Properties

Label 441.3.l.b.391.12
Level $441$
Weight $3$
Character 441.391
Analytic conductor $12.016$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,3,Mod(97,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.97");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 441.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0163796583\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 391.12
Character \(\chi\) \(=\) 441.391
Dual form 441.3.l.b.97.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41697 + 2.45427i) q^{2} +(2.70216 - 1.30320i) q^{3} +(-2.01561 + 3.49114i) q^{4} +(2.07720 + 1.19927i) q^{5} +(7.02729 + 4.78521i) q^{6} -0.0884848 q^{8} +(5.60332 - 7.04292i) q^{9} +O(q^{10})\) \(q+(1.41697 + 2.45427i) q^{2} +(2.70216 - 1.30320i) q^{3} +(-2.01561 + 3.49114i) q^{4} +(2.07720 + 1.19927i) q^{5} +(7.02729 + 4.78521i) q^{6} -0.0884848 q^{8} +(5.60332 - 7.04292i) q^{9} +6.79734i q^{10} +(-5.69528 - 9.86452i) q^{11} +(-0.896835 + 12.0604i) q^{12} +(13.4628 + 7.77278i) q^{13} +(7.17583 + 0.533610i) q^{15} +(7.93707 + 13.7474i) q^{16} +12.1021i q^{17} +(25.2249 + 3.77242i) q^{18} +16.0014i q^{19} +(-8.37367 + 4.83454i) q^{20} +(16.1401 - 27.9555i) q^{22} +(8.02831 - 13.9054i) q^{23} +(-0.239100 + 0.115314i) q^{24} +(-9.62349 - 16.6684i) q^{25} +44.0552i q^{26} +(5.96270 - 26.3334i) q^{27} +(16.2339 + 28.1180i) q^{29} +(8.85832 + 18.3675i) q^{30} +(-36.7194 - 21.1999i) q^{31} +(-22.6701 + 39.2658i) q^{32} +(-28.2450 - 19.2334i) q^{33} +(-29.7018 + 17.1483i) q^{34} +(13.2937 + 33.7578i) q^{36} +7.22811 q^{37} +(-39.2718 + 22.6736i) q^{38} +(46.5083 + 3.45845i) q^{39} +(-0.183801 - 0.106117i) q^{40} +(7.55990 + 4.36471i) q^{41} +(-22.2113 - 38.4711i) q^{43} +45.9179 q^{44} +(20.0856 - 7.90966i) q^{45} +45.5035 q^{46} +(-22.8382 + 13.1856i) q^{47} +(39.3629 + 26.8040i) q^{48} +(27.2724 - 47.2372i) q^{50} +(15.7715 + 32.7018i) q^{51} +(-54.2717 + 31.3338i) q^{52} -68.1249 q^{53} +(73.0780 - 22.6795i) q^{54} -27.3208i q^{55} +(20.8531 + 43.2384i) q^{57} +(-46.0060 + 79.6847i) q^{58} +(82.4104 + 47.5797i) q^{59} +(-16.3266 + 23.9763i) q^{60} +(-42.8184 + 24.7212i) q^{61} -120.159i q^{62} -64.9952 q^{64} +(18.6434 + 32.2913i) q^{65} +(7.18145 - 96.5740i) q^{66} +(40.9350 - 70.9015i) q^{67} +(-42.2502 - 24.3931i) q^{68} +(3.57215 - 48.0372i) q^{69} -112.881 q^{71} +(-0.495809 + 0.623192i) q^{72} +67.9029i q^{73} +(10.2420 + 17.7397i) q^{74} +(-47.7265 - 32.4992i) q^{75} +(-55.8633 - 32.2527i) q^{76} +(57.4129 + 119.044i) q^{78} +(-68.4439 - 118.548i) q^{79} +38.0748i q^{80} +(-18.2056 - 78.9275i) q^{81} +24.7387i q^{82} +(-18.8674 + 10.8931i) q^{83} +(-14.5137 + 25.1385i) q^{85} +(62.9455 - 109.025i) q^{86} +(80.5101 + 54.8232i) q^{87} +(0.503946 + 0.872861i) q^{88} -108.432i q^{89} +(47.8732 + 38.0877i) q^{90} +(32.3639 + 56.0559i) q^{92} +(-126.849 - 9.43279i) q^{93} +(-64.7220 - 37.3673i) q^{94} +(-19.1901 + 33.2382i) q^{95} +(-10.0870 + 135.646i) q^{96} +(-96.5982 + 55.7710i) q^{97} +(-101.388 - 15.1626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + q^{2} - 23 q^{4} + 3 q^{5} - 12 q^{6} - 16 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 28 q + q^{2} - 23 q^{4} + 3 q^{5} - 12 q^{6} - 16 q^{8} + 6 q^{9} + 7 q^{11} + 27 q^{12} - 15 q^{13} - 18 q^{15} - 27 q^{16} + 9 q^{18} - 108 q^{20} - 10 q^{22} + 34 q^{23} + 120 q^{24} + 31 q^{25} + 81 q^{27} + 70 q^{29} + 33 q^{30} + 45 q^{31} + 153 q^{32} - 111 q^{33} - 12 q^{34} - 174 q^{36} - 18 q^{37} - 87 q^{38} - 9 q^{39} + 102 q^{40} + 234 q^{41} + 30 q^{43} - 102 q^{44} + 3 q^{45} + 44 q^{46} - 111 q^{47} - 147 q^{48} + 241 q^{50} - 6 q^{51} + 219 q^{52} - 296 q^{53} + 207 q^{54} + 189 q^{57} + 17 q^{58} + 42 q^{59} - 489 q^{60} + 120 q^{61} - 48 q^{64} + 114 q^{65} - 705 q^{66} - 34 q^{67} + 18 q^{68} - 78 q^{69} - 350 q^{71} + 177 q^{72} + 359 q^{74} + 387 q^{75} - 72 q^{76} - 375 q^{78} - 82 q^{79} + 438 q^{81} - 738 q^{83} + 3 q^{85} + 17 q^{86} + 564 q^{87} + 25 q^{88} + 543 q^{90} + 288 q^{92} - 30 q^{93} - 3 q^{94} + 507 q^{95} - 813 q^{96} + 57 q^{97} - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41697 + 2.45427i 0.708485 + 1.22713i 0.965419 + 0.260704i \(0.0839545\pi\)
−0.256934 + 0.966429i \(0.582712\pi\)
\(3\) 2.70216 1.30320i 0.900720 0.434401i
\(4\) −2.01561 + 3.49114i −0.503903 + 0.872785i
\(5\) 2.07720 + 1.19927i 0.415440 + 0.239855i 0.693125 0.720818i \(-0.256234\pi\)
−0.277684 + 0.960672i \(0.589567\pi\)
\(6\) 7.02729 + 4.78521i 1.17121 + 0.797535i
\(7\) 0 0
\(8\) −0.0884848 −0.0110606
\(9\) 5.60332 7.04292i 0.622591 0.782547i
\(10\) 6.79734i 0.679734i
\(11\) −5.69528 9.86452i −0.517753 0.896775i −0.999787 0.0206223i \(-0.993435\pi\)
0.482034 0.876152i \(-0.339898\pi\)
\(12\) −0.896835 + 12.0604i −0.0747362 + 1.00503i
\(13\) 13.4628 + 7.77278i 1.03560 + 0.597906i 0.918585 0.395224i \(-0.129333\pi\)
0.117019 + 0.993130i \(0.462666\pi\)
\(14\) 0 0
\(15\) 7.17583 + 0.533610i 0.478388 + 0.0355740i
\(16\) 7.93707 + 13.7474i 0.496067 + 0.859213i
\(17\) 12.1021i 0.711888i 0.934507 + 0.355944i \(0.115841\pi\)
−0.934507 + 0.355944i \(0.884159\pi\)
\(18\) 25.2249 + 3.77242i 1.40139 + 0.209579i
\(19\) 16.0014i 0.842181i 0.907019 + 0.421090i \(0.138352\pi\)
−0.907019 + 0.421090i \(0.861648\pi\)
\(20\) −8.37367 + 4.83454i −0.418683 + 0.241727i
\(21\) 0 0
\(22\) 16.1401 27.9555i 0.733641 1.27070i
\(23\) 8.02831 13.9054i 0.349057 0.604584i −0.637025 0.770843i \(-0.719835\pi\)
0.986082 + 0.166259i \(0.0531686\pi\)
\(24\) −0.239100 + 0.115314i −0.00996250 + 0.00480474i
\(25\) −9.62349 16.6684i −0.384939 0.666735i
\(26\) 44.0552i 1.69443i
\(27\) 5.96270 26.3334i 0.220841 0.975310i
\(28\) 0 0
\(29\) 16.2339 + 28.1180i 0.559791 + 0.969586i 0.997513 + 0.0704760i \(0.0224518\pi\)
−0.437723 + 0.899110i \(0.644215\pi\)
\(30\) 8.85832 + 18.3675i 0.295277 + 0.612250i
\(31\) −36.7194 21.1999i −1.18450 0.683869i −0.227445 0.973791i \(-0.573037\pi\)
−0.957050 + 0.289922i \(0.906371\pi\)
\(32\) −22.6701 + 39.2658i −0.708442 + 1.22706i
\(33\) −28.2450 19.2334i −0.855910 0.582830i
\(34\) −29.7018 + 17.1483i −0.873581 + 0.504362i
\(35\) 0 0
\(36\) 13.2937 + 33.7578i 0.369270 + 0.937716i
\(37\) 7.22811 0.195354 0.0976772 0.995218i \(-0.468859\pi\)
0.0976772 + 0.995218i \(0.468859\pi\)
\(38\) −39.2718 + 22.6736i −1.03347 + 0.596673i
\(39\) 46.5083 + 3.45845i 1.19252 + 0.0886783i
\(40\) −0.183801 0.106117i −0.00459502 0.00265294i
\(41\) 7.55990 + 4.36471i 0.184388 + 0.106456i 0.589353 0.807876i \(-0.299383\pi\)
−0.404965 + 0.914332i \(0.632716\pi\)
\(42\) 0 0
\(43\) −22.2113 38.4711i −0.516542 0.894676i −0.999816 0.0192072i \(-0.993886\pi\)
0.483274 0.875469i \(-0.339448\pi\)
\(44\) 45.9179 1.04359
\(45\) 20.0856 7.90966i 0.446347 0.175770i
\(46\) 45.5035 0.989207
\(47\) −22.8382 + 13.1856i −0.485919 + 0.280545i −0.722880 0.690974i \(-0.757182\pi\)
0.236961 + 0.971519i \(0.423849\pi\)
\(48\) 39.3629 + 26.8040i 0.820060 + 0.558418i
\(49\) 0 0
\(50\) 27.2724 47.2372i 0.545448 0.944744i
\(51\) 15.7715 + 32.7018i 0.309245 + 0.641212i
\(52\) −54.2717 + 31.3338i −1.04369 + 0.602573i
\(53\) −68.1249 −1.28538 −0.642688 0.766128i \(-0.722181\pi\)
−0.642688 + 0.766128i \(0.722181\pi\)
\(54\) 73.0780 22.6795i 1.35330 0.419992i
\(55\) 27.3208i 0.496742i
\(56\) 0 0
\(57\) 20.8531 + 43.2384i 0.365844 + 0.758568i
\(58\) −46.0060 + 79.6847i −0.793207 + 1.37387i
\(59\) 82.4104 + 47.5797i 1.39679 + 0.806435i 0.994055 0.108883i \(-0.0347274\pi\)
0.402732 + 0.915318i \(0.368061\pi\)
\(60\) −16.3266 + 23.9763i −0.272110 + 0.399605i
\(61\) −42.8184 + 24.7212i −0.701941 + 0.405266i −0.808070 0.589087i \(-0.799488\pi\)
0.106129 + 0.994352i \(0.466154\pi\)
\(62\) 120.159i 1.93804i
\(63\) 0 0
\(64\) −64.9952 −1.01555
\(65\) 18.6434 + 32.2913i 0.286821 + 0.496789i
\(66\) 7.18145 96.5740i 0.108810 1.46324i
\(67\) 40.9350 70.9015i 0.610971 1.05823i −0.380107 0.924943i \(-0.624113\pi\)
0.991077 0.133289i \(-0.0425539\pi\)
\(68\) −42.2502 24.3931i −0.621326 0.358723i
\(69\) 3.57215 48.0372i 0.0517703 0.696192i
\(70\) 0 0
\(71\) −112.881 −1.58987 −0.794936 0.606694i \(-0.792496\pi\)
−0.794936 + 0.606694i \(0.792496\pi\)
\(72\) −0.495809 + 0.623192i −0.00688624 + 0.00865544i
\(73\) 67.9029i 0.930176i 0.885264 + 0.465088i \(0.153977\pi\)
−0.885264 + 0.465088i \(0.846023\pi\)
\(74\) 10.2420 + 17.7397i 0.138406 + 0.239726i
\(75\) −47.7265 32.4992i −0.636353 0.433323i
\(76\) −55.8633 32.2527i −0.735043 0.424377i
\(77\) 0 0
\(78\) 57.4129 + 119.044i 0.736063 + 1.52621i
\(79\) −68.4439 118.548i −0.866379 1.50061i −0.865671 0.500613i \(-0.833108\pi\)
−0.000707812 1.00000i \(-0.500225\pi\)
\(80\) 38.0748i 0.475936i
\(81\) −18.2056 78.9275i −0.224760 0.974414i
\(82\) 24.7387i 0.301691i
\(83\) −18.8674 + 10.8931i −0.227318 + 0.131242i −0.609334 0.792913i \(-0.708563\pi\)
0.382016 + 0.924156i \(0.375230\pi\)
\(84\) 0 0
\(85\) −14.5137 + 25.1385i −0.170750 + 0.295747i
\(86\) 62.9455 109.025i 0.731924 1.26773i
\(87\) 80.5101 + 54.8232i 0.925404 + 0.630151i
\(88\) 0.503946 + 0.872861i 0.00572666 + 0.00991887i
\(89\) 108.432i 1.21834i −0.793040 0.609169i \(-0.791503\pi\)
0.793040 0.609169i \(-0.208497\pi\)
\(90\) 47.8732 + 38.0877i 0.531924 + 0.423197i
\(91\) 0 0
\(92\) 32.3639 + 56.0559i 0.351782 + 0.609304i
\(93\) −126.849 9.43279i −1.36397 0.101428i
\(94\) −64.7220 37.3673i −0.688532 0.397524i
\(95\) −19.1901 + 33.2382i −0.202001 + 0.349876i
\(96\) −10.0870 + 135.646i −0.105072 + 1.41298i
\(97\) −96.5982 + 55.7710i −0.995857 + 0.574959i −0.907020 0.421088i \(-0.861649\pi\)
−0.0888375 + 0.996046i \(0.528315\pi\)
\(98\) 0 0
\(99\) −101.388 15.1626i −1.02412 0.153158i
\(100\) 77.5888 0.775888
\(101\) 66.5650 38.4313i 0.659059 0.380508i −0.132859 0.991135i \(-0.542416\pi\)
0.791919 + 0.610627i \(0.209082\pi\)
\(102\) −57.9111 + 85.0449i −0.567756 + 0.833774i
\(103\) −130.580 75.3905i −1.26777 0.731946i −0.293203 0.956050i \(-0.594721\pi\)
−0.974565 + 0.224104i \(0.928054\pi\)
\(104\) −1.19126 0.687773i −0.0114544 0.00661320i
\(105\) 0 0
\(106\) −96.5310 167.197i −0.910669 1.57733i
\(107\) 76.6044 0.715929 0.357964 0.933735i \(-0.383471\pi\)
0.357964 + 0.933735i \(0.383471\pi\)
\(108\) 79.9150 + 73.8945i 0.739954 + 0.684208i
\(109\) −25.1970 −0.231165 −0.115582 0.993298i \(-0.536873\pi\)
−0.115582 + 0.993298i \(0.536873\pi\)
\(110\) 67.0525 38.7128i 0.609568 0.351934i
\(111\) 19.5315 9.41970i 0.175960 0.0848622i
\(112\) 0 0
\(113\) 37.0748 64.2154i 0.328095 0.568277i −0.654039 0.756461i \(-0.726927\pi\)
0.982134 + 0.188184i \(0.0602600\pi\)
\(114\) −76.5702 + 112.447i −0.671669 + 0.986374i
\(115\) 33.3528 19.2563i 0.290025 0.167446i
\(116\) −130.885 −1.12832
\(117\) 130.180 51.2644i 1.11265 0.438157i
\(118\) 269.676i 2.28539i
\(119\) 0 0
\(120\) −0.634952 0.0472164i −0.00529127 0.000393470i
\(121\) −4.37253 + 7.57345i −0.0361366 + 0.0625905i
\(122\) −121.345 70.0585i −0.994629 0.574250i
\(123\) 26.1162 + 1.94205i 0.212327 + 0.0157891i
\(124\) 148.024 85.4617i 1.19374 0.689207i
\(125\) 106.128i 0.849027i
\(126\) 0 0
\(127\) 52.2864 0.411704 0.205852 0.978583i \(-0.434003\pi\)
0.205852 + 0.978583i \(0.434003\pi\)
\(128\) −1.41571 2.45209i −0.0110603 0.0191569i
\(129\) −110.154 75.0092i −0.853908 0.581466i
\(130\) −52.8342 + 91.5116i −0.406417 + 0.703935i
\(131\) 161.548 + 93.2696i 1.23319 + 0.711982i 0.967693 0.252131i \(-0.0811313\pi\)
0.265495 + 0.964112i \(0.414465\pi\)
\(132\) 124.078 59.8404i 0.939981 0.453336i
\(133\) 0 0
\(134\) 232.015 1.73145
\(135\) 43.9666 47.5488i 0.325679 0.352213i
\(136\) 1.07085i 0.00787392i
\(137\) 76.6871 + 132.826i 0.559760 + 0.969533i 0.997516 + 0.0704389i \(0.0224400\pi\)
−0.437756 + 0.899094i \(0.644227\pi\)
\(138\) 122.958 59.3003i 0.890998 0.429713i
\(139\) 79.0232 + 45.6241i 0.568513 + 0.328231i 0.756555 0.653930i \(-0.226881\pi\)
−0.188043 + 0.982161i \(0.560214\pi\)
\(140\) 0 0
\(141\) −44.5288 + 65.3924i −0.315807 + 0.463776i
\(142\) −159.949 277.040i −1.12640 1.95098i
\(143\) 177.073i 1.23827i
\(144\) 141.296 + 21.1310i 0.981221 + 0.146743i
\(145\) 77.8757i 0.537074i
\(146\) −166.652 + 96.2164i −1.14145 + 0.659016i
\(147\) 0 0
\(148\) −14.5691 + 25.2344i −0.0984396 + 0.170502i
\(149\) −56.2062 + 97.3519i −0.377223 + 0.653369i −0.990657 0.136377i \(-0.956454\pi\)
0.613434 + 0.789746i \(0.289787\pi\)
\(150\) 12.1347 163.184i 0.0808980 1.08789i
\(151\) −14.0984 24.4192i −0.0933671 0.161717i 0.815559 0.578674i \(-0.196430\pi\)
−0.908926 + 0.416958i \(0.863096\pi\)
\(152\) 1.41588i 0.00931503i
\(153\) 85.2342 + 67.8120i 0.557086 + 0.443216i
\(154\) 0 0
\(155\) −50.8490 88.0731i −0.328058 0.568214i
\(156\) −105.817 + 155.396i −0.678311 + 0.996128i
\(157\) −8.87726 5.12529i −0.0565431 0.0326452i 0.471462 0.881886i \(-0.343726\pi\)
−0.528005 + 0.849241i \(0.677060\pi\)
\(158\) 193.966 335.959i 1.22763 2.12632i
\(159\) −184.084 + 88.7806i −1.15776 + 0.558368i
\(160\) −94.1810 + 54.3754i −0.588631 + 0.339846i
\(161\) 0 0
\(162\) 167.912 156.519i 1.03650 0.966168i
\(163\) −177.682 −1.09007 −0.545037 0.838412i \(-0.683485\pi\)
−0.545037 + 0.838412i \(0.683485\pi\)
\(164\) −30.4757 + 17.5951i −0.185827 + 0.107287i
\(165\) −35.6046 73.8252i −0.215785 0.447425i
\(166\) −53.4692 30.8705i −0.322104 0.185967i
\(167\) −53.9725 31.1611i −0.323189 0.186593i 0.329624 0.944112i \(-0.393078\pi\)
−0.652813 + 0.757519i \(0.726411\pi\)
\(168\) 0 0
\(169\) 36.3322 + 62.9292i 0.214983 + 0.372362i
\(170\) −82.2621 −0.483895
\(171\) 112.697 + 89.6612i 0.659046 + 0.524334i
\(172\) 179.077 1.04115
\(173\) 76.2216 44.0066i 0.440587 0.254373i −0.263259 0.964725i \(-0.584797\pi\)
0.703847 + 0.710352i \(0.251464\pi\)
\(174\) −20.4701 + 275.276i −0.117644 + 1.58205i
\(175\) 0 0
\(176\) 90.4077 156.591i 0.513680 0.889720i
\(177\) 284.692 + 21.1703i 1.60843 + 0.119606i
\(178\) 266.121 153.645i 1.49506 0.863175i
\(179\) 12.9521 0.0723579 0.0361789 0.999345i \(-0.488481\pi\)
0.0361789 + 0.999345i \(0.488481\pi\)
\(180\) −12.8711 + 86.0646i −0.0715059 + 0.478137i
\(181\) 225.852i 1.24780i −0.781503 0.623901i \(-0.785547\pi\)
0.781503 0.623901i \(-0.214453\pi\)
\(182\) 0 0
\(183\) −83.4853 + 122.602i −0.456204 + 0.669955i
\(184\) −0.710384 + 1.23042i −0.00386078 + 0.00668707i
\(185\) 15.0143 + 8.66848i 0.0811581 + 0.0468567i
\(186\) −156.591 324.688i −0.841889 1.74563i
\(187\) 119.381 68.9249i 0.638404 0.368582i
\(188\) 106.308i 0.565470i
\(189\) 0 0
\(190\) −108.767 −0.572459
\(191\) −51.9453 89.9718i −0.271965 0.471057i 0.697400 0.716682i \(-0.254340\pi\)
−0.969365 + 0.245625i \(0.921007\pi\)
\(192\) −175.627 + 84.7020i −0.914726 + 0.441156i
\(193\) −81.1711 + 140.592i −0.420575 + 0.728458i −0.995996 0.0893998i \(-0.971505\pi\)
0.575420 + 0.817858i \(0.304838\pi\)
\(194\) −273.754 158.052i −1.41110 0.814699i
\(195\) 92.4594 + 62.9600i 0.474151 + 0.322872i
\(196\) 0 0
\(197\) 301.595 1.53094 0.765470 0.643472i \(-0.222507\pi\)
0.765470 + 0.643472i \(0.222507\pi\)
\(198\) −106.450 270.317i −0.537627 1.36524i
\(199\) 57.8010i 0.290457i 0.989398 + 0.145229i \(0.0463917\pi\)
−0.989398 + 0.145229i \(0.953608\pi\)
\(200\) 0.851533 + 1.47490i 0.00425766 + 0.00737449i
\(201\) 18.2138 244.934i 0.0906160 1.21858i
\(202\) 188.641 + 108.912i 0.933868 + 0.539169i
\(203\) 0 0
\(204\) −145.956 10.8536i −0.715470 0.0532039i
\(205\) 10.4690 + 18.1328i 0.0510681 + 0.0884526i
\(206\) 427.304i 2.07429i
\(207\) −52.9497 134.459i −0.255796 0.649562i
\(208\) 246.772i 1.18640i
\(209\) 157.846 91.1327i 0.755246 0.436042i
\(210\) 0 0
\(211\) −21.2197 + 36.7535i −0.100567 + 0.174187i −0.911918 0.410371i \(-0.865399\pi\)
0.811351 + 0.584559i \(0.198732\pi\)
\(212\) 137.313 237.834i 0.647704 1.12186i
\(213\) −305.022 + 147.107i −1.43203 + 0.690642i
\(214\) 108.546 + 188.007i 0.507225 + 0.878540i
\(215\) 106.550i 0.495580i
\(216\) −0.527609 + 2.33010i −0.00244263 + 0.0107875i
\(217\) 0 0
\(218\) −35.7034 61.8400i −0.163777 0.283670i
\(219\) 88.4912 + 183.484i 0.404070 + 0.837828i
\(220\) 95.3808 + 55.0681i 0.433549 + 0.250310i
\(221\) −94.0670 + 162.929i −0.425642 + 0.737234i
\(222\) 50.7940 + 34.5881i 0.228802 + 0.155802i
\(223\) −166.212 + 95.9625i −0.745345 + 0.430325i −0.824009 0.566576i \(-0.808268\pi\)
0.0786645 + 0.996901i \(0.474934\pi\)
\(224\) 0 0
\(225\) −171.318 25.6208i −0.761411 0.113870i
\(226\) 210.135 0.929802
\(227\) −194.664 + 112.390i −0.857552 + 0.495108i −0.863192 0.504876i \(-0.831538\pi\)
0.00563942 + 0.999984i \(0.498205\pi\)
\(228\) −192.983 14.3506i −0.846417 0.0629414i
\(229\) 138.693 + 80.0742i 0.605644 + 0.349669i 0.771259 0.636522i \(-0.219627\pi\)
−0.165614 + 0.986191i \(0.552961\pi\)
\(230\) 94.5200 + 54.5712i 0.410957 + 0.237266i
\(231\) 0 0
\(232\) −1.43646 2.48802i −0.00619162 0.0107242i
\(233\) −246.598 −1.05836 −0.529180 0.848510i \(-0.677500\pi\)
−0.529180 + 0.848510i \(0.677500\pi\)
\(234\) 310.277 + 246.855i 1.32597 + 1.05494i
\(235\) −63.2527 −0.269160
\(236\) −332.215 + 191.804i −1.40769 + 0.812730i
\(237\) −339.439 231.140i −1.43223 0.975275i
\(238\) 0 0
\(239\) −110.141 + 190.769i −0.460839 + 0.798197i −0.999003 0.0446434i \(-0.985785\pi\)
0.538164 + 0.842840i \(0.319118\pi\)
\(240\) 49.6193 + 102.884i 0.206747 + 0.428684i
\(241\) 228.282 131.799i 0.947230 0.546883i 0.0550106 0.998486i \(-0.482481\pi\)
0.892219 + 0.451602i \(0.149147\pi\)
\(242\) −24.7830 −0.102409
\(243\) −152.053 189.549i −0.625732 0.780038i
\(244\) 199.313i 0.816858i
\(245\) 0 0
\(246\) 32.2395 + 66.8478i 0.131055 + 0.271739i
\(247\) −124.376 + 215.425i −0.503545 + 0.872165i
\(248\) 3.24911 + 1.87587i 0.0131012 + 0.00756400i
\(249\) −36.7868 + 54.0230i −0.147738 + 0.216960i
\(250\) 260.467 150.381i 1.04187 0.601523i
\(251\) 23.0003i 0.0916348i −0.998950 0.0458174i \(-0.985411\pi\)
0.998950 0.0458174i \(-0.0145892\pi\)
\(252\) 0 0
\(253\) −182.894 −0.722901
\(254\) 74.0883 + 128.325i 0.291686 + 0.505215i
\(255\) −6.45780 + 86.8426i −0.0253247 + 0.340559i
\(256\) −125.978 + 218.201i −0.492103 + 0.852347i
\(257\) 15.4300 + 8.90852i 0.0600389 + 0.0346635i 0.529719 0.848173i \(-0.322297\pi\)
−0.469680 + 0.882837i \(0.655631\pi\)
\(258\) 28.0072 376.633i 0.108555 1.45982i
\(259\) 0 0
\(260\) −150.311 −0.578120
\(261\) 288.997 + 43.2198i 1.10727 + 0.165593i
\(262\) 528.641i 2.01771i
\(263\) 181.504 + 314.375i 0.690130 + 1.19534i 0.971795 + 0.235828i \(0.0757801\pi\)
−0.281665 + 0.959513i \(0.590887\pi\)
\(264\) 2.49926 + 1.70186i 0.00946688 + 0.00644645i
\(265\) −141.509 81.7004i −0.533997 0.308303i
\(266\) 0 0
\(267\) −141.309 293.001i −0.529248 1.09738i
\(268\) 165.018 + 285.820i 0.615740 + 1.06649i
\(269\) 196.159i 0.729215i 0.931161 + 0.364607i \(0.118797\pi\)
−0.931161 + 0.364607i \(0.881203\pi\)
\(270\) 178.997 + 40.5305i 0.662951 + 0.150113i
\(271\) 95.2916i 0.351629i 0.984423 + 0.175815i \(0.0562560\pi\)
−0.984423 + 0.175815i \(0.943744\pi\)
\(272\) −166.372 + 96.0552i −0.611663 + 0.353144i
\(273\) 0 0
\(274\) −217.327 + 376.421i −0.793163 + 1.37380i
\(275\) −109.617 + 189.862i −0.398607 + 0.690408i
\(276\) 160.505 + 109.295i 0.581539 + 0.395997i
\(277\) 107.725 + 186.586i 0.388901 + 0.673596i 0.992302 0.123842i \(-0.0395216\pi\)
−0.603401 + 0.797438i \(0.706188\pi\)
\(278\) 258.592i 0.930187i
\(279\) −355.060 + 139.822i −1.27262 + 0.501153i
\(280\) 0 0
\(281\) 101.916 + 176.523i 0.362689 + 0.628196i 0.988402 0.151857i \(-0.0485254\pi\)
−0.625713 + 0.780053i \(0.715192\pi\)
\(282\) −223.586 16.6264i −0.792860 0.0589587i
\(283\) −104.320 60.2294i −0.368624 0.212825i 0.304233 0.952598i \(-0.401600\pi\)
−0.672857 + 0.739773i \(0.734933\pi\)
\(284\) 227.524 394.083i 0.801141 1.38762i
\(285\) −8.53852 + 114.823i −0.0299597 + 0.402889i
\(286\) 434.583 250.907i 1.51952 0.877297i
\(287\) 0 0
\(288\) 149.518 + 379.683i 0.519161 + 1.31834i
\(289\) 142.539 0.493215
\(290\) −191.128 + 110.348i −0.659061 + 0.380509i
\(291\) −188.343 + 276.589i −0.647226 + 0.950478i
\(292\) −237.059 136.866i −0.811844 0.468719i
\(293\) −151.688 87.5769i −0.517705 0.298897i 0.218290 0.975884i \(-0.429952\pi\)
−0.735995 + 0.676987i \(0.763285\pi\)
\(294\) 0 0
\(295\) 114.122 + 197.665i 0.386854 + 0.670051i
\(296\) −0.639578 −0.00216074
\(297\) −293.725 + 91.1568i −0.988974 + 0.306925i
\(298\) −318.570 −1.06903
\(299\) 216.168 124.805i 0.722969 0.417406i
\(300\) 209.657 101.114i 0.698858 0.337047i
\(301\) 0 0
\(302\) 39.9541 69.2026i 0.132298 0.229148i
\(303\) 129.785 190.595i 0.428335 0.629027i
\(304\) −219.978 + 127.004i −0.723612 + 0.417778i
\(305\) −118.590 −0.388819
\(306\) −45.6542 + 305.275i −0.149197 + 0.997630i
\(307\) 18.3665i 0.0598259i 0.999553 + 0.0299129i \(0.00952300\pi\)
−0.999553 + 0.0299129i \(0.990477\pi\)
\(308\) 0 0
\(309\) −451.097 33.5446i −1.45986 0.108558i
\(310\) 144.103 249.594i 0.464849 0.805142i
\(311\) 353.193 + 203.916i 1.13567 + 0.655679i 0.945355 0.326044i \(-0.105716\pi\)
0.190315 + 0.981723i \(0.439049\pi\)
\(312\) −4.11528 0.306021i −0.0131900 0.000980836i
\(313\) −348.791 + 201.374i −1.11435 + 0.643369i −0.939952 0.341307i \(-0.889130\pi\)
−0.174396 + 0.984676i \(0.555797\pi\)
\(314\) 29.0495i 0.0925145i
\(315\) 0 0
\(316\) 551.826 1.74628
\(317\) 148.273 + 256.817i 0.467739 + 0.810149i 0.999320 0.0368589i \(-0.0117352\pi\)
−0.531581 + 0.847007i \(0.678402\pi\)
\(318\) −478.733 325.992i −1.50545 1.02513i
\(319\) 184.914 320.280i 0.579667 1.00401i
\(320\) −135.008 77.9470i −0.421901 0.243584i
\(321\) 206.997 99.8311i 0.644851 0.311000i
\(322\) 0 0
\(323\) −193.651 −0.599539
\(324\) 312.243 + 95.5291i 0.963712 + 0.294843i
\(325\) 299.205i 0.920631i
\(326\) −251.770 436.079i −0.772302 1.33767i
\(327\) −68.0862 + 32.8368i −0.208215 + 0.100418i
\(328\) −0.668937 0.386211i −0.00203944 0.00117747i
\(329\) 0 0
\(330\) 130.736 191.991i 0.396169 0.581791i
\(331\) −266.479 461.556i −0.805074 1.39443i −0.916241 0.400627i \(-0.868792\pi\)
0.111167 0.993802i \(-0.464541\pi\)
\(332\) 87.8252i 0.264534i
\(333\) 40.5014 50.9070i 0.121626 0.152874i
\(334\) 176.617i 0.528794i
\(335\) 170.061 98.1846i 0.507644 0.293088i
\(336\) 0 0
\(337\) 149.044 258.152i 0.442267 0.766029i −0.555590 0.831456i \(-0.687508\pi\)
0.997857 + 0.0654274i \(0.0208411\pi\)
\(338\) −102.963 + 178.338i −0.304625 + 0.527626i
\(339\) 16.4962 221.836i 0.0486614 0.654384i
\(340\) −58.5081 101.339i −0.172083 0.298056i
\(341\) 482.959i 1.41630i
\(342\) −60.3642 + 403.635i −0.176503 + 1.18022i
\(343\) 0 0
\(344\) 1.96536 + 3.40411i 0.00571326 + 0.00989566i
\(345\) 65.0298 95.4990i 0.188492 0.276809i
\(346\) 216.008 + 124.712i 0.624300 + 0.360439i
\(347\) 90.4019 156.581i 0.260524 0.451241i −0.705857 0.708354i \(-0.749438\pi\)
0.966381 + 0.257113i \(0.0827712\pi\)
\(348\) −353.673 + 170.570i −1.01630 + 0.490144i
\(349\) −151.888 + 87.6925i −0.435209 + 0.251268i −0.701563 0.712607i \(-0.747514\pi\)
0.266354 + 0.963875i \(0.414181\pi\)
\(350\) 0 0
\(351\) 284.958 308.175i 0.811847 0.877992i
\(352\) 516.452 1.46719
\(353\) −34.0434 + 19.6549i −0.0964401 + 0.0556797i −0.547444 0.836842i \(-0.684399\pi\)
0.451004 + 0.892522i \(0.351066\pi\)
\(354\) 351.443 + 728.707i 0.992776 + 2.05849i
\(355\) −234.476 135.375i −0.660497 0.381338i
\(356\) 378.552 + 218.557i 1.06335 + 0.613924i
\(357\) 0 0
\(358\) 18.3527 + 31.7878i 0.0512645 + 0.0887927i
\(359\) 247.647 0.689824 0.344912 0.938635i \(-0.387909\pi\)
0.344912 + 0.938635i \(0.387909\pi\)
\(360\) −1.77727 + 0.699885i −0.00493687 + 0.00194413i
\(361\) 104.954 0.290732
\(362\) 554.302 320.026i 1.53122 0.884050i
\(363\) −1.94553 + 26.1630i −0.00535959 + 0.0720742i
\(364\) 0 0
\(365\) −81.4341 + 141.048i −0.223107 + 0.386433i
\(366\) −419.193 31.1721i −1.14534 0.0851697i
\(367\) −343.635 + 198.398i −0.936334 + 0.540593i −0.888809 0.458277i \(-0.848467\pi\)
−0.0475248 + 0.998870i \(0.515133\pi\)
\(368\) 254.885 0.692622
\(369\) 73.1009 28.7869i 0.198105 0.0780134i
\(370\) 49.1319i 0.132789i
\(371\) 0 0
\(372\) 288.610 423.836i 0.775834 1.13935i
\(373\) −186.570 + 323.149i −0.500189 + 0.866352i 0.499811 + 0.866134i \(0.333403\pi\)
−1.00000 0.000217836i \(0.999931\pi\)
\(374\) 338.320 + 195.329i 0.904599 + 0.522271i
\(375\) −138.307 286.776i −0.368818 0.764736i
\(376\) 2.02083 1.16673i 0.00537455 0.00310300i
\(377\) 504.731i 1.33881i
\(378\) 0 0
\(379\) 548.285 1.44666 0.723331 0.690502i \(-0.242610\pi\)
0.723331 + 0.690502i \(0.242610\pi\)
\(380\) −77.3595 133.991i −0.203578 0.352607i
\(381\) 141.286 68.1398i 0.370830 0.178845i
\(382\) 147.210 254.975i 0.385366 0.667474i
\(383\) −4.04111 2.33314i −0.0105512 0.00609174i 0.494715 0.869055i \(-0.335272\pi\)
−0.505266 + 0.862963i \(0.668606\pi\)
\(384\) −7.02105 4.78097i −0.0182840 0.0124504i
\(385\) 0 0
\(386\) −460.068 −1.19189
\(387\) −395.406 59.1335i −1.02172 0.152800i
\(388\) 449.651i 1.15889i
\(389\) 336.313 + 582.511i 0.864558 + 1.49746i 0.867486 + 0.497462i \(0.165735\pi\)
−0.00292782 + 0.999996i \(0.500932\pi\)
\(390\) −23.5083 + 316.132i −0.0602777 + 0.810596i
\(391\) 168.285 + 97.1594i 0.430397 + 0.248490i
\(392\) 0 0
\(393\) 558.077 + 41.4998i 1.42004 + 0.105597i
\(394\) 427.351 + 740.194i 1.08465 + 1.87867i
\(395\) 328.332i 0.831220i
\(396\) 257.293 323.396i 0.649730 0.816658i
\(397\) 106.271i 0.267684i −0.991003 0.133842i \(-0.957268\pi\)
0.991003 0.133842i \(-0.0427315\pi\)
\(398\) −141.859 + 81.9023i −0.356429 + 0.205785i
\(399\) 0 0
\(400\) 152.765 264.596i 0.381911 0.661490i
\(401\) 149.197 258.416i 0.372061 0.644429i −0.617821 0.786319i \(-0.711985\pi\)
0.989882 + 0.141890i \(0.0453178\pi\)
\(402\) 626.941 302.363i 1.55955 0.752146i
\(403\) −329.565 570.823i −0.817779 1.41643i
\(404\) 309.850i 0.766957i
\(405\) 56.8391 185.782i 0.140343 0.458721i
\(406\) 0 0
\(407\) −41.1662 71.3019i −0.101145 0.175189i
\(408\) −1.39554 2.89361i −0.00342044 0.00709219i
\(409\) −570.795 329.549i −1.39559 0.805743i −0.401661 0.915789i \(-0.631567\pi\)
−0.993927 + 0.110046i \(0.964900\pi\)
\(410\) −29.6684 + 51.3872i −0.0723620 + 0.125335i
\(411\) 380.320 + 258.978i 0.925353 + 0.630117i
\(412\) 526.398 303.916i 1.27766 0.737660i
\(413\) 0 0
\(414\) 254.971 320.478i 0.615872 0.774101i
\(415\) −52.2553 −0.125916
\(416\) −610.409 + 352.420i −1.46733 + 0.847164i
\(417\) 272.991 + 20.3002i 0.654654 + 0.0486815i
\(418\) 447.328 + 258.265i 1.07016 + 0.617858i
\(419\) 485.296 + 280.186i 1.15822 + 0.668701i 0.950878 0.309566i \(-0.100184\pi\)
0.207346 + 0.978268i \(0.433517\pi\)
\(420\) 0 0
\(421\) 57.9969 + 100.454i 0.137760 + 0.238607i 0.926648 0.375929i \(-0.122676\pi\)
−0.788889 + 0.614536i \(0.789343\pi\)
\(422\) −120.271 −0.285001
\(423\) −35.1043 + 234.731i −0.0829889 + 0.554919i
\(424\) 6.02802 0.0142170
\(425\) 201.722 116.464i 0.474641 0.274034i
\(426\) −793.246 540.159i −1.86208 1.26798i
\(427\) 0 0
\(428\) −154.405 + 267.437i −0.360759 + 0.624852i
\(429\) −230.762 478.479i −0.537906 1.11533i
\(430\) 261.501 150.978i 0.608142 0.351111i
\(431\) −322.507 −0.748277 −0.374138 0.927373i \(-0.622061\pi\)
−0.374138 + 0.927373i \(0.622061\pi\)
\(432\) 409.342 127.038i 0.947550 0.294069i
\(433\) 117.316i 0.270937i 0.990782 + 0.135468i \(0.0432539\pi\)
−0.990782 + 0.135468i \(0.956746\pi\)
\(434\) 0 0
\(435\) 101.488 + 210.432i 0.233305 + 0.483753i
\(436\) 50.7873 87.9662i 0.116485 0.201757i
\(437\) 222.507 + 128.464i 0.509169 + 0.293969i
\(438\) −324.930 + 477.173i −0.741849 + 1.08944i
\(439\) −187.788 + 108.419i −0.427763 + 0.246969i −0.698393 0.715714i \(-0.746101\pi\)
0.270630 + 0.962683i \(0.412768\pi\)
\(440\) 2.41748i 0.00549427i
\(441\) 0 0
\(442\) −533.160 −1.20625
\(443\) 74.8709 + 129.680i 0.169009 + 0.292732i 0.938072 0.346441i \(-0.112610\pi\)
−0.769063 + 0.639173i \(0.779277\pi\)
\(444\) −6.48242 + 87.1737i −0.0146001 + 0.196337i
\(445\) 130.040 225.235i 0.292224 0.506147i
\(446\) −471.035 271.952i −1.05613 0.609758i
\(447\) −25.0086 + 336.308i −0.0559477 + 0.752368i
\(448\) 0 0
\(449\) −263.767 −0.587455 −0.293727 0.955889i \(-0.594896\pi\)
−0.293727 + 0.955889i \(0.594896\pi\)
\(450\) −179.872 456.763i −0.399715 1.01503i
\(451\) 99.4331i 0.220473i
\(452\) 149.457 + 258.866i 0.330656 + 0.572713i
\(453\) −69.9194 47.6114i −0.154347 0.105102i
\(454\) −551.668 318.505i −1.21513 0.701554i
\(455\) 0 0
\(456\) −1.84518 3.82594i −0.00404646 0.00839023i
\(457\) 109.396 + 189.480i 0.239379 + 0.414617i 0.960536 0.278154i \(-0.0897227\pi\)
−0.721157 + 0.692772i \(0.756389\pi\)
\(458\) 453.851i 0.990941i
\(459\) 318.689 + 72.1613i 0.694312 + 0.157214i
\(460\) 155.253i 0.337506i
\(461\) −334.892 + 193.350i −0.726446 + 0.419414i −0.817121 0.576467i \(-0.804431\pi\)
0.0906743 + 0.995881i \(0.471098\pi\)
\(462\) 0 0
\(463\) 241.881 418.950i 0.522421 0.904860i −0.477238 0.878774i \(-0.658362\pi\)
0.999660 0.0260863i \(-0.00830447\pi\)
\(464\) −257.700 + 446.349i −0.555387 + 0.961959i
\(465\) −252.179 171.721i −0.542321 0.369292i
\(466\) −349.422 605.216i −0.749832 1.29875i
\(467\) 115.519i 0.247363i 0.992322 + 0.123682i \(0.0394702\pi\)
−0.992322 + 0.123682i \(0.960530\pi\)
\(468\) −83.4205 + 557.805i −0.178249 + 1.19189i
\(469\) 0 0
\(470\) −89.6272 155.239i −0.190696 0.330295i
\(471\) −30.6671 2.28047i −0.0651106 0.00484176i
\(472\) −7.29207 4.21008i −0.0154493 0.00891966i
\(473\) −252.999 + 438.208i −0.534882 + 0.926443i
\(474\) 86.3041 1160.59i 0.182076 2.44851i
\(475\) 266.718 153.990i 0.561511 0.324189i
\(476\) 0 0
\(477\) −381.726 + 479.798i −0.800264 + 1.00587i
\(478\) −624.264 −1.30599
\(479\) 394.602 227.823i 0.823803 0.475623i −0.0279230 0.999610i \(-0.508889\pi\)
0.851726 + 0.523987i \(0.175556\pi\)
\(480\) −183.630 + 269.668i −0.382562 + 0.561808i
\(481\) 97.3110 + 56.1825i 0.202310 + 0.116804i
\(482\) 646.939 + 373.510i 1.34220 + 0.774918i
\(483\) 0 0
\(484\) −17.6267 30.5303i −0.0364187 0.0630790i
\(485\) −267.539 −0.551626
\(486\) 249.749 641.764i 0.513888 1.32050i
\(487\) 324.669 0.666671 0.333335 0.942808i \(-0.391826\pi\)
0.333335 + 0.942808i \(0.391826\pi\)
\(488\) 3.78878 2.18745i 0.00776389 0.00448248i
\(489\) −480.126 + 231.556i −0.981852 + 0.473530i
\(490\) 0 0
\(491\) −155.221 + 268.850i −0.316132 + 0.547557i −0.979678 0.200579i \(-0.935718\pi\)
0.663545 + 0.748136i \(0.269051\pi\)
\(492\) −59.4200 + 87.2608i −0.120772 + 0.177359i
\(493\) −340.287 + 196.465i −0.690237 + 0.398509i
\(494\) −704.946 −1.42702
\(495\) −192.418 153.087i −0.388724 0.309267i
\(496\) 673.061i 1.35698i
\(497\) 0 0
\(498\) −184.713 13.7356i −0.370909 0.0275816i
\(499\) 387.110 670.494i 0.775771 1.34368i −0.158589 0.987345i \(-0.550694\pi\)
0.934360 0.356331i \(-0.115972\pi\)
\(500\) 370.509 + 213.914i 0.741019 + 0.427827i
\(501\) −186.452 13.8649i −0.372159 0.0276745i
\(502\) 56.4489 32.5908i 0.112448 0.0649219i
\(503\) 106.472i 0.211674i −0.994384 0.105837i \(-0.966248\pi\)
0.994384 0.105837i \(-0.0337521\pi\)
\(504\) 0 0
\(505\) 184.359 0.365067
\(506\) −259.155 448.870i −0.512165 0.887096i
\(507\) 180.185 + 122.696i 0.355394 + 0.242005i
\(508\) −105.389 + 182.539i −0.207459 + 0.359329i
\(509\) 293.258 + 169.313i 0.576146 + 0.332638i 0.759600 0.650390i \(-0.225395\pi\)
−0.183454 + 0.983028i \(0.558728\pi\)
\(510\) −222.285 + 107.204i −0.435853 + 0.210204i
\(511\) 0 0
\(512\) −725.356 −1.41671
\(513\) 421.372 + 95.4118i 0.821387 + 0.185988i
\(514\) 50.4924i 0.0982343i
\(515\) −180.828 313.202i −0.351121 0.608160i
\(516\) 483.895 233.374i 0.937782 0.452276i
\(517\) 260.140 + 150.192i 0.503172 + 0.290506i
\(518\) 0 0
\(519\) 148.613 218.245i 0.286346 0.420511i
\(520\) −1.64966 2.85729i −0.00317241 0.00549478i
\(521\) 97.1593i 0.186486i −0.995643 0.0932431i \(-0.970277\pi\)
0.995643 0.0932431i \(-0.0297234\pi\)
\(522\) 303.427 + 770.516i 0.581278 + 1.47608i
\(523\) 593.254i 1.13433i −0.823605 0.567164i \(-0.808041\pi\)
0.823605 0.567164i \(-0.191959\pi\)
\(524\) −651.235 + 375.990i −1.24281 + 0.717539i
\(525\) 0 0
\(526\) −514.372 + 890.919i −0.977894 + 1.69376i
\(527\) 256.564 444.382i 0.486838 0.843229i
\(528\) 40.2264 540.953i 0.0761863 1.02453i
\(529\) 135.592 + 234.853i 0.256319 + 0.443957i
\(530\) 463.068i 0.873713i
\(531\) 796.872 313.806i 1.50070 0.590972i
\(532\) 0 0
\(533\) 67.8519 + 117.523i 0.127302 + 0.220493i
\(534\) 518.871 761.984i 0.971668 1.42694i
\(535\) 159.123 + 91.8696i 0.297426 + 0.171719i
\(536\) −3.62213 + 6.27371i −0.00675770 + 0.0117047i
\(537\) 34.9985 16.8792i 0.0651742 0.0314323i
\(538\) −481.426 + 277.951i −0.894843 + 0.516638i
\(539\) 0 0
\(540\) 77.3800 + 249.334i 0.143296 + 0.461729i
\(541\) −578.154 −1.06868 −0.534338 0.845271i \(-0.679439\pi\)
−0.534338 + 0.845271i \(0.679439\pi\)
\(542\) −233.871 + 135.025i −0.431496 + 0.249124i
\(543\) −294.332 610.289i −0.542047 1.12392i
\(544\) −475.199 274.356i −0.873528 0.504332i
\(545\) −52.3392 30.2181i −0.0960352 0.0554460i
\(546\) 0 0
\(547\) 110.283 + 191.016i 0.201615 + 0.349207i 0.949049 0.315129i \(-0.102048\pi\)
−0.747434 + 0.664336i \(0.768714\pi\)
\(548\) −618.286 −1.12826
\(549\) −65.8156 + 440.088i −0.119883 + 0.801617i
\(550\) −621.296 −1.12963
\(551\) −449.928 + 259.766i −0.816566 + 0.471445i
\(552\) −0.316081 + 4.25057i −0.000572611 + 0.00770030i
\(553\) 0 0
\(554\) −305.288 + 528.774i −0.551061 + 0.954465i
\(555\) 51.8677 + 3.85699i 0.0934553 + 0.00694954i
\(556\) −318.560 + 183.921i −0.572950 + 0.330793i
\(557\) −359.594 −0.645590 −0.322795 0.946469i \(-0.604622\pi\)
−0.322795 + 0.946469i \(0.604622\pi\)
\(558\) −846.269 673.288i −1.51661 1.20661i
\(559\) 690.574i 1.23537i
\(560\) 0 0
\(561\) 232.764 341.824i 0.414910 0.609313i
\(562\) −288.823 + 500.256i −0.513920 + 0.890135i
\(563\) 854.592 + 493.399i 1.51792 + 0.876374i 0.999778 + 0.0210827i \(0.00671133\pi\)
0.518147 + 0.855292i \(0.326622\pi\)
\(564\) −138.541 287.262i −0.245641 0.509330i
\(565\) 154.024 88.9255i 0.272608 0.157390i
\(566\) 341.373i 0.603133i
\(567\) 0 0
\(568\) 9.98825 0.0175849
\(569\) −41.8937 72.5620i −0.0736269 0.127525i 0.826861 0.562406i \(-0.190124\pi\)
−0.900488 + 0.434880i \(0.856791\pi\)
\(570\) −293.906 + 141.746i −0.515625 + 0.248677i
\(571\) 175.350 303.715i 0.307093 0.531901i −0.670632 0.741790i \(-0.733977\pi\)
0.977725 + 0.209889i \(0.0673103\pi\)
\(572\) 618.186 + 356.910i 1.08074 + 0.623968i
\(573\) −257.616 175.423i −0.449592 0.306148i
\(574\) 0 0
\(575\) −309.041 −0.537463
\(576\) −364.189 + 457.756i −0.632273 + 0.794716i
\(577\) 753.475i 1.30585i −0.757423 0.652925i \(-0.773542\pi\)
0.757423 0.652925i \(-0.226458\pi\)
\(578\) 201.974 + 349.829i 0.349436 + 0.605240i
\(579\) −36.1166 + 485.685i −0.0623775 + 0.838835i
\(580\) −271.875 156.967i −0.468750 0.270633i
\(581\) 0 0
\(582\) −945.699 70.3242i −1.62491 0.120832i
\(583\) 387.991 + 672.019i 0.665507 + 1.15269i
\(584\) 6.00837i 0.0102883i
\(585\) 331.890 + 49.6345i 0.567333 + 0.0848453i
\(586\) 496.375i 0.847057i
\(587\) 112.348 64.8642i 0.191394 0.110501i −0.401241 0.915972i \(-0.631421\pi\)
0.592635 + 0.805471i \(0.298088\pi\)
\(588\) 0 0
\(589\) 339.229 587.562i 0.575941 0.997559i
\(590\) −323.415 + 560.172i −0.548161 + 0.949443i
\(591\) 814.958 393.040i 1.37895 0.665042i
\(592\) 57.3700 + 99.3678i 0.0969088 + 0.167851i
\(593\) 503.348i 0.848815i −0.905471 0.424408i \(-0.860482\pi\)
0.905471 0.424408i \(-0.139518\pi\)
\(594\) −639.923 591.713i −1.07731 0.996151i
\(595\) 0 0
\(596\) −226.580 392.447i −0.380167 0.658469i
\(597\) 75.3264 + 156.187i 0.126175 + 0.261620i
\(598\) 612.607 + 353.689i 1.02443 + 0.591453i
\(599\) 141.278 244.701i 0.235857 0.408516i −0.723664 0.690152i \(-0.757544\pi\)
0.959521 + 0.281636i \(0.0908770\pi\)
\(600\) 4.22307 + 2.87569i 0.00703845 + 0.00479281i
\(601\) 159.905 92.3214i 0.266065 0.153613i −0.361033 0.932553i \(-0.617576\pi\)
0.627098 + 0.778940i \(0.284242\pi\)
\(602\) 0 0
\(603\) −269.982 685.586i −0.447731 1.13696i
\(604\) 113.668 0.188192
\(605\) −18.1653 + 10.4877i −0.0300252 + 0.0173351i
\(606\) 651.673 + 48.4598i 1.07537 + 0.0799667i
\(607\) 905.567 + 522.829i 1.49187 + 0.861333i 0.999957 0.00930928i \(-0.00296328\pi\)
0.491916 + 0.870643i \(0.336297\pi\)
\(608\) −628.310 362.755i −1.03340 0.596636i
\(609\) 0 0
\(610\) −168.038 291.051i −0.275473 0.477133i
\(611\) −409.956 −0.670959
\(612\) −408.540 + 160.882i −0.667549 + 0.262879i
\(613\) 105.329 0.171826 0.0859131 0.996303i \(-0.472619\pi\)
0.0859131 + 0.996303i \(0.472619\pi\)
\(614\) −45.0764 + 26.0248i −0.0734143 + 0.0423857i
\(615\) 51.9195 + 35.3545i 0.0844220 + 0.0574869i
\(616\) 0 0
\(617\) 269.908 467.495i 0.437452 0.757690i −0.560040 0.828466i \(-0.689214\pi\)
0.997492 + 0.0707759i \(0.0225475\pi\)
\(618\) −556.864 1154.64i −0.901075 1.86836i
\(619\) 968.123 558.946i 1.56401 0.902982i 0.567166 0.823603i \(-0.308040\pi\)
0.996845 0.0793787i \(-0.0252936\pi\)
\(620\) 409.968 0.661238
\(621\) −318.307 294.326i −0.512571 0.473956i
\(622\) 1155.77i 1.85816i
\(623\) 0 0
\(624\) 321.594 + 666.818i 0.515376 + 1.06862i
\(625\) −113.310 + 196.259i −0.181296 + 0.314014i
\(626\) −988.452 570.683i −1.57900 0.911635i
\(627\) 307.762 451.961i 0.490848 0.720831i
\(628\) 35.7862 20.6612i 0.0569845 0.0329000i
\(629\) 87.4754i 0.139071i
\(630\) 0 0
\(631\) −710.879 −1.12659 −0.563296 0.826255i \(-0.690467\pi\)
−0.563296 + 0.826255i \(0.690467\pi\)
\(632\) 6.05625 + 10.4897i 0.00958268 + 0.0165977i
\(633\) −9.44156 + 126.967i −0.0149156 + 0.200580i
\(634\) −420.198 + 727.805i −0.662773 + 1.14796i
\(635\) 108.609 + 62.7057i 0.171038 + 0.0987491i
\(636\) 61.0968 821.611i 0.0960641 1.29184i
\(637\) 0 0
\(638\) 1048.07 1.64274
\(639\) −632.508 + 795.011i −0.989840 + 1.24415i
\(640\) 6.79131i 0.0106114i
\(641\) −535.389 927.321i −0.835240 1.44668i −0.893835 0.448397i \(-0.851995\pi\)
0.0585942 0.998282i \(-0.481338\pi\)
\(642\) 538.321 + 366.568i 0.838506 + 0.570979i
\(643\) 664.371 + 383.575i 1.03324 + 0.596539i 0.917910 0.396788i \(-0.129875\pi\)
0.115326 + 0.993328i \(0.463209\pi\)
\(644\) 0 0
\(645\) −138.856 287.914i −0.215280 0.446378i
\(646\) −274.398 475.271i −0.424764 0.735713i
\(647\) 17.1084i 0.0264427i 0.999913 + 0.0132214i \(0.00420861\pi\)
−0.999913 + 0.0132214i \(0.995791\pi\)
\(648\) 1.61092 + 6.98389i 0.00248598 + 0.0107776i
\(649\) 1083.92i 1.67014i
\(650\) 734.328 423.965i 1.12974 0.652253i
\(651\) 0 0
\(652\) 358.138 620.314i 0.549292 0.951402i
\(653\) 484.144 838.561i 0.741414 1.28417i −0.210437 0.977607i \(-0.567489\pi\)
0.951851 0.306560i \(-0.0991779\pi\)
\(654\) −177.066 120.573i −0.270744 0.184362i
\(655\) 223.711 + 387.480i 0.341544 + 0.591572i
\(656\) 138.572i 0.211238i
\(657\) 478.235 + 380.482i 0.727907 + 0.579120i
\(658\) 0 0
\(659\) 470.849 + 815.535i 0.714490 + 1.23753i 0.963156 + 0.268944i \(0.0866747\pi\)
−0.248665 + 0.968589i \(0.579992\pi\)
\(660\) 329.499 + 24.5023i 0.499241 + 0.0371246i
\(661\) 4.75875 + 2.74747i 0.00719933 + 0.00415653i 0.503595 0.863940i \(-0.332010\pi\)
−0.496396 + 0.868096i \(0.665344\pi\)
\(662\) 755.187 1308.02i 1.14077 1.97586i
\(663\) −41.8546 + 562.848i −0.0631290 + 0.848941i
\(664\) 1.66948 0.963876i 0.00251428 0.00145162i
\(665\) 0 0
\(666\) 182.329 + 27.2675i 0.273767 + 0.0409422i
\(667\) 521.324 0.781595
\(668\) 217.575 125.617i 0.325712 0.188050i
\(669\) −324.072 + 475.914i −0.484413 + 0.711381i
\(670\) 481.942 + 278.249i 0.719316 + 0.415297i
\(671\) 487.726 + 281.589i 0.726864 + 0.419655i
\(672\) 0 0
\(673\) 329.366 + 570.479i 0.489400 + 0.847666i 0.999926 0.0121964i \(-0.00388233\pi\)
−0.510525 + 0.859863i \(0.670549\pi\)
\(674\) 844.764 1.25336
\(675\) −496.316 + 154.030i −0.735283 + 0.228193i
\(676\) −292.926 −0.433323
\(677\) −730.516 + 421.763i −1.07905 + 0.622989i −0.930639 0.365937i \(-0.880748\pi\)
−0.148409 + 0.988926i \(0.547415\pi\)
\(678\) 567.819 273.849i 0.837491 0.403907i
\(679\) 0 0
\(680\) 1.28424 2.22438i 0.00188860 0.00327114i
\(681\) −379.548 + 557.382i −0.557339 + 0.818475i
\(682\) −1185.31 + 684.338i −1.73799 + 1.00343i
\(683\) 580.828 0.850407 0.425203 0.905098i \(-0.360203\pi\)
0.425203 + 0.905098i \(0.360203\pi\)
\(684\) −540.173 + 212.719i −0.789727 + 0.310992i
\(685\) 367.875i 0.537044i
\(686\) 0 0
\(687\) 479.122 + 35.6286i 0.697412 + 0.0518611i
\(688\) 352.585 610.695i 0.512478 0.887638i
\(689\) −917.155 529.520i −1.33114 0.768534i
\(690\) 326.525 + 24.2811i 0.473225 + 0.0351900i
\(691\) −976.744 + 563.924i −1.41352 + 0.816098i −0.995718 0.0924390i \(-0.970534\pi\)
−0.417805 + 0.908537i \(0.637200\pi\)
\(692\) 354.801i 0.512718i
\(693\) 0 0
\(694\) 512.388 0.738311
\(695\) 109.432 + 189.541i 0.157455 + 0.272721i
\(696\) −7.12392 4.85102i −0.0102355 0.00696985i
\(697\) −52.8222 + 91.4907i −0.0757851 + 0.131264i
\(698\) −430.441 248.515i −0.616678 0.356039i
\(699\) −666.346 + 321.367i −0.953285 + 0.459752i
\(700\) 0 0
\(701\) 352.754 0.503216 0.251608 0.967829i \(-0.419041\pi\)
0.251608 + 0.967829i \(0.419041\pi\)
\(702\) 1160.12 + 262.688i 1.65259 + 0.374200i
\(703\) 115.660i 0.164524i
\(704\) 370.166 + 641.147i 0.525804 + 0.910720i
\(705\) −170.919 + 82.4311i −0.242438 + 0.116924i
\(706\) −96.4769 55.7009i −0.136653 0.0788965i
\(707\) 0 0
\(708\) −647.737 + 951.229i −0.914883 + 1.34354i
\(709\) 396.038 + 685.959i 0.558587 + 0.967502i 0.997615 + 0.0690279i \(0.0219898\pi\)
−0.439027 + 0.898474i \(0.644677\pi\)
\(710\) 767.290i 1.08069i
\(711\) −1218.44 182.219i −1.71370 0.256286i
\(712\) 9.59460i 0.0134756i
\(713\) −589.589 + 340.399i −0.826913 + 0.477418i
\(714\) 0 0
\(715\) 212.359 367.816i 0.297005 0.514428i
\(716\) −26.1063 + 45.2175i −0.0364613 + 0.0631529i
\(717\) −49.0064 + 659.024i −0.0683493 + 0.919141i
\(718\) 350.908 + 607.791i 0.488730 + 0.846505i
\(719\) 546.494i 0.760075i −0.924971 0.380037i \(-0.875911\pi\)
0.924971 0.380037i \(-0.124089\pi\)
\(720\) 268.158 + 213.346i 0.372442 + 0.296313i
\(721\) 0 0
\(722\) 148.717 + 257.586i 0.205979 + 0.356767i
\(723\) 445.094 653.640i 0.615622 0.904066i
\(724\) 788.483 + 455.231i 1.08906 + 0.628772i
\(725\) 312.454 541.186i 0.430971 0.746464i
\(726\) −66.9676 + 32.2973i −0.0922418 + 0.0444866i
\(727\) 113.839 65.7248i 0.156587 0.0904055i −0.419659 0.907682i \(-0.637850\pi\)
0.576246 + 0.817276i \(0.304517\pi\)
\(728\) 0 0
\(729\) −657.892 314.036i −0.902459 0.430777i
\(730\) −461.559 −0.632272
\(731\) 465.581 268.803i 0.636910 0.367720i
\(732\) −259.746 538.576i −0.354844 0.735760i
\(733\) 1107.87 + 639.630i 1.51142 + 0.872620i 0.999911 + 0.0133434i \(0.00424746\pi\)
0.511511 + 0.859277i \(0.329086\pi\)
\(734\) −973.840 562.247i −1.32676 0.766004i
\(735\) 0 0
\(736\) 364.006 + 630.477i 0.494573 + 0.856626i
\(737\) −932.546 −1.26533
\(738\) 174.233 + 138.619i 0.236088 + 0.187830i
\(739\) −19.8731 −0.0268919 −0.0134460 0.999910i \(-0.504280\pi\)
−0.0134460 + 0.999910i \(0.504280\pi\)
\(740\) −60.5258 + 34.9446i −0.0817916 + 0.0472224i
\(741\) −55.3402 + 744.199i −0.0746831 + 1.00432i
\(742\) 0 0
\(743\) 729.663 1263.81i 0.982050 1.70096i 0.327677 0.944790i \(-0.393734\pi\)
0.654374 0.756171i \(-0.272932\pi\)
\(744\) 11.2242 + 0.834659i 0.0150864 + 0.00112185i
\(745\) −233.503 + 134.813i −0.313427 + 0.180957i
\(746\) −1057.46 −1.41751
\(747\) −29.0009 + 193.920i −0.0388232 + 0.259598i
\(748\) 555.703i 0.742919i
\(749\) 0 0
\(750\) 507.847 745.795i 0.677130 0.994393i
\(751\) 494.911 857.211i 0.659003 1.14143i −0.321871 0.946784i \(-0.604312\pi\)
0.980874 0.194643i \(-0.0623549\pi\)
\(752\) −362.536 209.310i −0.482096 0.278338i
\(753\) −29.9741 62.1505i −0.0398062 0.0825372i
\(754\) −1238.74 + 715.189i −1.64290 + 0.948527i
\(755\) 67.6315i 0.0895781i
\(756\) 0 0
\(757\) −499.688 −0.660089 −0.330045 0.943965i \(-0.607064\pi\)
−0.330045 + 0.943965i \(0.607064\pi\)
\(758\) 776.903 + 1345.64i 1.02494 + 1.77525i
\(759\) −494.209 + 238.348i −0.651131 + 0.314029i
\(760\) 1.69803 2.94108i 0.00223425 0.00386984i
\(761\) 594.048 + 342.974i 0.780614 + 0.450688i 0.836648 0.547741i \(-0.184512\pi\)
−0.0560336 + 0.998429i \(0.517845\pi\)
\(762\) 367.431 + 250.201i 0.482193 + 0.328348i
\(763\) 0 0
\(764\) 418.806 0.548175
\(765\) 95.7236 + 243.078i 0.125129 + 0.317749i
\(766\) 13.2239i 0.0172636i
\(767\) 739.652 + 1281.12i 0.964345 + 1.67029i
\(768\) −56.0534 + 753.789i −0.0729861 + 0.981496i
\(769\) −586.160 338.420i −0.762237 0.440078i 0.0678613 0.997695i \(-0.478382\pi\)
−0.830098 + 0.557617i \(0.811716\pi\)
\(770\) 0 0
\(771\) 53.3039 + 3.96379i 0.0691361 + 0.00514111i
\(772\) −327.219 566.759i −0.423858 0.734144i
\(773\) 505.019i 0.653323i 0.945141 + 0.326661i \(0.105924\pi\)
−0.945141 + 0.326661i \(0.894076\pi\)
\(774\) −415.149 1054.22i −0.536369 1.36204i
\(775\) 816.069i 1.05299i
\(776\) 8.54747 4.93489i 0.0110148 0.00635939i
\(777\) 0 0
\(778\) −953.091 + 1650.80i −1.22505 + 2.12185i
\(779\) −69.8416 + 120.969i −0.0896555 + 0.155288i
\(780\) −406.165 + 195.886i −0.520724 + 0.251136i
\(781\) 642.889 + 1113.52i 0.823161 + 1.42576i
\(782\) 550.688i 0.704205i
\(783\) 837.240 259.835i 1.06927 0.331845i
\(784\) 0 0
\(785\) −12.2932 21.2925i −0.0156602 0.0271242i
\(786\) 688.927 + 1428.47i 0.876497 + 1.81739i
\(787\) −16.0382 9.25964i −0.0203789 0.0117657i 0.489776 0.871848i \(-0.337079\pi\)
−0.510155 + 0.860083i \(0.670412\pi\)
\(788\) −607.898 + 1052.91i −0.771445 + 1.33618i
\(789\) 900.147 + 612.953i 1.14087 + 0.776873i
\(790\) 805.814 465.237i 1.02002 0.588907i
\(791\) 0 0
\(792\) 8.97126 + 1.34166i 0.0113274 + 0.00169402i
\(793\) −768.610 −0.969243
\(794\) 260.817 150.583i 0.328484 0.189651i
\(795\) −488.852 36.3521i −0.614909 0.0457259i
\(796\) −201.791 116.504i −0.253507 0.146362i
\(797\) 615.232 + 355.205i 0.771935 + 0.445677i 0.833565 0.552422i \(-0.186296\pi\)
−0.0616293 + 0.998099i \(0.519630\pi\)
\(798\) 0 0
\(799\) −159.574 276.390i −0.199717 0.345920i
\(800\) 872.664 1.09083
\(801\) −763.679 607.580i −0.953407 0.758527i
\(802\) 845.628 1.05440
\(803\) 669.829 386.726i 0.834159 0.481602i
\(804\) 818.387 + 557.279i 1.01789 + 0.693133i
\(805\) 0 0
\(806\) 933.967 1617.68i 1.15877 2.00705i
\(807\) 255.635 + 530.052i 0.316772 + 0.656818i
\(808\) −5.88999 + 3.40059i −0.00728960 + 0.00420865i
\(809\) 1131.54 1.39869 0.699344 0.714786i \(-0.253476\pi\)
0.699344 + 0.714786i \(0.253476\pi\)
\(810\) 536.497 123.749i 0.662342 0.152777i
\(811\) 199.736i 0.246283i 0.992389 + 0.123142i \(0.0392970\pi\)
−0.992389 + 0.123142i \(0.960703\pi\)
\(812\) 0 0
\(813\) 124.184 + 257.493i 0.152748 + 0.316720i
\(814\) 116.662 202.065i 0.143320 0.248238i
\(815\) −369.082 213.090i −0.452861 0.261460i
\(816\) −324.385 + 476.373i −0.397531 + 0.583791i
\(817\) 615.592 355.412i 0.753479 0.435021i
\(818\) 1867.84i 2.28343i
\(819\) 0 0
\(820\) −84.4055 −0.102934
\(821\) −196.680 340.660i −0.239562 0.414933i 0.721027 0.692907i \(-0.243670\pi\)
−0.960589 + 0.277974i \(0.910337\pi\)
\(822\) −96.6983 + 1300.37i −0.117638 + 1.58196i
\(823\) 424.378 735.045i 0.515648 0.893128i −0.484187 0.874965i \(-0.660885\pi\)
0.999835 0.0181639i \(-0.00578208\pi\)
\(824\) 11.5544 + 6.67091i 0.0140223 + 0.00809577i
\(825\) −48.7735 + 655.891i −0.0591193 + 0.795019i
\(826\) 0 0
\(827\) 495.009 0.598559 0.299280 0.954165i \(-0.403254\pi\)
0.299280 + 0.954165i \(0.403254\pi\)
\(828\) 576.143 + 86.1629i 0.695825 + 0.104061i
\(829\) 947.240i 1.14263i 0.820731 + 0.571315i \(0.193566\pi\)
−0.820731 + 0.571315i \(0.806434\pi\)
\(830\) −74.0442 128.248i −0.0892099 0.154516i
\(831\) 534.251 + 363.797i 0.642901 + 0.437782i
\(832\) −875.021 505.193i −1.05171 0.607204i
\(833\) 0 0
\(834\) 336.998 + 698.757i 0.404074 + 0.837838i
\(835\) −74.7412 129.456i −0.0895105 0.155037i
\(836\) 734.752i 0.878891i
\(837\) −777.212 + 840.536i −0.928569 + 1.00422i
\(838\) 1588.06i 1.89506i
\(839\) 787.270 454.531i 0.938343 0.541753i 0.0489028 0.998804i \(-0.484428\pi\)
0.889441 + 0.457051i \(0.151094\pi\)
\(840\) 0 0
\(841\) −106.581 + 184.604i −0.126731 + 0.219505i
\(842\) −164.360 + 284.680i −0.195202 + 0.338099i
\(843\) 505.438 + 344.177i 0.599570 + 0.408276i
\(844\) −85.5412 148.162i −0.101352 0.175547i
\(845\) 174.289i 0.206259i
\(846\) −625.833 + 246.451i −0.739756 + 0.291314i
\(847\) 0 0
\(848\) −540.712 936.540i −0.637632 1.10441i
\(849\) −360.382 26.7987i −0.424478 0.0315651i
\(850\) 571.669 + 330.053i 0.672552 + 0.388298i
\(851\) 58.0295 100.510i 0.0681898 0.118108i
\(852\) 101.236 1361.39i 0.118821 1.59787i
\(853\) −768.763 + 443.845i −0.901246 + 0.520335i −0.877604 0.479386i \(-0.840859\pi\)
−0.0236417 + 0.999720i \(0.507526\pi\)
\(854\) 0 0
\(855\) 126.566 + 321.399i 0.148030 + 0.375905i
\(856\) −6.77833 −0.00791861
\(857\) −151.668 + 87.5656i −0.176976 + 0.102177i −0.585871 0.810404i \(-0.699247\pi\)
0.408895 + 0.912581i \(0.365914\pi\)
\(858\) 847.331 1244.34i 0.987565 1.45028i
\(859\) −1192.54 688.515i −1.38829 0.801531i −0.395170 0.918608i \(-0.629314\pi\)
−0.993123 + 0.117077i \(0.962648\pi\)
\(860\) 371.980 + 214.763i 0.432535 + 0.249724i
\(861\) 0 0
\(862\) −456.983 791.518i −0.530143 0.918235i
\(863\) 1522.75 1.76448 0.882241 0.470799i \(-0.156034\pi\)
0.882241 + 0.470799i \(0.156034\pi\)
\(864\) 898.827 + 831.112i 1.04031 + 0.961935i
\(865\) 211.104 0.244050
\(866\) −287.924 + 166.233i −0.332475 + 0.191955i
\(867\) 385.163 185.757i 0.444248 0.214253i
\(868\) 0 0
\(869\) −779.616 + 1350.33i −0.897141 + 1.55389i
\(870\) −372.652 + 547.255i −0.428335 + 0.629028i
\(871\) 1102.20 636.358i 1.26545 0.730606i
\(872\) 2.22955 0.00255682
\(873\) −148.480 + 992.836i −0.170080 + 1.13727i
\(874\) 728.121i 0.833091i
\(875\) 0 0
\(876\) −818.934 60.8977i −0.934856 0.0695179i
\(877\) 359.527 622.719i 0.409951 0.710056i −0.584933 0.811082i \(-0.698879\pi\)
0.994884 + 0.101026i \(0.0322124\pi\)
\(878\) −532.180 307.254i −0.606128 0.349948i
\(879\) −524.014 38.9668i −0.596148 0.0443309i
\(880\) 375.590 216.847i 0.426807 0.246417i
\(881\) 1065.56i 1.20949i −0.796418 0.604747i \(-0.793274\pi\)
0.796418 0.604747i \(-0.206726\pi\)
\(882\) 0 0
\(883\) −378.403 −0.428543 −0.214271 0.976774i \(-0.568738\pi\)
−0.214271 + 0.976774i \(0.568738\pi\)
\(884\) −379.205 656.802i −0.428965 0.742989i
\(885\) 565.974 + 385.398i 0.639518 + 0.435478i
\(886\) −212.180 + 367.506i −0.239481 + 0.414793i
\(887\) −1522.62 879.087i −1.71660 0.991079i −0.924938 0.380118i \(-0.875883\pi\)
−0.791661 0.610960i \(-0.790783\pi\)
\(888\) −1.72824 + 0.833501i −0.00194622 + 0.000938627i
\(889\) 0 0
\(890\) 737.050 0.828146
\(891\) −674.897 + 629.104i −0.757460 + 0.706065i
\(892\) 773.693i 0.867368i
\(893\) −210.989 365.443i −0.236270 0.409231i
\(894\) −860.826 + 415.161i −0.962893 + 0.464386i
\(895\) 26.9040 + 15.5331i 0.0300604 + 0.0173554i
\(896\) 0 0
\(897\) 421.474 618.952i 0.469871 0.690025i
\(898\) −373.750 647.355i −0.416203 0.720885i
\(899\) 1376.63i 1.53129i
\(900\) 434.755 546.452i 0.483061 0.607169i
\(901\) 824.454i 0.915044i
\(902\) 244.035 140.894i 0.270549 0.156202i
\(903\) 0 0
\(904\) −3.28055 + 5.68209i −0.00362893 + 0.00628549i
\(905\) 270.859 469.141i 0.299291 0.518388i
\(906\) 17.7774 239.065i 0.0196218 0.263868i
\(907\) −371.175 642.893i −0.409233 0.708813i 0.585571 0.810621i \(-0.300870\pi\)
−0.994804 + 0.101808i \(0.967537\pi\)
\(908\) 906.135i 0.997946i
\(909\) 102.316 684.155i 0.112559 0.752646i
\(910\) 0 0
\(911\) 394.703 + 683.645i 0.433263 + 0.750434i 0.997152 0.0754169i \(-0.0240288\pi\)
−0.563889 + 0.825851i \(0.690695\pi\)
\(912\) −428.903 + 629.862i −0.470288 + 0.690638i
\(913\) 214.911 + 124.079i 0.235390 + 0.135902i
\(914\) −310.023 + 536.975i −0.339193 + 0.587500i
\(915\) −320.449 + 154.547i −0.350217 + 0.168904i
\(916\) −559.101 + 322.797i −0.610372 + 0.352398i
\(917\) 0 0
\(918\) 274.470 + 884.398i 0.298987 + 0.963396i
\(919\) −427.558 −0.465243 −0.232621 0.972567i \(-0.574730\pi\)
−0.232621 + 0.972567i \(0.574730\pi\)
\(920\) −2.95122 + 1.70389i −0.00320785 + 0.00185205i
\(921\) 23.9353 + 49.6293i 0.0259884 + 0.0538863i
\(922\) −949.064 547.942i −1.02935 0.594297i
\(923\) −1519.70 877.398i −1.64648 0.950594i
\(924\) 0 0
\(925\) −69.5596 120.481i −0.0751996 0.130250i
\(926\) 1370.95 1.48051
\(927\) −1262.65 + 497.229i −1.36208 + 0.536385i
\(928\) −1472.10 −1.58632
\(929\) −978.107 + 564.711i −1.05286 + 0.607869i −0.923449 0.383722i \(-0.874642\pi\)
−0.129412 + 0.991591i \(0.541309\pi\)
\(930\) 64.1179 862.238i 0.0689440 0.927138i
\(931\) 0 0
\(932\) 497.045 860.908i 0.533310 0.923721i
\(933\) 1220.13 + 90.7313i 1.30775 + 0.0972469i
\(934\) −283.514 + 163.687i −0.303548 + 0.175253i
\(935\) 330.639 0.353625
\(936\) −11.5189 + 4.53612i −0.0123066 + 0.00484629i
\(937\) 736.130i 0.785625i −0.919619 0.392812i \(-0.871502\pi\)
0.919619 0.392812i \(-0.128498\pi\)
\(938\) 0 0
\(939\) −680.056 + 998.691i −0.724234 + 1.06357i
\(940\) 127.493 220.824i 0.135631 0.234919i
\(941\) 75.0157 + 43.3103i 0.0797191 + 0.0460259i 0.539330 0.842095i \(-0.318678\pi\)
−0.459611 + 0.888121i \(0.652011\pi\)
\(942\) −37.8575 78.4965i −0.0401884 0.0833296i
\(943\) 121.386 70.0825i 0.128724 0.0743187i
\(944\) 1510.57i 1.60018i
\(945\) 0 0
\(946\) −1433.97 −1.51582
\(947\) −293.684 508.676i −0.310121 0.537145i 0.668268 0.743921i \(-0.267036\pi\)
−0.978388 + 0.206776i \(0.933703\pi\)
\(948\) 1491.12 719.141i 1.57291 0.758588i
\(949\) −527.794 + 914.166i −0.556158 + 0.963294i
\(950\) 755.862 + 436.397i 0.795645 + 0.459366i
\(951\) 735.343 + 500.730i 0.773232 + 0.526530i
\(952\) 0 0
\(953\) −396.549 −0.416106 −0.208053 0.978118i \(-0.566713\pi\)
−0.208053 + 0.978118i \(0.566713\pi\)
\(954\) −1718.45 256.996i −1.80131 0.269388i
\(955\) 249.186i 0.260928i
\(956\) −444.001 769.033i −0.464436 0.804427i
\(957\) 82.2763 1106.43i 0.0859732 1.15614i
\(958\) 1118.28 + 645.638i 1.16730 + 0.673944i
\(959\) 0 0
\(960\) −466.394 34.6821i −0.485828 0.0361272i
\(961\) 418.375 + 724.646i 0.435353 + 0.754054i
\(962\) 318.436i 0.331014i
\(963\) 429.239 539.519i 0.445731 0.560248i
\(964\) 1062.62i 1.10230i
\(965\) −337.217 + 194.693i −0.349448 + 0.201754i
\(966\) 0 0
\(967\) −163.959 + 283.985i −0.169554 + 0.293676i −0.938263 0.345922i \(-0.887566\pi\)
0.768709 + 0.639598i \(0.220899\pi\)
\(968\) 0.386903 0.670135i 0.000399693 0.000692288i
\(969\) −523.276 + 252.367i −0.540016 + 0.260440i
\(970\) −379.094 656.611i −0.390819 0.676918i
\(971\) 1039.52i 1.07057i −0.844673 0.535283i \(-0.820205\pi\)
0.844673 0.535283i \(-0.179795\pi\)
\(972\) 968.223 148.781i 0.996114 0.153067i
\(973\) 0 0
\(974\) 460.046 + 796.823i 0.472326 + 0.818093i
\(975\) −389.925 808.499i −0.399923 0.829230i
\(976\) −679.705 392.428i −0.696419 0.402078i
\(977\) −743.417 + 1287.64i −0.760918 + 1.31795i 0.181460 + 0.983398i \(0.441918\pi\)
−0.942378 + 0.334550i \(0.891416\pi\)
\(978\) −1248.62 850.247i −1.27671 0.869373i
\(979\) −1069.63 + 617.552i −1.09258 + 0.630799i
\(980\) 0 0
\(981\) −141.187 + 177.460i −0.143921 + 0.180897i
\(982\) −879.774 −0.895900
\(983\) −958.645 + 553.474i −0.975223 + 0.563045i −0.900825 0.434183i \(-0.857037\pi\)
−0.0743987 + 0.997229i \(0.523704\pi\)
\(984\) −2.31088 0.171842i −0.00234846 0.000174637i
\(985\) 626.474 + 361.695i 0.636014 + 0.367203i
\(986\) −964.353 556.769i −0.978046 0.564675i
\(987\) 0 0
\(988\) −501.386 868.425i −0.507475 0.878973i
\(989\) −713.277 −0.721210
\(990\) 103.066 689.166i 0.104107 0.696127i
\(991\) 1087.01 1.09688 0.548439 0.836191i \(-0.315222\pi\)
0.548439 + 0.836191i \(0.315222\pi\)
\(992\) 1664.87 961.211i 1.67829 0.968963i
\(993\) −1321.57 899.920i −1.33089 0.906264i
\(994\) 0 0
\(995\) −69.3191 + 120.064i −0.0696675 + 0.120668i
\(996\) −114.454 237.318i −0.114914 0.238271i
\(997\) −716.543 + 413.696i −0.718699 + 0.414941i −0.814274 0.580481i \(-0.802864\pi\)
0.0955746 + 0.995422i \(0.469531\pi\)
\(998\) 2194.09 2.19849
\(999\) 43.0991 190.341i 0.0431422 0.190531i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.3.l.b.391.12 28
7.2 even 3 441.3.k.b.31.12 28
7.3 odd 6 441.3.t.a.166.3 28
7.4 even 3 63.3.t.a.40.3 yes 28
7.5 odd 6 63.3.k.a.31.12 28
7.6 odd 2 441.3.l.a.391.12 28
9.7 even 3 441.3.l.a.97.12 28
21.5 even 6 189.3.k.a.10.3 28
21.11 odd 6 189.3.t.a.145.12 28
63.11 odd 6 189.3.k.a.19.3 28
63.16 even 3 441.3.t.a.178.3 28
63.25 even 3 63.3.k.a.61.12 yes 28
63.34 odd 6 inner 441.3.l.b.97.12 28
63.47 even 6 189.3.t.a.73.12 28
63.52 odd 6 441.3.k.b.313.12 28
63.61 odd 6 63.3.t.a.52.3 yes 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.k.a.31.12 28 7.5 odd 6
63.3.k.a.61.12 yes 28 63.25 even 3
63.3.t.a.40.3 yes 28 7.4 even 3
63.3.t.a.52.3 yes 28 63.61 odd 6
189.3.k.a.10.3 28 21.5 even 6
189.3.k.a.19.3 28 63.11 odd 6
189.3.t.a.73.12 28 63.47 even 6
189.3.t.a.145.12 28 21.11 odd 6
441.3.k.b.31.12 28 7.2 even 3
441.3.k.b.313.12 28 63.52 odd 6
441.3.l.a.97.12 28 9.7 even 3
441.3.l.a.391.12 28 7.6 odd 2
441.3.l.b.97.12 28 63.34 odd 6 inner
441.3.l.b.391.12 28 1.1 even 1 trivial
441.3.t.a.166.3 28 7.3 odd 6
441.3.t.a.178.3 28 63.16 even 3