 46.3684i −0.916614 + 1.58762i −0.112093 + 0.993698i \(0.535756\pi\)
−0.804521 + 0.593925i \(0.797578\pi\)
\(854\) 0 0
\(855\) −12.4429 + 2.56591i −0.425539 + 0.0877524i
\(856\) −7.17439 −0.245215
\(857\) −27.0777 + 46.8999i −0.924955 + 1.60207i −0.133322 + 0.991073i \(0.542564\pi\)
−0.791633 + 0.610996i \(0.790769\pi\)
\(858\) −0.882546 8.64953i −0.0301296 0.295290i
\(859\) 0.896461 + 1.55272i 0.0305869 + 0.0529780i 0.880914 0.473277i \(-0.156929\pi\)
−0.850327 + 0.526255i \(0.823596\pi\)
\(860\) 2.94756 + 5.10532i 0.100511 + 0.174090i
\(861\) 0 0
\(862\) 27.0858 46.9140i 0.922547 1.59790i
\(863\) −32.5709 −1.10873 −0.554363 0.832275i \(-0.687038\pi\)
−0.554363 + 0.832275i \(0.687038\pi\)
\(864\) −16.5049 + 17.9979i −0.561507 + 0.612302i
\(865\) −15.2967 −0.520102
\(866\) 6.36387 11.0226i 0.216253 0.374562i
\(867\) 56.8662 41.0524i 1.93128 1.39421i
\(868\) 0 0
\(869\) −0.392378 0.679618i −0.0133105 0.0230545i
\(870\) 1.55364 + 15.2267i 0.0526734 + 0.516234i
\(871\) −29.7770 + 51.5753i −1.00896 + 1.74756i
\(872\) −24.2967 −0.822789
\(873\) −6.79158 7.63559i −0.229860 0.258426i
\(874\) 18.7824 0.635324
\(875\) 0 0
\(876\) −6.26509 2.81223i −0.211678 0.0950166i
\(877\) 18.3647 + 31.8085i 0.620131 + 1.07410i 0.989461 + 0.144800i \(0.0462538\pi\)
−0.369330 + 0.929298i \(0.620413\pi\)
\(878\) 1.94548 + 3.36966i 0.0656566 + 0.113721i
\(879\) −43.4443 19.5010i −1.46534 0.657752i
\(880\) 1.39284 2.41246i 0.0469525 0.0813241i
\(881\) −25.3721 −0.854807 −0.427403 0.904061i \(-0.640572\pi\)
−0.427403 + 0.904061i \(0.640572\pi\)
\(882\) 0 0
\(883\) −16.9381 −0.570012 −0.285006 0.958526i \(-0.591996\pi\)
−0.285006 + 0.958526i \(0.591996\pi\)
\(884\) −16.9134 + 29.2949i −0.568860 + 0.985294i
\(885\) −1.74077 17.0607i −0.0585152 0.573488i
\(886\) 31.7403 + 54.9759i 1.06634 + 1.84695i
\(887\) −24.0069 41.5811i −0.806071 1.39616i −0.915566 0.402169i \(-0.868256\pi\)
0.109494 0.993987i \(-0.465077\pi\)
\(888\) −18.5342 + 13.3801i −0.621968 + 0.449006i
\(889\) 0 0
\(890\) 1.36115 0.0456260
\(891\) −4.86329 + 2.09485i −0.162926 + 0.0701800i
\(892\) −18.4456 −0.617603
\(893\) −16.6778 + 28.8868i −0.558102 + 0.966661i
\(894\) 10.4207 7.52279i 0.348519 0.251600i
\(895\) 6.78159 + 11.7461i 0.226684 + 0.392627i
\(896\) 0 0
\(897\) −2.18615 21.4258i −0.0729936 0.715385i
\(898\) −5.27128 + 9.13013i −0.175905 + 0.304676i
\(899\) −33.2713 −1.10966
\(900\) −3.44017 + 10.3729i −0.114672 + 0.345763i
\(901\) −52.4867 −1.74858
\(902\) 0.527445 0.913562i 0.0175620 0.0304183i
\(903\) 0 0
\(904\) −8.51918 14.7557i −0.283344 0.490766i
\(905\) 6.11677 + 10.5945i 0.203328 + 0.352175i
\(906\) −33.9842 15.2546i −1.12905 0.506800i
\(907\) 12.3887 21.4579i 0.411361 0.712499i −0.583678 0.811985i \(-0.698387\pi\)
0.995039 + 0.0994869i \(0.0317201\pi\)
\(908\) −9.26972 −0.307626
\(909\) −19.1138 21.4892i −0.633965 0.712751i
\(910\) 0 0
\(911\) −15.7916 + 27.3519i −0.523200 + 0.906209i 0.476435 + 0.879210i \(0.341929\pi\)
−0.999635 + 0.0269997i \(0.991405\pi\)
\(912\) 3.91204 + 38.3406i 0.129541 + 1.26958i
\(913\) −1.67209 2.89615i −0.0553382 0.0958486i
\(914\) 17.1421 + 29.6911i 0.567011 + 0.982093i
\(915\) −15.5345 + 11.2145i −0.513555 + 0.370741i
\(916\) −6.69183 + 11.5906i −0.221104 + 0.382964i
\(917\) 0 0
\(918\) 65.3714 + 14.5190i 2.15758 + 0.479198i
\(919\) 1.59208 0.0525180 0.0262590 0.999655i \(-0.491641\pi\)
0.0262590 + 0.999655i \(0.491641\pi\)
\(920\) 2.22062 3.84623i 0.0732118 0.126807i
\(921\) 20.8090 15.0222i 0.685678 0.494999i
\(922\) −19.1514 33.1712i −0.630718 1.09244i
\(923\) 10.7934 + 18.6947i 0.355268 + 0.615342i
\(924\) 0 0
\(925\) −14.3207 + 24.8042i −0.470863 + 0.815558i
\(926\) 46.9591 1.54317
\(927\) 34.2382 7.06043i 1.12453 0.231895i
\(928\) 25.7403 0.844968
\(929\) −13.5356 + 23.4443i −0.444087 + 0.769182i −0.997988 0.0634007i \(-0.979805\pi\)
0.553901 + 0.832583i \(0.313139\pi\)
\(930\) 15.4869 + 6.95167i 0.507836 + 0.227954i
\(931\) 0 0
\(932\) −1.94939 3.37644i −0.0638543 0.110599i
\(933\) −45.9250 20.6145i −1.50352 0.674889i
\(934\) 17.1003 29.6186i 0.559540 0.969151i
\(935\) −4.23491 −0.138496
\(936\) 27.8567 5.74447i 0.910526 0.187764i
\(937\) 32.6624 1.06704 0.533518 0.845789i \(-0.320870\pi\)
0.533518 + 0.845789i \(0.320870\pi\)
\(938\) 0 0
\(939\) −4.30361 42.1782i −0.140443 1.37643i
\(940\) −3.15390 5.46272i −0.102869 0.178174i
\(941\) −2.36143 4.09011i −0.0769803 0.133334i 0.824965 0.565183i \(-0.191195\pi\)
−0.901946 + 0.431849i \(0.857861\pi\)
\(942\) −26.9092 + 19.4261i −0.876750 + 0.632936i
\(943\) 1.30654 2.26299i 0.0425466 0.0736929i
\(944\) −52.0220 −1.69317
\(945\) 0 0
\(946\) 6.98762 0.227187
\(947\) −28.3905 + 49.1738i −0.922568 + 1.59793i −0.127141 + 0.991885i \(0.540580\pi\)
−0.795427 + 0.606050i \(0.792753\pi\)
\(948\) −1.66469 + 1.20176i −0.0540668 + 0.0390314i
\(949\) 11.1971 + 19.3939i 0.363473 + 0.629553i
\(950\) 15.5397 + 26.9156i 0.504175 + 0.873257i
\(951\) −1.29872 12.7284i −0.0421140 0.412745i
\(952\) 0 0
\(953\) −47.1693 −1.52796 −0.763982 0.645238i \(-0.776758\pi\)
−0.763982 + 0.645238i \(0.776758\pi\)
\(954\) −23.4574 26.3725i −0.759460 0.853841i
\(955\) 2.05455 0.0664838
\(956\) 4.24426 7.35127i 0.137269 0.237757i
\(957\) 5.09211 + 2.28571i 0.164605 + 0.0738866i
\(958\) −8.14681 14.1107i −0.263211 0.455896i
\(959\) 0 0
\(960\) 2.98143 + 1.33829i 0.0962253 + 0.0431930i
\(961\) −2.95056 + 5.11052i −0.0951793 + 0.164855i
\(962\) −59.6162 −1.92210
\(963\) −3.58719 + 10.8162i −0.115596 + 0.348547i
\(964\) 9.36359 0.301581
\(965\) 4.95107 8.57550i 0.159380 0.276055i
\(966\) 0 0
\(967\) −23.6985 41.0469i −0.762091 1.31998i −0.941771 0.336255i \(-0.890840\pi\)
0.179680 0.983725i \(-0.442494\pi\)
\(968\) 10.0611 + 17.4264i 0.323377 + 0.560106i
\(969\) 47.5045 34.2941i 1.52607 1.10168i
\(970\) 2.74790 4.75950i 0.0882297 0.152818i
\(971\) 22.7473 0.729994 0.364997 0.931009i \(-0.381070\pi\)
0.364997 + 0.931009i \(0.381070\pi\)
\(972\) 6.74399 + 12.1018i 0.216314 + 0.388164i
\(973\) 0 0
\(974\) 11.1106 19.2441i 0.356006 0.616620i
\(975\) 28.8948 20.8595i 0.925376 0.668039i
\(976\) 29.0601 + 50.3335i 0.930190 + 1.61114i
\(977\) −17.8425 30.9040i −0.570831 0.988708i −0.996481 0.0838200i \(-0.973288\pi\)
0.425650 0.904888i \(-0.360045\pi\)
\(978\) 0.497897 + 4.87972i 0.0159210 + 0.156036i
\(979\) 0.248187 0.429872i 0.00793209 0.0137388i
\(980\) 0 0
\(981\) −12.1483 + 36.6300i −0.387866 + 1.16951i
\(982\) −26.0741 −0.832059
\(983\) −12.0067 + 20.7962i −0.382954 + 0.663296i −0.991483 0.130236i \(-0.958427\pi\)
0.608529 + 0.793532i \(0.291760\pi\)
\(984\) 3.14833 + 1.41320i 0.100365 + 0.0450512i
\(985\) −8.91591 15.4428i −0.284085 0.492049i
\(986\) −35.2925 61.1284i −1.12394 1.94672i
\(987\) 0 0
\(988\) −9.95125 + 17.2361i −0.316591 + 0.548352i
\(989\) 17.3090 0.550395
\(990\) −1.89267 2.12788i −0.0601529 0.0676283i
\(991\) −44.4189 −1.41101 −0.705507 0.708703i \(-0.749281\pi\)
−0.705507 + 0.708703i \(0.749281\pi\)
\(992\) 14.2742 24.7237i 0.453208 0.784979i
\(993\) 3.52716 + 34.5685i 0.111931 + 1.09700i
\(994\) 0 0
\(995\) 3.99931 + 6.92701i 0.126787 + 0.219601i
\(996\) −7.09400 + 5.12124i −0.224782 + 0.162273i
\(997\) −4.52336 + 7.83470i −0.143256 + 0.248127i −0.928721 0.370779i \(-0.879091\pi\)
0.785465 + 0.618906i \(0.212424\pi\)
\(998\) −8.26929 −0.261760
\(999\) 10.9049 + 34.6325i 0.345015 + 1.09572i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.f.g.295.6 yes 12
3.2 odd 2 1323.2.f.g.883.1 12
7.2 even 3 441.2.h.g.214.2 12
7.3 odd 6 441.2.g.g.79.6 12
7.4 even 3 441.2.g.g.79.5 12
7.5 odd 6 441.2.h.g.214.1 12
7.6 odd 2 inner 441.2.f.g.295.5 yes 12
9.2 odd 6 3969.2.a.bd.1.6 6
9.4 even 3 inner 441.2.f.g.148.6 yes 12
9.5 odd 6 1323.2.f.g.442.1 12
9.7 even 3 3969.2.a.be.1.1 6
21.2 odd 6 1323.2.h.g.802.5 12
21.5 even 6 1323.2.h.g.802.6 12
21.11 odd 6 1323.2.g.g.667.2 12
21.17 even 6 1323.2.g.g.667.1 12
21.20 even 2 1323.2.f.g.883.2 12
63.4 even 3 441.2.h.g.373.2 12
63.5 even 6 1323.2.g.g.361.1 12
63.13 odd 6 inner 441.2.f.g.148.5 12
63.20 even 6 3969.2.a.bd.1.5 6
63.23 odd 6 1323.2.g.g.361.2 12
63.31 odd 6 441.2.h.g.373.1 12
63.32 odd 6 1323.2.h.g.226.5 12
63.34 odd 6 3969.2.a.be.1.2 6
63.40 odd 6 441.2.g.g.67.6 12
63.41 even 6 1323.2.f.g.442.2 12
63.58 even 3 441.2.g.g.67.5 12
63.59 even 6 1323.2.h.g.226.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
441.2.f.g.148.5 12 63.13 odd 6 inner
441.2.f.g.148.6 yes 12 9.4 even 3 inner
441.2.f.g.295.5 yes 12 7.6 odd 2 inner
441.2.f.g.295.6 yes 12 1.1 even 1 trivial
441.2.g.g.67.5 12 63.58 even 3
441.2.g.g.67.6 12 63.40 odd 6
441.2.g.g.79.5 12 7.4 even 3
441.2.g.g.79.6 12 7.3 odd 6
441.2.h.g.214.1 12 7.5 odd 6
441.2.h.g.214.2 12 7.2 even 3
441.2.h.g.373.1 12 63.31 odd 6
441.2.h.g.373.2 12 63.4 even 3
1323.2.f.g.442.1 12 9.5 odd 6
1323.2.f.g.442.2 12 63.41 even 6
1323.2.f.g.883.1 12 3.2 odd 2
1323.2.f.g.883.2 12 21.20 even 2
1323.2.g.g.361.1 12 63.5 even 6
1323.2.g.g.361.2 12 63.23 odd 6
1323.2.g.g.667.1 12 21.17 even 6
1323.2.g.g.667.2 12 21.11 odd 6
1323.2.h.g.226.5 12 63.32 odd 6
1323.2.h.g.226.6 12 63.59 even 6
1323.2.h.g.802.5 12 21.2 odd 6
1323.2.h.g.802.6 12 21.5 even 6
3969.2.a.bd.1.5 6 63.20 even 6
3969.2.a.bd.1.6 6 9.2 odd 6
3969.2.a.be.1.1 6 9.7 even 3
3969.2.a.be.1.2 6 63.34 odd 6