L(s) = 1 | + (1.41 + 2.45i)2-s + (2.70 − 1.30i)3-s + (−2.01 + 3.49i)4-s + (2.07 + 1.19i)5-s + (7.02 + 4.78i)6-s − 0.0884·8-s + (5.60 − 7.04i)9-s + 6.79i·10-s + (−5.69 − 9.86i)11-s + (−0.896 + 12.0i)12-s + (13.4 + 7.77i)13-s + (7.17 + 0.533i)15-s + (7.93 + 13.7i)16-s + 12.1i·17-s + (25.2 + 3.77i)18-s + 16.0i·19-s + ⋯ |
L(s) = 1 | + (0.708 + 1.22i)2-s + (0.900 − 0.434i)3-s + (−0.503 + 0.872i)4-s + (0.415 + 0.239i)5-s + (1.17 + 0.797i)6-s − 0.0110·8-s + (0.622 − 0.782i)9-s + 0.679i·10-s + (−0.517 − 0.896i)11-s + (−0.0747 + 1.00i)12-s + (1.03 + 0.597i)13-s + (0.478 + 0.0355i)15-s + (0.496 + 0.859i)16-s + 0.711i·17-s + (1.40 + 0.209i)18-s + 0.842i·19-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.302−0.953i)Λ(3−s)
Λ(s)=(=(441s/2ΓC(s+1)L(s)(0.302−0.953i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.302−0.953i
|
Analytic conductor: |
12.0163 |
Root analytic conductor: |
3.46646 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(391,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1), 0.302−0.953i)
|
Particular Values
L(23) |
≈ |
3.07281+2.24845i |
L(21) |
≈ |
3.07281+2.24845i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−2.70+1.30i)T |
| 7 | 1 |
good | 2 | 1+(−1.41−2.45i)T+(−2+3.46i)T2 |
| 5 | 1+(−2.07−1.19i)T+(12.5+21.6i)T2 |
| 11 | 1+(5.69+9.86i)T+(−60.5+104.i)T2 |
| 13 | 1+(−13.4−7.77i)T+(84.5+146.i)T2 |
| 17 | 1−12.1iT−289T2 |
| 19 | 1−16.0iT−361T2 |
| 23 | 1+(−8.02+13.9i)T+(−264.5−458.i)T2 |
| 29 | 1+(−16.2−28.1i)T+(−420.5+728.i)T2 |
| 31 | 1+(36.7+21.1i)T+(480.5+832.i)T2 |
| 37 | 1−7.22T+1.36e3T2 |
| 41 | 1+(−7.55−4.36i)T+(840.5+1.45e3i)T2 |
| 43 | 1+(22.2+38.4i)T+(−924.5+1.60e3i)T2 |
| 47 | 1+(22.8−13.1i)T+(1.10e3−1.91e3i)T2 |
| 53 | 1+68.1T+2.80e3T2 |
| 59 | 1+(−82.4−47.5i)T+(1.74e3+3.01e3i)T2 |
| 61 | 1+(42.8−24.7i)T+(1.86e3−3.22e3i)T2 |
| 67 | 1+(−40.9+70.9i)T+(−2.24e3−3.88e3i)T2 |
| 71 | 1+112.T+5.04e3T2 |
| 73 | 1−67.9iT−5.32e3T2 |
| 79 | 1+(68.4+118.i)T+(−3.12e3+5.40e3i)T2 |
| 83 | 1+(18.8−10.8i)T+(3.44e3−5.96e3i)T2 |
| 89 | 1+108.iT−7.92e3T2 |
| 97 | 1+(96.5−55.7i)T+(4.70e3−8.14e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.02099655328373562044998858716, −10.12114978969033855082332559693, −8.741222486832519558526335186377, −8.268074982843073120439423037058, −7.26756120050145131593110217968, −6.32353155094211230873963128525, −5.78015041109981685114066441137, −4.27263639202951085382490172914, −3.29453002358147517299257623805, −1.68044317597475058201896271959,
1.51347423832403732507719484279, 2.63384500531772754545526602012, 3.51973381346497445243283742927, 4.63361652640927256018952979912, 5.39359861589545021799754131725, 7.16676003003977867780031903544, 8.141353057410999501963171570164, 9.344859633412766607775606692072, 9.884844084198086543350057732857, 10.81363338838315319374693259147