Properties

Label 63.3.k.a.61.12
Level $63$
Weight $3$
Character 63.61
Analytic conductor $1.717$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,3,Mod(31,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.31");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.71662566547\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 61.12
Character \(\chi\) \(=\) 63.61
Dual form 63.3.k.a.31.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.41697 + 2.45427i) q^{2} +(0.222472 + 2.99174i) q^{3} +(-2.01561 + 3.49114i) q^{4} -2.39855i q^{5} +(-7.02729 + 4.78521i) q^{6} +(0.0107242 - 6.99999i) q^{7} -0.0884848 q^{8} +(-8.90101 + 1.33116i) q^{9} +O(q^{10})\) \(q+(1.41697 + 2.45427i) q^{2} +(0.222472 + 2.99174i) q^{3} +(-2.01561 + 3.49114i) q^{4} -2.39855i q^{5} +(-7.02729 + 4.78521i) q^{6} +(0.0107242 - 6.99999i) q^{7} -0.0884848 q^{8} +(-8.90101 + 1.33116i) q^{9} +(5.88667 - 3.39867i) q^{10} +11.3906 q^{11} +(-10.8930 - 5.25350i) q^{12} +(-13.4628 + 7.77278i) q^{13} +(17.1950 - 9.89246i) q^{14} +(7.17583 - 0.533610i) q^{15} +(7.93707 + 13.7474i) q^{16} +(10.4807 - 6.05105i) q^{17} +(-15.8795 - 19.9592i) q^{18} +(-13.8576 - 8.00071i) q^{19} +(8.37367 + 4.83454i) q^{20} +(20.9445 - 1.52522i) q^{21} +(16.1401 + 27.9555i) q^{22} -16.0566 q^{23} +(-0.0196854 - 0.264724i) q^{24} +19.2470 q^{25} +(-38.1529 - 22.0276i) q^{26} +(-5.96270 - 26.3334i) q^{27} +(24.4163 + 14.1467i) q^{28} +(16.2339 - 28.1180i) q^{29} +(11.4776 + 16.8553i) q^{30} +(-36.7194 - 21.1999i) q^{31} +(-22.6701 + 39.2658i) q^{32} +(2.53408 + 34.0776i) q^{33} +(29.7018 + 17.1483i) q^{34} +(-16.7898 - 0.0257224i) q^{35} +(13.2937 - 33.7578i) q^{36} +(-3.61406 + 6.25973i) q^{37} -45.3471i q^{38} +(-26.2492 - 38.5481i) q^{39} +0.212235i q^{40} +(-7.55990 + 4.36471i) q^{41} +(33.4211 + 49.2423i) q^{42} +(-22.2113 + 38.4711i) q^{43} +(-22.9590 + 39.7661i) q^{44} +(3.19284 + 21.3495i) q^{45} +(-22.7518 - 39.4072i) q^{46} +(-22.8382 + 13.1856i) q^{47} +(-39.3629 + 26.8040i) q^{48} +(-48.9998 - 0.150138i) q^{49} +(27.2724 + 47.2372i) q^{50} +(20.4348 + 30.0094i) q^{51} -62.6676i q^{52} +(34.0624 + 58.9979i) q^{53} +(56.1801 - 51.9477i) q^{54} -27.3208i q^{55} +(-0.000948925 + 0.619393i) q^{56} +(20.8531 - 43.2384i) q^{57} +92.0120 q^{58} +(82.4104 + 47.5797i) q^{59} +(-12.6008 + 26.1274i) q^{60} +(-42.8184 + 24.7212i) q^{61} -120.159i q^{62} +(9.22264 + 62.3213i) q^{63} -64.9952 q^{64} +(18.6434 + 32.2913i) q^{65} +(-80.0448 + 54.5063i) q^{66} +(40.9350 - 70.9015i) q^{67} +48.7863i q^{68} +(-3.57215 - 48.0372i) q^{69} +(-23.7275 - 41.2431i) q^{70} -112.881 q^{71} +(0.787605 - 0.117787i) q^{72} +(58.8056 - 33.9514i) q^{73} -20.4840 q^{74} +(4.28192 + 57.5819i) q^{75} +(55.8633 - 32.2527i) q^{76} +(0.122154 - 79.7339i) q^{77} +(57.4129 - 119.044i) q^{78} +(-68.4439 - 118.548i) q^{79} +(32.9738 - 19.0374i) q^{80} +(77.4560 - 23.6973i) q^{81} +(-21.4243 - 12.3693i) q^{82} +(18.8674 + 10.8931i) q^{83} +(-36.8913 + 76.1946i) q^{84} +(-14.5137 - 25.1385i) q^{85} -125.891 q^{86} +(87.7333 + 42.3122i) q^{87} -1.00789 q^{88} +(93.9050 + 54.2161i) q^{89} +(-47.8732 + 38.0877i) q^{90} +(54.2650 + 94.3232i) q^{91} +(32.3639 - 56.0559i) q^{92} +(55.2557 - 114.571i) q^{93} +(-64.7220 - 37.3673i) q^{94} +(-19.1901 + 33.2382i) q^{95} +(-122.517 - 59.0876i) q^{96} +(96.5982 + 55.7710i) q^{97} +(-69.0628 - 120.471i) q^{98} +(-101.388 + 15.1626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + q^{2} - 3 q^{3} - 23 q^{4} + 12 q^{6} - 16 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 28 q + q^{2} - 3 q^{3} - 23 q^{4} + 12 q^{6} - 16 q^{8} + 9 q^{9} - 6 q^{10} - 14 q^{11} - 3 q^{12} + 15 q^{13} - 11 q^{14} - 18 q^{15} - 27 q^{16} - 33 q^{17} + 33 q^{18} - 6 q^{19} + 108 q^{20} + 12 q^{21} - 10 q^{22} - 68 q^{23} + 42 q^{24} - 62 q^{25} + 54 q^{26} - 81 q^{27} - 16 q^{28} + 70 q^{29} - 6 q^{30} + 45 q^{31} + 153 q^{32} - 114 q^{33} + 12 q^{34} + 18 q^{35} - 174 q^{36} + 9 q^{37} - 120 q^{39} - 234 q^{41} - 51 q^{42} + 30 q^{43} + 51 q^{44} + 276 q^{45} - 22 q^{46} - 111 q^{47} + 147 q^{48} + 34 q^{49} + 241 q^{50} - 6 q^{51} + 148 q^{53} + 378 q^{54} - 412 q^{56} + 189 q^{57} - 34 q^{58} + 42 q^{59} + 456 q^{60} + 120 q^{61} - 222 q^{63} - 48 q^{64} + 114 q^{65} - 447 q^{66} - 34 q^{67} + 78 q^{69} + 264 q^{70} - 350 q^{71} - 339 q^{72} - 6 q^{73} - 718 q^{74} - 123 q^{75} + 72 q^{76} - 32 q^{77} - 375 q^{78} - 82 q^{79} - 609 q^{80} - 3 q^{81} - 18 q^{82} + 738 q^{83} + 609 q^{84} + 3 q^{85} - 34 q^{86} + 3 q^{87} - 50 q^{88} + 21 q^{89} - 543 q^{90} + 39 q^{91} + 288 q^{92} + 252 q^{93} - 3 q^{94} + 507 q^{95} - 582 q^{96} - 57 q^{97} + 811 q^{98} - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41697 + 2.45427i 0.708485 + 1.22713i 0.965419 + 0.260704i \(0.0839545\pi\)
−0.256934 + 0.966429i \(0.582712\pi\)
\(3\) 0.222472 + 2.99174i 0.0741574 + 0.997247i
\(4\) −2.01561 + 3.49114i −0.503903 + 0.872785i
\(5\) 2.39855i 0.479709i −0.970809 0.239855i \(-0.922900\pi\)
0.970809 0.239855i \(-0.0770998\pi\)
\(6\) −7.02729 + 4.78521i −1.17121 + 0.797535i
\(7\) 0.0107242 6.99999i 0.00153202 0.999999i
\(8\) −0.0884848 −0.0110606
\(9\) −8.90101 + 1.33116i −0.989001 + 0.147906i
\(10\) 5.88667 3.39867i 0.588667 0.339867i
\(11\) 11.3906 1.03551 0.517753 0.855530i \(-0.326769\pi\)
0.517753 + 0.855530i \(0.326769\pi\)
\(12\) −10.8930 5.25350i −0.907750 0.437792i
\(13\) −13.4628 + 7.77278i −1.03560 + 0.597906i −0.918585 0.395224i \(-0.870667\pi\)
−0.117019 + 0.993130i \(0.537334\pi\)
\(14\) 17.1950 9.89246i 1.22822 0.706604i
\(15\) 7.17583 0.533610i 0.478388 0.0355740i
\(16\) 7.93707 + 13.7474i 0.496067 + 0.859213i
\(17\) 10.4807 6.05105i 0.616513 0.355944i −0.158997 0.987279i \(-0.550826\pi\)
0.775510 + 0.631335i \(0.217493\pi\)
\(18\) −15.8795 19.9592i −0.882194 1.10885i
\(19\) −13.8576 8.00071i −0.729350 0.421090i 0.0888345 0.996046i \(-0.471686\pi\)
−0.818184 + 0.574956i \(0.805019\pi\)
\(20\) 8.37367 + 4.83454i 0.418683 + 0.241727i
\(21\) 20.9445 1.52522i 0.997359 0.0726295i
\(22\) 16.1401 + 27.9555i 0.733641 + 1.27070i
\(23\) −16.0566 −0.698114 −0.349057 0.937102i \(-0.613498\pi\)
−0.349057 + 0.937102i \(0.613498\pi\)
\(24\) −0.0196854 0.264724i −0.000820225 0.0110301i
\(25\) 19.2470 0.769879
\(26\) −38.1529 22.0276i −1.46742 0.847215i
\(27\) −5.96270 26.3334i −0.220841 0.975310i
\(28\) 24.4163 + 14.1467i 0.872012 + 0.505239i
\(29\) 16.2339 28.1180i 0.559791 0.969586i −0.437723 0.899110i \(-0.644215\pi\)
0.997513 0.0704760i \(-0.0224518\pi\)
\(30\) 11.4776 + 16.8553i 0.382585 + 0.561842i
\(31\) −36.7194 21.1999i −1.18450 0.683869i −0.227445 0.973791i \(-0.573037\pi\)
−0.957050 + 0.289922i \(0.906371\pi\)
\(32\) −22.6701 + 39.2658i −0.708442 + 1.22706i
\(33\) 2.53408 + 34.0776i 0.0767904 + 1.03266i
\(34\) 29.7018 + 17.1483i 0.873581 + 0.504362i
\(35\) −16.7898 0.0257224i −0.479709 0.000734926i
\(36\) 13.2937 33.7578i 0.369270 0.937716i
\(37\) −3.61406 + 6.25973i −0.0976772 + 0.169182i −0.910723 0.413018i \(-0.864475\pi\)
0.813046 + 0.582200i \(0.197808\pi\)
\(38\) 45.3471i 1.19335i
\(39\) −26.2492 38.5481i −0.673057 0.988413i
\(40\) 0.212235i 0.00530587i
\(41\) −7.55990 + 4.36471i −0.184388 + 0.106456i −0.589353 0.807876i \(-0.700617\pi\)
0.404965 + 0.914332i \(0.367284\pi\)
\(42\) 33.4211 + 49.2423i 0.795740 + 1.17243i
\(43\) −22.2113 + 38.4711i −0.516542 + 0.894676i 0.483274 + 0.875469i \(0.339448\pi\)
−0.999816 + 0.0192072i \(0.993886\pi\)
\(44\) −22.9590 + 39.7661i −0.521795 + 0.903775i
\(45\) 3.19284 + 21.3495i 0.0709521 + 0.474433i
\(46\) −22.7518 39.4072i −0.494603 0.856678i
\(47\) −22.8382 + 13.1856i −0.485919 + 0.280545i −0.722880 0.690974i \(-0.757182\pi\)
0.236961 + 0.971519i \(0.423849\pi\)
\(48\) −39.3629 + 26.8040i −0.820060 + 0.558418i
\(49\) −48.9998 0.150138i −0.999995 0.00306404i
\(50\) 27.2724 + 47.2372i 0.545448 + 0.944744i
\(51\) 20.4348 + 30.0094i 0.400683 + 0.588420i
\(52\) 62.6676i 1.20515i
\(53\) 34.0624 + 58.9979i 0.642688 + 1.11317i 0.984830 + 0.173520i \(0.0555140\pi\)
−0.342143 + 0.939648i \(0.611153\pi\)
\(54\) 56.1801 51.9477i 1.04037 0.961994i
\(55\) 27.3208i 0.496742i
\(56\) −0.000948925 0.619393i −1.69451e−5 0.0110606i
\(57\) 20.8531 43.2384i 0.365844 0.758568i
\(58\) 92.0120 1.58641
\(59\) 82.4104 + 47.5797i 1.39679 + 0.806435i 0.994055 0.108883i \(-0.0347274\pi\)
0.402732 + 0.915318i \(0.368061\pi\)
\(60\) −12.6008 + 26.1274i −0.210013 + 0.435456i
\(61\) −42.8184 + 24.7212i −0.701941 + 0.405266i −0.808070 0.589087i \(-0.799488\pi\)
0.106129 + 0.994352i \(0.466154\pi\)
\(62\) 120.159i 1.93804i
\(63\) 9.22264 + 62.3213i 0.146391 + 0.989227i
\(64\) −64.9952 −1.01555
\(65\) 18.6434 + 32.2913i 0.286821 + 0.496789i
\(66\) −80.0448 + 54.5063i −1.21280 + 0.825853i
\(67\) 40.9350 70.9015i 0.610971 1.05823i −0.380107 0.924943i \(-0.624113\pi\)
0.991077 0.133289i \(-0.0425539\pi\)
\(68\) 48.7863i 0.717445i
\(69\) −3.57215 48.0372i −0.0517703 0.696192i
\(70\) −23.7275 41.2431i −0.338965 0.589187i
\(71\) −112.881 −1.58987 −0.794936 0.606694i \(-0.792496\pi\)
−0.794936 + 0.606694i \(0.792496\pi\)
\(72\) 0.787605 0.117787i 0.0109390 0.00163593i
\(73\) 58.8056 33.9514i 0.805556 0.465088i −0.0398541 0.999206i \(-0.512689\pi\)
0.845410 + 0.534117i \(0.179356\pi\)
\(74\) −20.4840 −0.276811
\(75\) 4.28192 + 57.5819i 0.0570922 + 0.767759i
\(76\) 55.8633 32.2527i 0.735043 0.424377i
\(77\) 0.122154 79.7339i 0.00158642 1.03551i
\(78\) 57.4129 119.044i 0.736063 1.52621i
\(79\) −68.4439 118.548i −0.866379 1.50061i −0.865671 0.500613i \(-0.833108\pi\)
−0.000707812 1.00000i \(-0.500225\pi\)
\(80\) 32.9738 19.0374i 0.412172 0.237968i
\(81\) 77.4560 23.6973i 0.956247 0.292559i
\(82\) −21.4243 12.3693i −0.261272 0.150846i
\(83\) 18.8674 + 10.8931i 0.227318 + 0.131242i 0.609334 0.792913i \(-0.291437\pi\)
−0.382016 + 0.924156i \(0.624770\pi\)
\(84\) −36.8913 + 76.1946i −0.439182 + 0.907079i
\(85\) −14.5137 25.1385i −0.170750 0.295747i
\(86\) −125.891 −1.46385
\(87\) 87.7333 + 42.3122i 1.00843 + 0.486347i
\(88\) −1.00789 −0.0114533
\(89\) 93.9050 + 54.2161i 1.05511 + 0.609169i 0.924076 0.382208i \(-0.124836\pi\)
0.131036 + 0.991378i \(0.458170\pi\)
\(90\) −47.8732 + 38.0877i −0.531924 + 0.423197i
\(91\) 54.2650 + 94.3232i 0.596319 + 1.03652i
\(92\) 32.3639 56.0559i 0.351782 0.609304i
\(93\) 55.2557 114.571i 0.594147 1.23195i
\(94\) −64.7220 37.3673i −0.688532 0.397524i
\(95\) −19.1901 + 33.2382i −0.202001 + 0.349876i
\(96\) −122.517 59.0876i −1.27622 0.615496i
\(97\) 96.5982 + 55.7710i 0.995857 + 0.574959i 0.907020 0.421088i \(-0.138351\pi\)
0.0888375 + 0.996046i \(0.471685\pi\)
\(98\) −69.0628 120.471i −0.704722 1.22930i
\(99\) −101.388 + 15.1626i −1.02412 + 0.153158i
\(100\) −38.7944 + 67.1939i −0.387944 + 0.671939i
\(101\) 76.8626i 0.761016i 0.924778 + 0.380508i \(0.124251\pi\)
−0.924778 + 0.380508i \(0.875749\pi\)
\(102\) −44.6955 + 92.6750i −0.438191 + 0.908578i
\(103\) 150.781i 1.46389i 0.681362 + 0.731946i \(0.261388\pi\)
−0.681362 + 0.731946i \(0.738612\pi\)
\(104\) 1.19126 0.687773i 0.0114544 0.00661320i
\(105\) −3.65831 50.2365i −0.0348410 0.478442i
\(106\) −96.5310 + 167.197i −0.910669 + 1.57733i
\(107\) −38.3022 + 66.3413i −0.357964 + 0.620013i −0.987621 0.156861i \(-0.949862\pi\)
0.629656 + 0.776874i \(0.283196\pi\)
\(108\) 103.952 + 32.2612i 0.962519 + 0.298715i
\(109\) 12.5985 + 21.8212i 0.115582 + 0.200195i 0.918012 0.396552i \(-0.129793\pi\)
−0.802430 + 0.596746i \(0.796460\pi\)
\(110\) 67.0525 38.7128i 0.609568 0.351934i
\(111\) −19.5315 9.41970i −0.175960 0.0848622i
\(112\) 96.3168 55.4120i 0.859972 0.494750i
\(113\) 37.0748 + 64.2154i 0.328095 + 0.568277i 0.982134 0.188184i \(-0.0602600\pi\)
−0.654039 + 0.756461i \(0.726927\pi\)
\(114\) 135.667 10.0885i 1.19006 0.0884953i
\(115\) 38.5125i 0.334892i
\(116\) 65.4426 + 113.350i 0.564160 + 0.977154i
\(117\) 109.486 87.1068i 0.935779 0.744502i
\(118\) 269.676i 2.28539i
\(119\) −42.2449 73.4299i −0.354999 0.617058i
\(120\) −0.634952 + 0.0472164i −0.00529127 + 0.000393470i
\(121\) 8.74506 0.0722732
\(122\) −121.345 70.0585i −0.994629 0.574250i
\(123\) −14.7400 21.6462i −0.119837 0.175986i
\(124\) 148.024 85.4617i 1.19374 0.689207i
\(125\) 106.128i 0.849027i
\(126\) −139.885 + 110.942i −1.11020 + 0.880494i
\(127\) 52.2864 0.411704 0.205852 0.978583i \(-0.434003\pi\)
0.205852 + 0.978583i \(0.434003\pi\)
\(128\) −1.41571 2.45209i −0.0110603 0.0191569i
\(129\) −120.037 57.8917i −0.930518 0.448773i
\(130\) −52.8342 + 91.5116i −0.406417 + 0.703935i
\(131\) 186.539i 1.42396i −0.702198 0.711982i \(-0.747798\pi\)
0.702198 0.711982i \(-0.252202\pi\)
\(132\) −124.078 59.8404i −0.939981 0.453336i
\(133\) −56.1535 + 96.9176i −0.422207 + 0.728704i
\(134\) 232.015 1.73145
\(135\) −63.1618 + 14.3018i −0.467865 + 0.105939i
\(136\) −0.927385 + 0.535426i −0.00681901 + 0.00393696i
\(137\) −153.374 −1.11952 −0.559760 0.828655i \(-0.689107\pi\)
−0.559760 + 0.828655i \(0.689107\pi\)
\(138\) 112.834 76.8343i 0.817641 0.556771i
\(139\) −79.0232 + 45.6241i −0.568513 + 0.328231i −0.756555 0.653930i \(-0.773119\pi\)
0.188043 + 0.982161i \(0.439786\pi\)
\(140\) 33.9315 58.5637i 0.242368 0.418312i
\(141\) −44.5288 65.3924i −0.315807 0.463776i
\(142\) −159.949 277.040i −1.12640 1.95098i
\(143\) −153.349 + 88.5364i −1.07237 + 0.619135i
\(144\) −88.9479 111.800i −0.617694 0.776391i
\(145\) −67.4423 38.9378i −0.465119 0.268537i
\(146\) 166.652 + 96.2164i 1.14145 + 0.659016i
\(147\) −10.4519 146.628i −0.0711014 0.997469i
\(148\) −14.5691 25.2344i −0.0984396 0.170502i
\(149\) 112.412 0.754445 0.377223 0.926123i \(-0.376879\pi\)
0.377223 + 0.926123i \(0.376879\pi\)
\(150\) −135.254 + 92.1009i −0.901693 + 0.614006i
\(151\) 28.1969 0.186734 0.0933671 0.995632i \(-0.470237\pi\)
0.0933671 + 0.995632i \(0.470237\pi\)
\(152\) 1.22619 + 0.707942i 0.00806705 + 0.00465751i
\(153\) −85.2342 + 67.8120i −0.557086 + 0.443216i
\(154\) 195.861 112.681i 1.27183 0.731693i
\(155\) −50.8490 + 88.0731i −0.328058 + 0.568214i
\(156\) 187.485 13.9418i 1.20183 0.0893705i
\(157\) −8.87726 5.12529i −0.0565431 0.0326452i 0.471462 0.881886i \(-0.343726\pi\)
−0.528005 + 0.849241i \(0.677060\pi\)
\(158\) 193.966 335.959i 1.22763 2.12632i
\(159\) −168.928 + 115.031i −1.06244 + 0.723468i
\(160\) 94.1810 + 54.3754i 0.588631 + 0.339846i
\(161\) −0.172194 + 112.396i −0.00106953 + 0.698113i
\(162\) 167.912 + 156.519i 1.03650 + 0.966168i
\(163\) 88.8411 153.877i 0.545037 0.944033i −0.453567 0.891222i \(-0.649849\pi\)
0.998605 0.0528105i \(-0.0168179\pi\)
\(164\) 35.1903i 0.214575i
\(165\) 81.7368 6.07812i 0.495374 0.0368371i
\(166\) 61.7409i 0.371933i
\(167\) 53.9725 31.1611i 0.323189 0.186593i −0.329624 0.944112i \(-0.606922\pi\)
0.652813 + 0.757519i \(0.273589\pi\)
\(168\) −1.85327 + 0.134959i −0.0110314 + 0.000803326i
\(169\) 36.3322 62.9292i 0.214983 0.372362i
\(170\) 41.1311 71.2411i 0.241947 0.419065i
\(171\) 133.997 + 52.7678i 0.783610 + 0.308583i
\(172\) −89.5387 155.086i −0.520574 0.901660i
\(173\) 76.2216 44.0066i 0.440587 0.254373i −0.263259 0.964725i \(-0.584797\pi\)
0.703847 + 0.710352i \(0.251464\pi\)
\(174\) 20.4701 + 275.276i 0.117644 + 1.58205i
\(175\) 0.206408 134.729i 0.00117947 0.769878i
\(176\) 90.4077 + 156.591i 0.513680 + 0.889720i
\(177\) −124.012 + 257.136i −0.700632 + 1.45274i
\(178\) 307.290i 1.72635i
\(179\) −6.47603 11.2168i −0.0361789 0.0626638i 0.847369 0.531005i \(-0.178185\pi\)
−0.883548 + 0.468341i \(0.844852\pi\)
\(180\) −80.9696 31.8856i −0.449831 0.177142i
\(181\) 225.852i 1.24780i −0.781503 0.623901i \(-0.785547\pi\)
0.781503 0.623901i \(-0.214453\pi\)
\(182\) −154.602 + 266.834i −0.849462 + 1.46612i
\(183\) −83.4853 122.602i −0.456204 0.669955i
\(184\) 1.42077 0.00772156
\(185\) 15.0143 + 8.66848i 0.0811581 + 0.0468567i
\(186\) 359.484 26.7320i 1.93271 0.143720i
\(187\) 119.381 68.9249i 0.638404 0.368582i
\(188\) 106.308i 0.565470i
\(189\) −184.397 + 41.4565i −0.975647 + 0.219346i
\(190\) −108.767 −0.572459
\(191\) −51.9453 89.9718i −0.271965 0.471057i 0.697400 0.716682i \(-0.254340\pi\)
−0.969365 + 0.245625i \(0.921007\pi\)
\(192\) −14.4596 194.449i −0.0753105 1.01275i
\(193\) −81.1711 + 140.592i −0.420575 + 0.728458i −0.995996 0.0893998i \(-0.971505\pi\)
0.575420 + 0.817858i \(0.304838\pi\)
\(194\) 316.103i 1.62940i
\(195\) −92.4594 + 62.9600i −0.474151 + 0.322872i
\(196\) 99.2887 170.763i 0.506575 0.871237i
\(197\) 301.595 1.53094 0.765470 0.643472i \(-0.222507\pi\)
0.765470 + 0.643472i \(0.222507\pi\)
\(198\) −180.876 227.347i −0.913517 1.14822i
\(199\) 50.0571 28.9005i 0.251543 0.145229i −0.368927 0.929458i \(-0.620275\pi\)
0.620471 + 0.784230i \(0.286942\pi\)
\(200\) −1.70307 −0.00851533
\(201\) 221.226 + 106.693i 1.10063 + 0.530813i
\(202\) −188.641 + 108.912i −0.933868 + 0.539169i
\(203\) −196.652 113.939i −0.968727 0.561276i
\(204\) −145.956 + 10.8536i −0.715470 + 0.0532039i
\(205\) 10.4690 + 18.1328i 0.0510681 + 0.0884526i
\(206\) −370.056 + 213.652i −1.79639 + 1.03715i
\(207\) 142.920 21.3739i 0.690436 0.103256i
\(208\) −213.711 123.386i −1.02746 0.593202i
\(209\) −157.846 91.1327i −0.755246 0.436042i
\(210\) 118.110 80.1620i 0.562428 0.381724i
\(211\) −21.2197 36.7535i −0.100567 0.174187i 0.811351 0.584559i \(-0.198732\pi\)
−0.911918 + 0.410371i \(0.865399\pi\)
\(212\) −274.627 −1.29541
\(213\) −25.1129 337.710i −0.117901 1.58549i
\(214\) −217.092 −1.01445
\(215\) 92.2747 + 53.2748i 0.429185 + 0.247790i
\(216\) 0.527609 + 2.33010i 0.00244263 + 0.0107875i
\(217\) −148.793 + 256.808i −0.685683 + 1.18345i
\(218\) −35.7034 + 61.8400i −0.163777 + 0.283670i
\(219\) 114.656 + 168.378i 0.523545 + 0.768848i
\(220\) 95.3808 + 55.0681i 0.433549 + 0.250310i
\(221\) −94.0670 + 162.929i −0.425642 + 0.737234i
\(222\) −4.55713 61.2829i −0.0205276 0.276049i
\(223\) 166.212 + 95.9625i 0.745345 + 0.430325i 0.824009 0.566576i \(-0.191732\pi\)
−0.0786645 + 0.996901i \(0.525066\pi\)
\(224\) 274.618 + 159.112i 1.22597 + 0.710321i
\(225\) −171.318 + 25.6208i −0.761411 + 0.113870i
\(226\) −105.068 + 181.983i −0.464901 + 0.805233i
\(227\) 224.779i 0.990216i −0.868831 0.495108i \(-0.835128\pi\)
0.868831 0.495108i \(-0.164872\pi\)
\(228\) 108.920 + 159.953i 0.477718 + 0.701548i
\(229\) 160.148i 0.699338i −0.936873 0.349669i \(-0.886294\pi\)
0.936873 0.349669i \(-0.113706\pi\)
\(230\) −94.5200 + 54.5712i −0.410957 + 0.237266i
\(231\) 238.570 17.3731i 1.03277 0.0752083i
\(232\) −1.43646 + 2.48802i −0.00619162 + 0.0107242i
\(233\) 123.299 213.560i 0.529180 0.916566i −0.470241 0.882538i \(-0.655833\pi\)
0.999421 0.0340281i \(-0.0108336\pi\)
\(234\) 368.922 + 145.280i 1.57659 + 0.620856i
\(235\) 31.6263 + 54.7784i 0.134580 + 0.233100i
\(236\) −332.215 + 191.804i −1.40769 + 0.812730i
\(237\) 339.439 231.140i 1.43223 0.975275i
\(238\) 120.357 207.728i 0.505700 0.872808i
\(239\) −110.141 190.769i −0.460839 0.798197i 0.538164 0.842840i \(-0.319118\pi\)
−0.999003 + 0.0446434i \(0.985785\pi\)
\(240\) 64.2908 + 94.4137i 0.267878 + 0.393390i
\(241\) 263.598i 1.09377i 0.837209 + 0.546883i \(0.184186\pi\)
−0.837209 + 0.546883i \(0.815814\pi\)
\(242\) 12.3915 + 21.4627i 0.0512045 + 0.0886889i
\(243\) 88.1280 + 226.456i 0.362667 + 0.931919i
\(244\) 199.313i 0.816858i
\(245\) −0.360113 + 117.528i −0.00146985 + 0.479707i
\(246\) 32.2395 66.8478i 0.131055 0.271739i
\(247\) 248.751 1.00709
\(248\) 3.24911 + 1.87587i 0.0131012 + 0.00756400i
\(249\) −28.3919 + 58.8699i −0.114024 + 0.236425i
\(250\) 260.467 150.381i 1.04187 0.601523i
\(251\) 23.0003i 0.0916348i −0.998950 0.0458174i \(-0.985411\pi\)
0.998950 0.0458174i \(-0.0145892\pi\)
\(252\) −236.162 93.4180i −0.937150 0.370706i
\(253\) −182.894 −0.722901
\(254\) 74.0883 + 128.325i 0.291686 + 0.505215i
\(255\) 71.9790 49.0139i 0.282271 0.192211i
\(256\) −125.978 + 218.201i −0.492103 + 0.852347i
\(257\) 17.8170i 0.0693270i −0.999399 0.0346635i \(-0.988964\pi\)
0.999399 0.0346635i \(-0.0110359\pi\)
\(258\) −28.0072 376.633i −0.108555 1.45982i
\(259\) 43.7793 + 25.3655i 0.169032 + 0.0979363i
\(260\) −150.311 −0.578120
\(261\) −107.069 + 271.889i −0.410226 + 1.04172i
\(262\) 457.817 264.321i 1.74739 1.00886i
\(263\) −363.008 −1.38026 −0.690130 0.723685i \(-0.742447\pi\)
−0.690130 + 0.723685i \(0.742447\pi\)
\(264\) −0.224228 3.01535i −0.000849349 0.0114218i
\(265\) 141.509 81.7004i 0.533997 0.308303i
\(266\) −317.429 0.486310i −1.19334 0.00182823i
\(267\) −141.309 + 293.001i −0.529248 + 1.09738i
\(268\) 165.018 + 285.820i 0.615740 + 1.06649i
\(269\) 169.879 98.0794i 0.631519 0.364607i −0.149821 0.988713i \(-0.547870\pi\)
0.781340 + 0.624106i \(0.214537\pi\)
\(270\) −124.599 134.751i −0.461477 0.499076i
\(271\) −82.5249 47.6458i −0.304520 0.175815i 0.339952 0.940443i \(-0.389589\pi\)
−0.644472 + 0.764628i \(0.722923\pi\)
\(272\) 166.372 + 96.0552i 0.611663 + 0.353144i
\(273\) −270.118 + 183.331i −0.989443 + 0.671542i
\(274\) −217.327 376.421i −0.793163 1.37380i
\(275\) 219.234 0.797214
\(276\) 174.905 + 84.3535i 0.633713 + 0.305629i
\(277\) −215.451 −0.777801 −0.388901 0.921280i \(-0.627145\pi\)
−0.388901 + 0.921280i \(0.627145\pi\)
\(278\) −223.947 129.296i −0.805566 0.465093i
\(279\) 355.060 + 139.822i 1.27262 + 0.501153i
\(280\) 1.48564 + 0.00227604i 0.00530587 + 8.12872e-6i
\(281\) 101.916 176.523i 0.362689 0.628196i −0.625713 0.780053i \(-0.715192\pi\)
0.988402 + 0.151857i \(0.0485254\pi\)
\(282\) 97.3943 201.945i 0.345370 0.716116i
\(283\) −104.320 60.2294i −0.368624 0.212825i 0.304233 0.952598i \(-0.401600\pi\)
−0.672857 + 0.739773i \(0.734933\pi\)
\(284\) 227.524 394.083i 0.801141 1.38762i
\(285\) −103.709 50.0172i −0.363892 0.175499i
\(286\) −434.583 250.907i −1.51952 0.877297i
\(287\) 30.4719 + 52.9661i 0.106174 + 0.184551i
\(288\) 149.518 379.683i 0.519161 1.31834i
\(289\) −71.2696 + 123.442i −0.246607 + 0.427137i
\(290\) 220.695i 0.761018i
\(291\) −145.362 + 301.404i −0.499525 + 1.03575i
\(292\) 273.732i 0.937437i
\(293\) 151.688 87.5769i 0.517705 0.298897i −0.218290 0.975884i \(-0.570048\pi\)
0.735995 + 0.676987i \(0.236715\pi\)
\(294\) 345.054 233.419i 1.17365 0.793943i
\(295\) 114.122 197.665i 0.386854 0.670051i
\(296\) 0.319789 0.553891i 0.00108037 0.00187125i
\(297\) −67.9186 299.952i −0.228682 1.00994i
\(298\) 159.285 + 275.890i 0.534513 + 0.925804i
\(299\) 216.168 124.805i 0.722969 0.417406i
\(300\) −209.657 101.114i −0.698858 0.337047i
\(301\) 269.059 + 155.891i 0.893884 + 0.517912i
\(302\) 39.9541 + 69.2026i 0.132298 + 0.229148i
\(303\) −229.953 + 17.0998i −0.758921 + 0.0564350i
\(304\) 254.009i 0.835555i
\(305\) 59.2950 + 102.702i 0.194410 + 0.336728i
\(306\) −287.203 113.100i −0.938572 0.369607i
\(307\) 18.3665i 0.0598259i 0.999553 + 0.0299129i \(0.00952300\pi\)
−0.999553 + 0.0299129i \(0.990477\pi\)
\(308\) 278.116 + 161.139i 0.902974 + 0.523179i
\(309\) −451.097 + 33.5446i −1.45986 + 0.108558i
\(310\) −288.206 −0.929698
\(311\) 353.193 + 203.916i 1.13567 + 0.655679i 0.945355 0.326044i \(-0.105716\pi\)
0.190315 + 0.981723i \(0.439049\pi\)
\(312\) 2.32266 + 3.41092i 0.00744442 + 0.0109324i
\(313\) −348.791 + 201.374i −1.11435 + 0.643369i −0.939952 0.341307i \(-0.889130\pi\)
−0.174396 + 0.984676i \(0.555797\pi\)
\(314\) 29.0495i 0.0925145i
\(315\) 149.481 22.1209i 0.474541 0.0702252i
\(316\) 551.826 1.74628
\(317\) 148.273 + 256.817i 0.467739 + 0.810149i 0.999320 0.0368589i \(-0.0117352\pi\)
−0.531581 + 0.847007i \(0.678402\pi\)
\(318\) −521.684 251.599i −1.64052 0.791192i
\(319\) 184.914 320.280i 0.579667 1.00401i
\(320\) 155.894i 0.487169i
\(321\) −206.997 99.8311i −0.644851 0.311000i
\(322\) −276.094 + 158.840i −0.857435 + 0.493290i
\(323\) −193.651 −0.599539
\(324\) −73.3907 + 318.175i −0.226514 + 0.982020i
\(325\) −259.119 + 149.602i −0.797289 + 0.460315i
\(326\) 503.541 1.54460
\(327\) −62.4806 + 42.5460i −0.191072 + 0.130110i
\(328\) 0.668937 0.386211i 0.00203944 0.00117747i
\(329\) 92.0543 + 160.008i 0.279800 + 0.486348i
\(330\) 130.736 + 191.991i 0.396169 + 0.581791i
\(331\) −266.479 461.556i −0.805074 1.39443i −0.916241 0.400627i \(-0.868792\pi\)
0.111167 0.993802i \(-0.464541\pi\)
\(332\) −76.0588 + 43.9126i −0.229093 + 0.132267i
\(333\) 23.8361 60.5288i 0.0715798 0.181768i
\(334\) 152.955 + 88.3086i 0.457949 + 0.264397i
\(335\) −170.061 98.1846i −0.507644 0.293088i
\(336\) 187.206 + 275.827i 0.557161 + 0.820914i
\(337\) 149.044 + 258.152i 0.442267 + 0.766029i 0.997857 0.0654274i \(-0.0208411\pi\)
−0.555590 + 0.831456i \(0.687508\pi\)
\(338\) 205.926 0.609250
\(339\) −183.868 + 125.204i −0.542382 + 0.369334i
\(340\) 117.016 0.344165
\(341\) −418.255 241.479i −1.22655 0.708151i
\(342\) 60.3642 + 403.635i 0.176503 + 1.18022i
\(343\) −1.57645 + 342.996i −0.00459605 + 0.999989i
\(344\) 1.96536 3.40411i 0.00571326 0.00989566i
\(345\) −115.220 + 8.56797i −0.333970 + 0.0248347i
\(346\) 216.008 + 124.712i 0.624300 + 0.360439i
\(347\) 90.4019 156.581i 0.260524 0.451241i −0.705857 0.708354i \(-0.749438\pi\)
0.966381 + 0.257113i \(0.0827712\pi\)
\(348\) −324.554 + 221.004i −0.932627 + 0.635070i
\(349\) 151.888 + 87.6925i 0.435209 + 0.251268i 0.701563 0.712607i \(-0.252486\pi\)
−0.266354 + 0.963875i \(0.585819\pi\)
\(350\) 330.952 190.400i 0.945578 0.544000i
\(351\) 284.958 + 308.175i 0.811847 + 0.877992i
\(352\) −258.226 + 447.260i −0.733596 + 1.27063i
\(353\) 39.3099i 0.111359i −0.998449 0.0556797i \(-0.982267\pi\)
0.998449 0.0556797i \(-0.0177326\pi\)
\(354\) −806.800 + 59.9954i −2.27910 + 0.169479i
\(355\) 270.750i 0.762676i
\(356\) −378.552 + 218.557i −1.06335 + 0.613924i
\(357\) 210.285 142.722i 0.589033 0.399781i
\(358\) 18.3527 31.7878i 0.0512645 0.0887927i
\(359\) −123.823 + 214.468i −0.344912 + 0.597405i −0.985338 0.170615i \(-0.945425\pi\)
0.640426 + 0.768020i \(0.278758\pi\)
\(360\) −0.282518 1.88911i −0.000784773 0.00524752i
\(361\) −52.4771 90.8930i −0.145366 0.251781i
\(362\) 554.302 320.026i 1.53122 0.884050i
\(363\) 1.94553 + 26.1630i 0.00535959 + 0.0720742i
\(364\) −438.673 0.672057i −1.20514 0.00184631i
\(365\) −81.4341 141.048i −0.223107 0.386433i
\(366\) 182.601 378.618i 0.498909 1.03448i
\(367\) 396.795i 1.08119i −0.841284 0.540593i \(-0.818200\pi\)
0.841284 0.540593i \(-0.181800\pi\)
\(368\) −127.442 220.737i −0.346311 0.599828i
\(369\) 61.4807 48.9138i 0.166614 0.132558i
\(370\) 49.1319i 0.132789i
\(371\) 413.350 237.804i 1.11415 0.640981i
\(372\) 288.610 + 423.836i 0.775834 + 1.13935i
\(373\) 373.141 1.00038 0.500189 0.865916i \(-0.333264\pi\)
0.500189 + 0.865916i \(0.333264\pi\)
\(374\) 338.320 + 195.329i 0.904599 + 0.522271i
\(375\) 317.509 23.6106i 0.846690 0.0629617i
\(376\) 2.02083 1.16673i 0.00537455 0.00310300i
\(377\) 504.731i 1.33881i
\(378\) −363.031 393.817i −0.960399 1.04184i
\(379\) 548.285 1.44666 0.723331 0.690502i \(-0.242610\pi\)
0.723331 + 0.690502i \(0.242610\pi\)
\(380\) −77.3595 133.991i −0.203578 0.352607i
\(381\) 11.6323 + 156.427i 0.0305309 + 0.410570i
\(382\) 147.210 254.975i 0.385366 0.667474i
\(383\) 4.66627i 0.0121835i 0.999981 + 0.00609174i \(0.00193907\pi\)
−0.999981 + 0.00609174i \(0.998061\pi\)
\(384\) 7.02105 4.78097i 0.0182840 0.0124504i
\(385\) −191.245 0.292993i −0.496741 0.000761020i
\(386\) −460.068 −1.19189
\(387\) 146.492 371.998i 0.378532 0.961236i
\(388\) −389.409 + 224.825i −1.00363 + 0.579447i
\(389\) −672.626 −1.72912 −0.864558 0.502533i \(-0.832401\pi\)
−0.864558 + 0.502533i \(0.832401\pi\)
\(390\) −285.533 137.707i −0.732136 0.353096i
\(391\) −168.285 + 97.1594i −0.430397 + 0.248490i
\(392\) 4.33574 + 0.0132849i 0.0110606 + 3.38902e-5i
\(393\) 558.077 41.4998i 1.42004 0.105597i
\(394\) 427.351 + 740.194i 1.08465 + 1.87867i
\(395\) −284.344 + 164.166i −0.719858 + 0.415610i
\(396\) 151.423 384.520i 0.382382 0.971011i
\(397\) 92.0332 + 53.1354i 0.231822 + 0.133842i 0.611412 0.791312i \(-0.290602\pi\)
−0.379591 + 0.925155i \(0.623935\pi\)
\(398\) 141.859 + 81.9023i 0.356429 + 0.205785i
\(399\) −302.445 146.435i −0.758007 0.367006i
\(400\) 152.765 + 264.596i 0.381911 + 0.661490i
\(401\) −298.393 −0.744122 −0.372061 0.928208i \(-0.621349\pi\)
−0.372061 + 0.928208i \(0.621349\pi\)
\(402\) 51.6169 + 694.128i 0.128400 + 1.72669i
\(403\) 659.130 1.63556
\(404\) −268.338 154.925i −0.664204 0.383478i
\(405\) −56.8391 185.782i −0.140343 0.458721i
\(406\) 0.986752 644.083i 0.00243042 1.58641i
\(407\) −41.1662 + 71.3019i −0.101145 + 0.175189i
\(408\) −1.80817 2.65538i −0.00443180 0.00650828i
\(409\) −570.795 329.549i −1.39559 0.805743i −0.401661 0.915789i \(-0.631567\pi\)
−0.993927 + 0.110046i \(0.964900\pi\)
\(410\) −29.6684 + 51.3872i −0.0723620 + 0.125335i
\(411\) −34.1215 458.856i −0.0830207 1.11644i
\(412\) −526.398 303.916i −1.27766 0.737660i
\(413\) 333.941 576.362i 0.808574 1.39555i
\(414\) 254.971 + 320.478i 0.615872 + 0.774101i
\(415\) 26.1276 45.2544i 0.0629582 0.109047i
\(416\) 704.840i 1.69433i
\(417\) −154.076 226.267i −0.369486 0.542606i
\(418\) 516.529i 1.23572i
\(419\) −485.296 + 280.186i −1.15822 + 0.668701i −0.950878 0.309566i \(-0.899816\pi\)
−0.207346 + 0.978268i \(0.566483\pi\)
\(420\) 182.756 + 88.4855i 0.435134 + 0.210680i
\(421\) 57.9969 100.454i 0.137760 0.238607i −0.788889 0.614536i \(-0.789343\pi\)
0.926648 + 0.375929i \(0.122676\pi\)
\(422\) 60.1353 104.157i 0.142501 0.246818i
\(423\) 185.731 147.767i 0.439080 0.349330i
\(424\) −3.01401 5.22042i −0.00710851 0.0123123i
\(425\) 201.722 116.464i 0.474641 0.274034i
\(426\) 793.246 540.159i 1.86208 1.26798i
\(427\) 172.589 + 299.993i 0.404190 + 0.702561i
\(428\) −154.405 267.437i −0.360759 0.624852i
\(429\) −298.994 439.085i −0.696955 1.02351i
\(430\) 301.955i 0.702222i
\(431\) 161.254 + 279.299i 0.374138 + 0.648027i 0.990198 0.139673i \(-0.0446052\pi\)
−0.616059 + 0.787700i \(0.711272\pi\)
\(432\) 314.689 290.981i 0.728447 0.673568i
\(433\) 117.316i 0.270937i 0.990782 + 0.135468i \(0.0432539\pi\)
−0.990782 + 0.135468i \(0.956746\pi\)
\(434\) −841.110 1.28860i −1.93804 0.00296913i
\(435\) 101.488 210.432i 0.233305 0.483753i
\(436\) −101.575 −0.232969
\(437\) 222.507 + 128.464i 0.509169 + 0.293969i
\(438\) −250.779 + 519.984i −0.572555 + 1.18718i
\(439\) −187.788 + 108.419i −0.427763 + 0.246969i −0.698393 0.715714i \(-0.746101\pi\)
0.270630 + 0.962683i \(0.412768\pi\)
\(440\) 2.41748i 0.00549427i
\(441\) 436.347 63.8900i 0.989450 0.144875i
\(442\) −533.160 −1.20625
\(443\) 74.8709 + 129.680i 0.169009 + 0.292732i 0.938072 0.346441i \(-0.112610\pi\)
−0.769063 + 0.639173i \(0.779277\pi\)
\(444\) 72.2534 49.2008i 0.162733 0.110813i
\(445\) 130.040 225.235i 0.292224 0.506147i
\(446\) 543.904i 1.21952i
\(447\) 25.0086 + 336.308i 0.0559477 + 0.752368i
\(448\) −0.697019 + 454.966i −0.00155585 + 1.01555i
\(449\) −263.767 −0.587455 −0.293727 0.955889i \(-0.594896\pi\)
−0.293727 + 0.955889i \(0.594896\pi\)
\(450\) −305.632 384.155i −0.679182 0.853677i
\(451\) −86.1116 + 49.7166i −0.190935 + 0.110236i
\(452\) −298.913 −0.661312
\(453\) 6.27302 + 84.3577i 0.0138477 + 0.186220i
\(454\) 551.668 318.505i 1.21513 0.701554i
\(455\) 226.239 130.157i 0.497228 0.286060i
\(456\) −1.84518 + 3.82594i −0.00404646 + 0.00839023i
\(457\) 109.396 + 189.480i 0.239379 + 0.414617i 0.960536 0.278154i \(-0.0897227\pi\)
−0.721157 + 0.692772i \(0.756389\pi\)
\(458\) 393.047 226.926i 0.858180 0.495471i
\(459\) −221.838 239.912i −0.483307 0.522685i
\(460\) −134.453 77.6263i −0.292289 0.168753i
\(461\) 334.892 + 193.350i 0.726446 + 0.419414i 0.817121 0.576467i \(-0.195569\pi\)
−0.0906743 + 0.995881i \(0.528902\pi\)
\(462\) 380.685 + 560.897i 0.823994 + 1.21406i
\(463\) 241.881 + 418.950i 0.522421 + 0.904860i 0.999660 + 0.0260863i \(0.00830447\pi\)
−0.477238 + 0.878774i \(0.658362\pi\)
\(464\) 515.399 1.11077
\(465\) −274.804 132.533i −0.590977 0.285018i
\(466\) 698.843 1.49966
\(467\) −100.042 57.7593i −0.214223 0.123682i 0.389049 0.921217i \(-0.372804\pi\)
−0.603272 + 0.797535i \(0.706137\pi\)
\(468\) 83.4205 + 557.805i 0.178249 + 1.19189i
\(469\) −495.871 287.305i −1.05729 0.612591i
\(470\) −89.6272 + 155.239i −0.190696 + 0.330295i
\(471\) 13.3586 27.6987i 0.0283622 0.0588083i
\(472\) −7.29207 4.21008i −0.0154493 0.00891966i
\(473\) −252.999 + 438.208i −0.534882 + 0.926443i
\(474\) 1048.25 + 505.555i 2.21151 + 1.06657i
\(475\) −266.718 153.990i −0.561511 0.324189i
\(476\) 341.504 + 0.523192i 0.717444 + 0.00109914i
\(477\) −381.726 479.798i −0.800264 1.00587i
\(478\) 312.132 540.628i 0.652996 1.13102i
\(479\) 455.647i 0.951246i 0.879649 + 0.475623i \(0.157777\pi\)
−0.879649 + 0.475623i \(0.842223\pi\)
\(480\) −141.724 + 293.862i −0.295259 + 0.612212i
\(481\) 112.365i 0.233607i
\(482\) −646.939 + 373.510i −1.34220 + 0.774918i
\(483\) −336.298 + 24.4899i −0.696270 + 0.0507037i
\(484\) −17.6267 + 30.5303i −0.0364187 + 0.0630790i
\(485\) 133.769 231.695i 0.275813 0.477722i
\(486\) −430.909 + 537.171i −0.886644 + 1.10529i
\(487\) −162.334 281.171i −0.333335 0.577354i 0.649828 0.760081i \(-0.274841\pi\)
−0.983164 + 0.182727i \(0.941507\pi\)
\(488\) 3.78878 2.18745i 0.00776389 0.00448248i
\(489\) 480.126 + 231.556i 0.981852 + 0.473530i
\(490\) −288.956 + 165.650i −0.589706 + 0.338062i
\(491\) −155.221 268.850i −0.316132 0.547557i 0.663545 0.748136i \(-0.269051\pi\)
−0.979678 + 0.200579i \(0.935718\pi\)
\(492\) 105.280 7.82885i 0.213984 0.0159123i
\(493\) 392.929i 0.797017i
\(494\) 352.473 + 610.501i 0.713508 + 1.23583i
\(495\) 36.3683 + 243.183i 0.0734713 + 0.491279i
\(496\) 673.061i 1.35698i
\(497\) −1.21055 + 790.165i −0.00243572 + 1.58987i
\(498\) −184.713 + 13.7356i −0.370909 + 0.0275816i
\(499\) −774.220 −1.55154 −0.775771 0.631014i \(-0.782639\pi\)
−0.775771 + 0.631014i \(0.782639\pi\)
\(500\) 370.509 + 213.914i 0.741019 + 0.427827i
\(501\) 105.233 + 154.539i 0.210046 + 0.308462i
\(502\) 56.4489 32.5908i 0.112448 0.0649219i
\(503\) 106.472i 0.211674i −0.994384 0.105837i \(-0.966248\pi\)
0.994384 0.105837i \(-0.0337521\pi\)
\(504\) −0.816063 5.51449i −0.00161917 0.0109414i
\(505\) 184.359 0.365067
\(506\) −259.155 448.870i −0.512165 0.887096i
\(507\) 196.351 + 94.6964i 0.387279 + 0.186778i
\(508\) −105.389 + 182.539i −0.207459 + 0.359329i
\(509\) 338.626i 0.665276i −0.943055 0.332638i \(-0.892061\pi\)
0.943055 0.332638i \(-0.107939\pi\)
\(510\) 222.285 + 107.204i 0.435853 + 0.210204i
\(511\) −237.029 412.003i −0.463853 0.806268i
\(512\) −725.356 −1.41671
\(513\) −128.057 + 412.624i −0.249623 + 0.804336i
\(514\) 43.7277 25.2462i 0.0850734 0.0491172i
\(515\) 361.655 0.702243
\(516\) 444.056 302.379i 0.860573 0.586005i
\(517\) −260.140 + 150.192i −0.503172 + 0.290506i
\(518\) −0.219674 + 143.388i −0.000424081 + 0.276811i
\(519\) 148.613 + 218.245i 0.286346 + 0.420511i
\(520\) −1.64966 2.85729i −0.00317241 0.00549478i
\(521\) −84.1424 + 48.5796i −0.161502 + 0.0932431i −0.578573 0.815631i \(-0.696390\pi\)
0.417071 + 0.908874i \(0.363057\pi\)
\(522\) −819.000 + 122.482i −1.56897 + 0.234641i
\(523\) 513.773 + 296.627i 0.982357 + 0.567164i 0.902981 0.429681i \(-0.141374\pi\)
0.0793761 + 0.996845i \(0.474707\pi\)
\(524\) 651.235 + 375.990i 1.24281 + 0.717539i
\(525\) 403.119 29.3559i 0.767846 0.0559159i
\(526\) −514.372 890.919i −0.977894 1.69376i
\(527\) −513.128 −0.973677
\(528\) −448.365 + 305.313i −0.849177 + 0.578245i
\(529\) −271.185 −0.512637
\(530\) 401.029 + 231.534i 0.756658 + 0.436857i
\(531\) −796.872 313.806i −1.50070 0.590972i
\(532\) −225.169 391.388i −0.423251 0.735692i
\(533\) 67.8519 117.523i 0.127302 0.220493i
\(534\) −919.333 + 68.3635i −1.72160 + 0.128022i
\(535\) 159.123 + 91.8696i 0.297426 + 0.171719i
\(536\) −3.62213 + 6.27371i −0.00675770 + 0.0117047i
\(537\) 32.1170 21.8700i 0.0598083 0.0407263i
\(538\) 481.426 + 277.951i 0.894843 + 0.516638i
\(539\) −558.135 1.71016i −1.03550 0.00317283i
\(540\) 77.3800 249.334i 0.143296 0.461729i
\(541\) 289.077 500.696i 0.534338 0.925500i −0.464857 0.885386i \(-0.653894\pi\)
0.999195 0.0401146i \(-0.0127723\pi\)
\(542\) 270.051i 0.498249i
\(543\) 675.691 50.2459i 1.24437 0.0925338i
\(544\) 548.713i 1.00866i
\(545\) 52.3392 30.2181i 0.0960352 0.0554460i
\(546\) −832.692 403.166i −1.52508 0.738400i
\(547\) 110.283 191.016i 0.201615 0.349207i −0.747434 0.664336i \(-0.768714\pi\)
0.949049 + 0.315129i \(0.102048\pi\)
\(548\) 309.143 535.451i 0.564129 0.977101i
\(549\) 348.219 277.042i 0.634279 0.504630i
\(550\) 310.648 + 538.058i 0.564815 + 0.978288i
\(551\) −449.928 + 259.766i −0.816566 + 0.471445i
\(552\) 0.316081 + 4.25057i 0.000572611 + 0.00770030i
\(553\) −830.572 + 477.836i −1.50194 + 0.864079i
\(554\) −305.288 528.774i −0.551061 0.954465i
\(555\) −22.5936 + 46.8472i −0.0407092 + 0.0844094i
\(556\) 367.842i 0.661586i
\(557\) 179.797 + 311.417i 0.322795 + 0.559098i 0.981064 0.193686i \(-0.0620442\pi\)
−0.658268 + 0.752783i \(0.728711\pi\)
\(558\) 159.950 + 1069.53i 0.286649 + 1.91673i
\(559\) 690.574i 1.23537i
\(560\) −132.908 231.020i −0.237336 0.412536i
\(561\) 232.764 + 341.824i 0.414910 + 0.609313i
\(562\) 577.646 1.02784
\(563\) 854.592 + 493.399i 1.51792 + 0.876374i 0.999778 + 0.0210827i \(0.00671133\pi\)
0.518147 + 0.855292i \(0.326622\pi\)
\(564\) 318.047 23.6507i 0.563913 0.0419338i
\(565\) 154.024 88.9255i 0.272608 0.157390i
\(566\) 341.373i 0.603133i
\(567\) −165.050 542.446i −0.291094 0.956694i
\(568\) 9.98825 0.0175849
\(569\) −41.8937 72.5620i −0.0736269 0.127525i 0.826861 0.562406i \(-0.190124\pi\)
−0.900488 + 0.434880i \(0.856791\pi\)
\(570\) −24.1977 325.403i −0.0424520 0.570883i
\(571\) 175.350 303.715i 0.307093 0.531901i −0.670632 0.741790i \(-0.733977\pi\)
0.977725 + 0.209889i \(0.0673103\pi\)
\(572\) 713.820i 1.24794i
\(573\) 257.616 175.423i 0.449592 0.306148i
\(574\) −86.8150 + 149.837i −0.151246 + 0.261041i
\(575\) −309.041 −0.537463
\(576\) 578.523 86.5189i 1.00438 0.150206i
\(577\) −652.529 + 376.738i −1.13090 + 0.652925i −0.944161 0.329485i \(-0.893125\pi\)
−0.186738 + 0.982410i \(0.559792\pi\)
\(578\) −403.947 −0.698871
\(579\) −438.674 211.565i −0.757641 0.365397i
\(580\) 271.875 156.967i 0.468750 0.270633i
\(581\) 76.4541 131.955i 0.131590 0.227117i
\(582\) −945.699 + 70.3242i −1.62491 + 0.120832i
\(583\) 387.991 + 672.019i 0.665507 + 1.15269i
\(584\) −5.20340 + 3.00419i −0.00890994 + 0.00514416i
\(585\) −208.930 262.608i −0.357145 0.448902i
\(586\) 429.874 + 248.188i 0.733573 + 0.423528i
\(587\) −112.348 64.8642i −0.191394 0.110501i 0.401241 0.915972i \(-0.368579\pi\)
−0.592635 + 0.805471i \(0.701912\pi\)
\(588\) 532.966 + 259.056i 0.906405 + 0.440571i
\(589\) 339.229 + 587.562i 0.575941 + 0.997559i
\(590\) 646.830 1.09632
\(591\) 67.0965 + 902.294i 0.113530 + 1.52672i
\(592\) −114.740 −0.193818
\(593\) 435.912 + 251.674i 0.735096 + 0.424408i 0.820283 0.571957i \(-0.193816\pi\)
−0.0851878 + 0.996365i \(0.527149\pi\)
\(594\) 639.923 591.713i 1.07731 0.996151i
\(595\) −176.125 + 101.326i −0.296008 + 0.170296i
\(596\) −226.580 + 392.447i −0.380167 + 0.658469i
\(597\) 97.5990 + 143.328i 0.163482 + 0.240081i
\(598\) 612.607 + 353.689i 1.02443 + 0.591453i
\(599\) 141.278 244.701i 0.235857 0.408516i −0.723664 0.690152i \(-0.757544\pi\)
0.959521 + 0.281636i \(0.0908770\pi\)
\(600\) −0.378885 5.09513i −0.000631474 0.00849188i
\(601\) −159.905 92.3214i −0.266065 0.153613i 0.361033 0.932553i \(-0.382424\pi\)
−0.627098 + 0.778940i \(0.715758\pi\)
\(602\) −1.35008 + 881.236i −0.00224265 + 1.46385i
\(603\) −269.982 + 685.586i −0.447731 + 1.13696i
\(604\) −56.8339 + 98.4392i −0.0940959 + 0.162979i
\(605\) 20.9754i 0.0346702i
\(606\) −367.804 540.136i −0.606938 0.891313i
\(607\) 1045.66i 1.72267i −0.508040 0.861333i \(-0.669630\pi\)
0.508040 0.861333i \(-0.330370\pi\)
\(608\) 628.310 362.755i 1.03340 0.596636i
\(609\) 297.126 613.679i 0.487892 1.00768i
\(610\) −168.038 + 291.051i −0.275473 + 0.477133i
\(611\) 204.978 355.032i 0.335479 0.581067i
\(612\) −64.9422 434.247i −0.106115 0.709554i
\(613\) −52.6647 91.2179i −0.0859131 0.148806i 0.819867 0.572554i \(-0.194047\pi\)
−0.905780 + 0.423748i \(0.860714\pi\)
\(614\) −45.0764 + 26.0248i −0.0734143 + 0.0423857i
\(615\) −51.9195 + 35.3545i −0.0844220 + 0.0574869i
\(616\) −0.0108088 + 7.05524i −1.75468e−5 + 0.0114533i
\(617\) 269.908 + 467.495i 0.437452 + 0.757690i 0.997492 0.0707759i \(-0.0225475\pi\)
−0.560040 + 0.828466i \(0.689214\pi\)
\(618\) −721.519 1059.58i −1.16751 1.71453i
\(619\) 1117.89i 1.80596i 0.429678 + 0.902982i \(0.358627\pi\)
−0.429678 + 0.902982i \(0.641373\pi\)
\(620\) −204.984 355.042i −0.330619 0.572649i
\(621\) 95.7409 + 422.825i 0.154172 + 0.680877i
\(622\) 1155.77i 1.85816i
\(623\) 380.519 656.753i 0.610785 1.05418i
\(624\) 321.594 666.818i 0.515376 1.06862i
\(625\) 226.620 0.362593
\(626\) −988.452 570.683i −1.57900 0.911635i
\(627\) 237.529 492.510i 0.378834 0.785502i
\(628\) 35.7862 20.6612i 0.0569845 0.0329000i
\(629\) 87.4754i 0.139071i
\(630\) 266.100 + 335.520i 0.422381 + 0.532572i
\(631\) −710.879 −1.12659 −0.563296 0.826255i \(-0.690467\pi\)
−0.563296 + 0.826255i \(0.690467\pi\)
\(632\) 6.05625 + 10.4897i 0.00958268 + 0.0165977i
\(633\) 105.236 71.6603i 0.166250 0.113207i
\(634\) −420.198 + 727.805i −0.662773 + 1.14796i
\(635\) 125.411i 0.197498i
\(636\) −61.0968 821.611i −0.0960641 1.29184i
\(637\) 660.843 378.843i 1.03743 0.594730i
\(638\) 1048.07 1.64274
\(639\) 1004.75 150.262i 1.57239 0.235152i
\(640\) −5.88145 + 3.39566i −0.00918977 + 0.00530571i
\(641\) 1070.78 1.67048 0.835240 0.549885i \(-0.185328\pi\)
0.835240 + 0.549885i \(0.185328\pi\)
\(642\) −48.2970 649.484i −0.0752290 1.01166i
\(643\) −664.371 + 383.575i −1.03324 + 0.596539i −0.917910 0.396788i \(-0.870125\pi\)
−0.115326 + 0.993328i \(0.536791\pi\)
\(644\) −392.044 227.148i −0.608764 0.352715i
\(645\) −138.856 + 287.914i −0.215280 + 0.446378i
\(646\) −274.398 475.271i −0.424764 0.735713i
\(647\) 14.8163 8.55422i 0.0229001 0.0132214i −0.488506 0.872560i \(-0.662458\pi\)
0.511406 + 0.859339i \(0.329125\pi\)
\(648\) −6.85368 + 2.09685i −0.0105767 + 0.00323588i
\(649\) 938.701 + 541.959i 1.44638 + 0.835068i
\(650\) −734.328 423.965i −1.12974 0.652253i
\(651\) −801.405 388.018i −1.23104 0.596034i
\(652\) 358.138 + 620.314i 0.549292 + 0.951402i
\(653\) −968.287 −1.48283 −0.741414 0.671048i \(-0.765845\pi\)
−0.741414 + 0.671048i \(0.765845\pi\)
\(654\) −192.952 93.0575i −0.295034 0.142290i
\(655\) −447.423 −0.683088
\(656\) −120.007 69.2860i −0.182937 0.105619i
\(657\) −478.235 + 380.482i −0.727907 + 0.579120i
\(658\) −262.265 + 452.653i −0.398579 + 0.687923i
\(659\) 470.849 815.535i 0.714490 1.23753i −0.248665 0.968589i \(-0.579992\pi\)
0.963156 0.268944i \(-0.0866747\pi\)
\(660\) −143.530 + 297.606i −0.217470 + 0.450918i
\(661\) 4.75875 + 2.74747i 0.00719933 + 0.00415653i 0.503595 0.863940i \(-0.332010\pi\)
−0.496396 + 0.868096i \(0.665344\pi\)
\(662\) 755.187 1308.02i 1.14077 1.97586i
\(663\) −508.368 245.177i −0.766769 0.369799i
\(664\) −1.66948 0.963876i −0.00251428 0.00145162i
\(665\) 232.461 + 134.687i 0.349566 + 0.202537i
\(666\) 182.329 27.2675i 0.273767 0.0409422i
\(667\) −260.662 + 451.480i −0.390798 + 0.676881i
\(668\) 251.234i 0.376099i
\(669\) −250.117 + 518.612i −0.373867 + 0.775205i
\(670\) 556.499i 0.830595i
\(671\) −487.726 + 281.589i −0.726864 + 0.419655i
\(672\) −414.927 + 856.982i −0.617451 + 1.27527i
\(673\) 329.366 570.479i 0.489400 0.847666i −0.510525 0.859863i \(-0.670549\pi\)
0.999926 + 0.0121964i \(0.00388233\pi\)
\(674\) −422.382 + 731.587i −0.626679 + 1.08544i
\(675\) −114.764 506.838i −0.170021 0.750871i
\(676\) 146.463 + 253.681i 0.216661 + 0.375268i
\(677\) −730.516 + 421.763i −1.07905 + 0.622989i −0.930639 0.365937i \(-0.880748\pi\)
−0.148409 + 0.988926i \(0.547415\pi\)
\(678\) −567.819 273.849i −0.837491 0.403907i
\(679\) 391.432 675.588i 0.576484 0.994975i
\(680\) 1.28424 + 2.22438i 0.00188860 + 0.00327114i
\(681\) 672.481 50.0071i 0.987490 0.0734319i
\(682\) 1368.68i 2.00686i
\(683\) −290.414 503.012i −0.425203 0.736474i 0.571236 0.820786i \(-0.306464\pi\)
−0.996439 + 0.0843121i \(0.973131\pi\)
\(684\) −454.306 + 361.444i −0.664190 + 0.528427i
\(685\) 367.875i 0.537044i
\(686\) −844.038 + 482.147i −1.23038 + 0.702838i
\(687\) 479.122 35.6286i 0.697412 0.0518611i
\(688\) −705.170 −1.02496
\(689\) −917.155 529.520i −1.33114 0.768534i
\(690\) −184.291 270.639i −0.267088 0.392230i
\(691\) −976.744 + 563.924i −1.41352 + 0.816098i −0.995718 0.0924390i \(-0.970534\pi\)
−0.417805 + 0.908537i \(0.637200\pi\)
\(692\) 354.801i 0.512718i
\(693\) 105.051 + 709.875i 0.151589 + 1.02435i
\(694\) 512.388 0.738311
\(695\) 109.432 + 189.541i 0.157455 + 0.272721i
\(696\) −7.76307 3.74399i −0.0111538 0.00537930i
\(697\) −52.8222 + 91.4907i −0.0757851 + 0.131264i
\(698\) 497.031i 0.712078i
\(699\) 666.346 + 321.367i 0.953285 + 0.459752i
\(700\) 469.941 + 272.281i 0.671344 + 0.388973i
\(701\) 352.754 0.503216 0.251608 0.967829i \(-0.419041\pi\)
0.251608 + 0.967829i \(0.419041\pi\)
\(702\) −352.566 + 1136.04i −0.502231 + 1.61829i
\(703\) 100.165 57.8301i 0.142482 0.0822618i
\(704\) −740.332 −1.05161
\(705\) −156.847 + 106.804i −0.222478 + 0.151496i
\(706\) 96.4769 55.7009i 0.136653 0.0788965i
\(707\) 538.038 + 0.824287i 0.761015 + 0.00116589i
\(708\) −647.737 951.229i −0.914883 1.34354i
\(709\) 396.038 + 685.959i 0.558587 + 0.967502i 0.997615 + 0.0690279i \(0.0219898\pi\)
−0.439027 + 0.898474i \(0.644677\pi\)
\(710\) −664.492 + 383.645i −0.935905 + 0.540345i
\(711\) 767.027 + 964.091i 1.07880 + 1.35596i
\(712\) −8.30917 4.79730i −0.0116702 0.00673778i
\(713\) 589.589 + 340.399i 0.826913 + 0.477418i
\(714\) 648.245 + 313.862i 0.907906 + 0.439583i
\(715\) 212.359 + 367.816i 0.297005 + 0.514428i
\(716\) 52.2126 0.0729227
\(717\) 546.228 371.953i 0.761824 0.518762i
\(718\) −701.816 −0.977460
\(719\) 473.277 + 273.247i 0.658244 + 0.380037i 0.791608 0.611030i \(-0.209244\pi\)
−0.133364 + 0.991067i \(0.542578\pi\)
\(720\) −268.158 + 213.346i −0.372442 + 0.296313i
\(721\) 1055.47 + 1.61700i 1.46389 + 0.00224272i
\(722\) 148.717 257.586i 0.205979 0.356767i
\(723\) −788.616 + 58.6432i −1.09076 + 0.0811109i
\(724\) 788.483 + 455.231i 1.08906 + 0.628772i
\(725\) 312.454 541.186i 0.430971 0.746464i
\(726\) −61.4541 + 41.8470i −0.0846475 + 0.0576405i
\(727\) −113.839 65.7248i −0.156587 0.0904055i 0.419659 0.907682i \(-0.362150\pi\)
−0.576246 + 0.817276i \(0.695483\pi\)
\(728\) −4.80163 8.34617i −0.00659565 0.0114645i
\(729\) −657.892 + 314.036i −0.902459 + 0.430777i
\(730\) 230.779 399.722i 0.316136 0.547564i
\(731\) 537.607i 0.735440i
\(732\) 596.294 44.3417i 0.814609 0.0605761i
\(733\) 1279.26i 1.74524i −0.488400 0.872620i \(-0.662419\pi\)
0.488400 0.872620i \(-0.337581\pi\)
\(734\) 973.840 562.247i 1.32676 0.766004i
\(735\) −351.694 + 25.0694i −0.478495 + 0.0341080i
\(736\) 364.006 630.477i 0.494573 0.856626i
\(737\) 466.273 807.609i 0.632664 1.09581i
\(738\) 207.164 + 81.5805i 0.280710 + 0.110543i
\(739\) 9.93656 + 17.2106i 0.0134460 + 0.0232891i 0.872670 0.488310i \(-0.162387\pi\)
−0.859224 + 0.511599i \(0.829053\pi\)
\(740\) −60.5258 + 34.9446i −0.0817916 + 0.0472224i
\(741\) 55.3402 + 744.199i 0.0746831 + 1.00432i
\(742\) 1169.34 + 677.509i 1.57593 + 0.913085i
\(743\) 729.663 + 1263.81i 0.982050 + 1.70096i 0.654374 + 0.756171i \(0.272932\pi\)
0.327677 + 0.944790i \(0.393734\pi\)
\(744\) −4.88929 + 10.1378i −0.00657162 + 0.0136261i
\(745\) 269.626i 0.361914i
\(746\) 528.729 + 915.786i 0.708753 + 1.22760i
\(747\) −182.440 71.8442i −0.244230 0.0961770i
\(748\) 555.703i 0.742919i
\(749\) 463.978 + 268.826i 0.619463 + 0.358914i
\(750\) 507.847 + 745.795i 0.677130 + 0.994393i
\(751\) −989.823 −1.31801 −0.659003 0.752140i \(-0.729022\pi\)
−0.659003 + 0.752140i \(0.729022\pi\)
\(752\) −362.536 209.310i −0.482096 0.278338i
\(753\) 68.8110 5.11693i 0.0913824 0.00679539i
\(754\) −1238.74 + 715.189i −1.64290 + 0.948527i
\(755\) 67.6315i 0.0895781i
\(756\) 226.943 727.317i 0.300189 0.962060i
\(757\) −499.688 −0.660089 −0.330045 0.943965i \(-0.607064\pi\)
−0.330045 + 0.943965i \(0.607064\pi\)
\(758\) 776.903 + 1345.64i 1.02494 + 1.77525i
\(759\) −40.6888 547.171i −0.0536085 0.720911i
\(760\) 1.69803 2.94108i 0.00223425 0.00386984i
\(761\) 685.947i 0.901376i −0.892682 0.450688i \(-0.851179\pi\)
0.892682 0.450688i \(-0.148821\pi\)
\(762\) −367.431 + 250.201i −0.482193 + 0.328348i
\(763\) 152.883 87.9553i 0.200371 0.115276i
\(764\) 418.806 0.548175
\(765\) 162.650 + 204.438i 0.212615 + 0.267239i
\(766\) −11.4523 + 6.61197i −0.0149507 + 0.00863182i
\(767\) −1479.30 −1.92869
\(768\) −680.827 328.351i −0.886494 0.427540i
\(769\) 586.160 338.420i 0.762237 0.440078i −0.0678613 0.997695i \(-0.521618\pi\)
0.830098 + 0.557617i \(0.188284\pi\)
\(770\) −270.270 469.782i −0.351000 0.610107i
\(771\) 53.3039 3.96379i 0.0691361 0.00514111i
\(772\) −327.219 566.759i −0.423858 0.734144i
\(773\) 437.359 252.509i 0.565794 0.326661i −0.189674 0.981847i \(-0.560743\pi\)
0.755468 + 0.655186i \(0.227410\pi\)
\(774\) 1120.56 167.581i 1.44775 0.216513i
\(775\) −706.737 408.035i −0.911918 0.526496i
\(776\) −8.54747 4.93489i −0.0110148 0.00635939i
\(777\) −66.1473 + 136.619i −0.0851316 + 0.175829i
\(778\) −953.091 1650.80i −1.22505 2.12185i
\(779\) 139.683 0.179311
\(780\) −33.4401 449.692i −0.0428719 0.576528i
\(781\) −1285.78 −1.64632
\(782\) −476.910 275.344i −0.609859 0.352102i
\(783\) −837.240 259.835i −1.06927 0.331845i
\(784\) −386.850 674.811i −0.493432 0.860729i
\(785\) −12.2932 + 21.2925i −0.0156602 + 0.0271242i
\(786\) 892.630 + 1310.86i 1.13566 + 1.66777i
\(787\) −16.0382 9.25964i −0.0203789 0.0117657i 0.489776 0.871848i \(-0.337079\pi\)
−0.510155 + 0.860083i \(0.670412\pi\)
\(788\) −607.898 + 1052.91i −0.771445 + 1.33618i
\(789\) −80.7593 1086.03i −0.102356 1.37646i
\(790\) −805.814 465.237i −1.02002 0.588907i
\(791\) 449.905 258.834i 0.568779 0.327224i
\(792\) 8.97126 1.34166i 0.0113274 0.00169402i
\(793\) 384.305 665.636i 0.484622 0.839389i
\(794\) 301.165i 0.379301i
\(795\) 275.908 + 405.183i 0.347054 + 0.509664i
\(796\) 233.009i 0.292724i
\(797\) −615.232 + 355.205i −0.771935 + 0.445677i −0.833565 0.552422i \(-0.813704\pi\)
0.0616293 + 0.998099i \(0.480370\pi\)
\(798\) −69.1643 949.774i −0.0866720 1.19019i
\(799\) −159.574 + 276.390i −0.199717 + 0.345920i
\(800\) −436.332 + 755.749i −0.545415 + 0.944686i
\(801\) −908.020 357.576i −1.13361 0.446411i
\(802\) −422.814 732.336i −0.527200 0.913137i
\(803\) 669.829 386.726i 0.834159 0.481602i
\(804\) −818.387 + 557.279i −1.01789 + 0.693133i
\(805\) 269.588 + 0.413015i 0.334891 + 0.000513062i
\(806\) 933.967 + 1617.68i 1.15877 + 2.00705i
\(807\) 331.221 + 486.412i 0.410435 + 0.602741i
\(808\) 6.80118i 0.00841730i
\(809\) −565.769 979.941i −0.699344 1.21130i −0.968694 0.248257i \(-0.920142\pi\)
0.269351 0.963042i \(-0.413191\pi\)
\(810\) 375.419 402.746i 0.463480 0.497217i
\(811\) 199.736i 0.246283i 0.992389 + 0.123142i \(0.0392970\pi\)
−0.992389 + 0.123142i \(0.960703\pi\)
\(812\) 794.150 456.882i 0.978018 0.562663i
\(813\) 124.184 257.493i 0.152748 0.316720i
\(814\) −233.325 −0.286640
\(815\) −369.082 213.090i −0.452861 0.261460i
\(816\) −250.359 + 519.113i −0.306812 + 0.636168i
\(817\) 615.592 355.412i 0.753479 0.435021i
\(818\) 1867.84i 2.28343i
\(819\) −608.573 767.336i −0.743068 0.936919i
\(820\) −84.4055 −0.102934
\(821\) −196.680 340.660i −0.239562 0.414933i 0.721027 0.692907i \(-0.243670\pi\)
−0.960589 + 0.277974i \(0.910337\pi\)
\(822\) 1077.80 733.928i 1.31120 0.892857i
\(823\) 424.378 735.045i 0.515648 0.893128i −0.484187 0.874965i \(-0.660885\pi\)
0.999835 0.0181639i \(-0.00578208\pi\)
\(824\) 13.3418i 0.0161915i
\(825\) 48.7735 + 655.891i 0.0591193 + 0.795019i
\(826\) 1887.73 + 2.89205i 2.28539 + 0.00350127i
\(827\) 495.009 0.598559 0.299280 0.954165i \(-0.403254\pi\)
0.299280 + 0.954165i \(0.403254\pi\)
\(828\) −213.452 + 542.036i −0.257793 + 0.654633i
\(829\) 820.334 473.620i 0.989546 0.571315i 0.0844077 0.996431i \(-0.473100\pi\)
0.905139 + 0.425116i \(0.139767\pi\)
\(830\) 148.088 0.178420
\(831\) −47.9318 644.573i −0.0576797 0.775660i
\(832\) 875.021 505.193i 1.05171 0.607204i
\(833\) −514.462 + 294.927i −0.617601 + 0.354053i
\(834\) 336.998 698.757i 0.404074 0.837838i
\(835\) −74.7412 129.456i −0.0895105 0.155037i
\(836\) 636.314 367.376i 0.761142 0.439445i
\(837\) −339.319 + 1093.35i −0.405399 + 1.30628i
\(838\) −1375.30 794.030i −1.64117 0.947530i
\(839\) −787.270 454.531i −0.938343 0.541753i −0.0489028 0.998804i \(-0.515572\pi\)
−0.889441 + 0.457051i \(0.848906\pi\)
\(840\) 0.323705 + 4.44516i 0.000385363 + 0.00529186i
\(841\) −106.581 184.604i −0.126731 0.219505i
\(842\) 328.720 0.390403
\(843\) 550.784 + 265.634i 0.653362 + 0.315105i
\(844\) 171.082 0.202704
\(845\) −150.939 87.1444i −0.178625 0.103129i
\(846\) 625.833 + 246.451i 0.739756 + 0.291314i
\(847\) 0.0937834 61.2154i 0.000110724 0.0722732i
\(848\) −540.712 + 936.540i −0.637632 + 1.10441i
\(849\) 156.982 325.499i 0.184903 0.383391i
\(850\) 571.669 + 330.053i 0.672552 + 0.388298i
\(851\) 58.0295 100.510i 0.0681898 0.118108i
\(852\) 1229.61 + 593.020i 1.44321 + 0.696033i
\(853\) 768.763 + 443.845i 0.901246 + 0.520335i 0.877604 0.479386i \(-0.159141\pi\)
0.0236417 + 0.999720i \(0.492474\pi\)
\(854\) −491.710 + 848.661i −0.575773 + 0.993749i
\(855\) 126.566 321.399i 0.148030 0.375905i
\(856\) 3.38916 5.87020i 0.00395930 0.00685771i
\(857\) 175.131i 0.204354i −0.994766 0.102177i \(-0.967419\pi\)
0.994766 0.102177i \(-0.0325808\pi\)
\(858\) 653.965 1355.98i 0.762197 1.58040i
\(859\) 1377.03i 1.60306i 0.597953 + 0.801531i \(0.295981\pi\)
−0.597953 + 0.801531i \(0.704019\pi\)
\(860\) −371.980 + 214.763i −0.432535 + 0.249724i
\(861\) −151.682 + 102.947i −0.176169 + 0.119567i
\(862\) −456.983 + 791.518i −0.530143 + 0.918235i
\(863\) −761.374 + 1318.74i −0.882241 + 1.52809i −0.0333969 + 0.999442i \(0.510633\pi\)
−0.848844 + 0.528644i \(0.822701\pi\)
\(864\) 1169.18 + 362.851i 1.35321 + 0.419966i
\(865\) −105.552 182.821i −0.122025 0.211354i
\(866\) −287.924 + 166.233i −0.332475 + 0.191955i
\(867\) −385.163 185.757i −0.444248 0.214253i
\(868\) −596.644 1037.08i −0.687377 1.19480i
\(869\) −779.616 1350.33i −0.897141 1.55389i
\(870\) 660.262 49.0985i 0.758922 0.0564351i
\(871\) 1272.72i 1.46121i
\(872\) −1.11477 1.93085i −0.00127841 0.00221427i
\(873\) −934.062 367.831i −1.06994 0.421341i
\(874\) 728.121i 0.833091i
\(875\) −742.898 1.13814i −0.849026 0.00130073i
\(876\) −818.934 + 60.8977i −0.934856 + 0.0695179i
\(877\) −719.054 −0.819902 −0.409951 0.912108i \(-0.634454\pi\)
−0.409951 + 0.912108i \(0.634454\pi\)
\(878\) −532.180 307.254i −0.606128 0.349948i
\(879\) 295.753 + 434.326i 0.336466 + 0.494114i
\(880\) 375.590 216.847i 0.426807 0.246417i
\(881\) 1065.56i 1.20949i −0.796418 0.604747i \(-0.793274\pi\)
0.796418 0.604747i \(-0.206726\pi\)
\(882\) 775.095 + 980.382i 0.878792 + 1.11154i
\(883\) −378.403 −0.428543 −0.214271 0.976774i \(-0.568738\pi\)
−0.214271 + 0.976774i \(0.568738\pi\)
\(884\) −379.205 656.802i −0.428965 0.742989i
\(885\) 616.752 + 297.448i 0.696895 + 0.336100i
\(886\) −212.180 + 367.506i −0.239481 + 0.414793i
\(887\) 1758.17i 1.98216i 0.133277 + 0.991079i \(0.457450\pi\)
−0.133277 + 0.991079i \(0.542550\pi\)
\(888\) 1.72824 + 0.833501i 0.00194622 + 0.000938627i
\(889\) 0.560727 366.004i 0.000630739 0.411703i
\(890\) 737.050 0.828146
\(891\) 882.268 269.926i 0.990200 0.302947i
\(892\) −670.037 + 386.846i −0.751163 + 0.433684i
\(893\) 421.978 0.472539
\(894\) −789.953 + 537.917i −0.883617 + 0.601697i
\(895\) −26.9040 + 15.5331i −0.0300604 + 0.0173554i
\(896\) −17.1798 + 9.88369i −0.0191739 + 0.0110309i
\(897\) 421.474 + 618.952i 0.469871 + 0.690025i
\(898\) −373.750 647.355i −0.416203 0.720885i
\(899\) −1192.20 + 688.317i −1.32614 + 0.765647i
\(900\) 255.864 649.735i 0.284293 0.721928i
\(901\) 713.998 + 412.227i 0.792451 + 0.457522i
\(902\) −244.035 140.894i −0.270549 0.156202i
\(903\) −406.528 + 839.636i −0.450198 + 0.929830i
\(904\) −3.28055 5.68209i −0.00362893 0.00628549i
\(905\) −541.717 −0.598583
\(906\) −198.147 + 134.928i −0.218706 + 0.148927i
\(907\) 742.349 0.818467 0.409233 0.912430i \(-0.365796\pi\)
0.409233 + 0.912430i \(0.365796\pi\)
\(908\) 784.736 + 453.067i 0.864246 + 0.498973i
\(909\) −102.316 684.155i −0.112559 0.752646i
\(910\) 640.014 + 370.820i 0.703312 + 0.407495i
\(911\) 394.703 683.645i 0.433263 0.750434i −0.563889 0.825851i \(-0.690695\pi\)
0.997152 + 0.0754169i \(0.0240288\pi\)
\(912\) 759.928 56.5099i 0.833255 0.0619626i
\(913\) 214.911 + 124.079i 0.235390 + 0.135902i
\(914\) −310.023 + 536.975i −0.339193 + 0.587500i
\(915\) −294.066 + 200.243i −0.321383 + 0.218845i
\(916\) 559.101 + 322.797i 0.610372 + 0.352398i
\(917\) −1305.77 2.00048i −1.42396 0.00218154i
\(918\) 274.470 884.398i 0.298987 0.963396i
\(919\) 213.779 370.276i 0.232621 0.402912i −0.725957 0.687740i \(-0.758603\pi\)
0.958579 + 0.284828i \(0.0919363\pi\)
\(920\) 3.40778i 0.00370410i
\(921\) −54.9479 + 4.08604i −0.0596611 + 0.00443653i
\(922\) 1095.88i 1.18859i
\(923\) 1519.70 877.398i 1.64648 0.950594i
\(924\) −420.213 + 867.900i −0.454776 + 0.939286i
\(925\) −69.5596 + 120.481i −0.0751996 + 0.130250i
\(926\) −685.477 + 1187.28i −0.740256 + 1.28216i
\(927\) −200.713 1342.10i −0.216519 1.44779i
\(928\) 736.051 + 1274.88i 0.793159 + 1.37379i
\(929\) −978.107 + 564.711i −1.05286 + 0.607869i −0.923449 0.383722i \(-0.874642\pi\)
−0.129412 + 0.991591i \(0.541309\pi\)
\(930\) −64.1179 862.238i −0.0689440 0.927138i
\(931\) 677.820 + 394.114i 0.728056 + 0.423323i
\(932\) 497.045 + 860.908i 0.533310 + 0.923721i
\(933\) −531.488 + 1102.03i −0.569655 + 1.18117i
\(934\) 327.373i 0.350507i
\(935\) −165.320 286.342i −0.176812 0.306248i
\(936\) −9.68787 + 7.70763i −0.0103503 + 0.00823464i
\(937\) 736.130i 0.785625i −0.919619 0.392812i \(-0.871502\pi\)
0.919619 0.392812i \(-0.128498\pi\)
\(938\) 2.48816 1624.10i 0.00265263 1.73145i
\(939\) −680.056 998.691i −0.724234 1.06357i
\(940\) −254.986 −0.271261
\(941\) 75.0157 + 43.3103i 0.0797191 + 0.0460259i 0.539330 0.842095i \(-0.318678\pi\)
−0.459611 + 0.888121i \(0.652011\pi\)
\(942\) 86.9087 6.46272i 0.0922597 0.00686063i
\(943\) 121.386 70.0825i 0.128724 0.0743187i
\(944\) 1510.57i 1.60018i
\(945\) 99.4353 + 442.286i 0.105223 + 0.468027i
\(946\) −1433.97 −1.51582
\(947\) −293.684 508.676i −0.310121 0.537145i 0.668268 0.743921i \(-0.267036\pi\)
−0.978388 + 0.206776i \(0.933703\pi\)
\(948\) 122.766 + 1650.92i 0.129500 + 1.74148i
\(949\) −527.794 + 914.166i −0.556158 + 0.963294i
\(950\) 872.795i 0.918731i
\(951\) −735.343 + 500.730i −0.773232 + 0.526530i
\(952\) 3.73803 + 6.49743i 0.00392651 + 0.00682503i
\(953\) −396.549 −0.416106 −0.208053 0.978118i \(-0.566713\pi\)
−0.208053 + 0.978118i \(0.566713\pi\)
\(954\) 636.658 1616.72i 0.667357 1.69467i
\(955\) −215.802 + 124.593i −0.225970 + 0.130464i
\(956\) 888.002 0.928873
\(957\) 999.332 + 481.960i 1.04423 + 0.503616i
\(958\) −1118.28 + 645.638i −1.16730 + 0.673944i
\(959\) −1.64481 + 1073.62i −0.00171513 + 1.11952i
\(960\) −466.394 + 34.6821i −0.485828 + 0.0361272i
\(961\) 418.375 + 724.646i 0.435353 + 0.754054i
\(962\) 275.774 159.218i 0.286667 0.165507i
\(963\) 252.618 641.491i 0.262323 0.666139i
\(964\) −920.257 531.311i −0.954624 0.551152i
\(965\) 337.217 + 194.693i 0.349448 + 0.201754i
\(966\) −536.630 790.664i −0.555517 0.818493i
\(967\) −163.959 283.985i −0.169554 0.293676i 0.768709 0.639598i \(-0.220899\pi\)
−0.938263 + 0.345922i \(0.887566\pi\)
\(968\) −0.773805 −0.000799386
\(969\) −43.0819 579.353i −0.0444602 0.597888i
\(970\) 758.189 0.781638
\(971\) 900.251 + 519.760i 0.927138 + 0.535283i 0.885905 0.463866i \(-0.153538\pi\)
0.0412328 + 0.999150i \(0.486871\pi\)
\(972\) −968.223 148.781i −0.996114 0.153067i
\(973\) 318.521 + 553.651i 0.327359 + 0.569015i
\(974\) 460.046 796.823i 0.472326 0.818093i
\(975\) −505.218 741.934i −0.518173 0.760958i
\(976\) −679.705 392.428i −0.696419 0.402078i
\(977\) −743.417 + 1287.64i −0.760918 + 1.31795i 0.181460 + 0.983398i \(0.441918\pi\)
−0.942378 + 0.334550i \(0.891416\pi\)
\(978\) 112.024 + 1506.46i 0.114544 + 1.54035i
\(979\) 1069.63 + 617.552i 1.09258 + 0.630799i
\(980\) −409.582 238.148i −0.417941 0.243009i
\(981\) −141.187 177.460i −0.143921 0.180897i
\(982\) 439.887 761.906i 0.447950 0.775872i
\(983\) 1106.95i 1.12609i −0.826426 0.563045i \(-0.809630\pi\)
0.826426 0.563045i \(-0.190370\pi\)
\(984\) 1.30426 + 1.91536i 0.00132547 + 0.00194651i
\(985\) 723.390i 0.734406i
\(986\) 964.353 556.769i 0.978046 0.564675i
\(987\) −458.224 + 311.000i −0.464259 + 0.315096i
\(988\) −501.386 + 868.425i −0.507475 + 0.878973i
\(989\) 356.638 617.716i 0.360605 0.624586i
\(990\) −545.302 + 433.840i −0.550811 + 0.438223i
\(991\) −543.503 941.374i −0.548439 0.949924i −0.998382 0.0568665i \(-0.981889\pi\)
0.449943 0.893057i \(-0.351444\pi\)
\(992\) 1664.87 961.211i 1.67829 0.968963i
\(993\) 1321.57 899.920i 1.33089 0.906264i
\(994\) −1940.99 + 1116.67i −1.95271 + 1.12341i
\(995\) −69.3191 120.064i −0.0696675 0.120668i
\(996\) −148.296 217.779i −0.148892 0.218653i
\(997\) 827.392i 0.829882i −0.909848 0.414941i \(-0.863802\pi\)
0.909848 0.414941i \(-0.136198\pi\)
\(998\) −1097.05 1900.14i −1.09925 1.90395i
\(999\) 186.389 + 57.8454i 0.186576 + 0.0579033i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.3.k.a.61.12 yes 28
3.2 odd 2 189.3.k.a.19.3 28
7.2 even 3 441.3.l.a.97.12 28
7.3 odd 6 63.3.t.a.52.3 yes 28
7.4 even 3 441.3.t.a.178.3 28
7.5 odd 6 441.3.l.b.97.12 28
7.6 odd 2 441.3.k.b.313.12 28
9.4 even 3 63.3.t.a.40.3 yes 28
9.5 odd 6 189.3.t.a.145.12 28
21.17 even 6 189.3.t.a.73.12 28
63.4 even 3 441.3.k.b.31.12 28
63.13 odd 6 441.3.t.a.166.3 28
63.31 odd 6 inner 63.3.k.a.31.12 28
63.40 odd 6 441.3.l.a.391.12 28
63.58 even 3 441.3.l.b.391.12 28
63.59 even 6 189.3.k.a.10.3 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.k.a.31.12 28 63.31 odd 6 inner
63.3.k.a.61.12 yes 28 1.1 even 1 trivial
63.3.t.a.40.3 yes 28 9.4 even 3
63.3.t.a.52.3 yes 28 7.3 odd 6
189.3.k.a.10.3 28 63.59 even 6
189.3.k.a.19.3 28 3.2 odd 2
189.3.t.a.73.12 28 21.17 even 6
189.3.t.a.145.12 28 9.5 odd 6
441.3.k.b.31.12 28 63.4 even 3
441.3.k.b.313.12 28 7.6 odd 2
441.3.l.a.97.12 28 7.2 even 3
441.3.l.a.391.12 28 63.40 odd 6
441.3.l.b.97.12 28 7.5 odd 6
441.3.l.b.391.12 28 63.58 even 3
441.3.t.a.166.3 28 63.13 odd 6
441.3.t.a.178.3 28 7.4 even 3