Properties

Label 63.3.k.a
Level $63$
Weight $3$
Character orbit 63.k
Analytic conductor $1.717$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,3,Mod(31,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.31");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.71662566547\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 28 q + q^{2} - 3 q^{3} - 23 q^{4} + 12 q^{6} - 16 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 28 q + q^{2} - 3 q^{3} - 23 q^{4} + 12 q^{6} - 16 q^{8} + 9 q^{9} - 6 q^{10} - 14 q^{11} - 3 q^{12} + 15 q^{13} - 11 q^{14} - 18 q^{15} - 27 q^{16} - 33 q^{17} + 33 q^{18} - 6 q^{19} + 108 q^{20} + 12 q^{21} - 10 q^{22} - 68 q^{23} + 42 q^{24} - 62 q^{25} + 54 q^{26} - 81 q^{27} - 16 q^{28} + 70 q^{29} - 6 q^{30} + 45 q^{31} + 153 q^{32} - 114 q^{33} + 12 q^{34} + 18 q^{35} - 174 q^{36} + 9 q^{37} - 120 q^{39} - 234 q^{41} - 51 q^{42} + 30 q^{43} + 51 q^{44} + 276 q^{45} - 22 q^{46} - 111 q^{47} + 147 q^{48} + 34 q^{49} + 241 q^{50} - 6 q^{51} + 148 q^{53} + 378 q^{54} - 412 q^{56} + 189 q^{57} - 34 q^{58} + 42 q^{59} + 456 q^{60} + 120 q^{61} - 222 q^{63} - 48 q^{64} + 114 q^{65} - 447 q^{66} - 34 q^{67} + 78 q^{69} + 264 q^{70} - 350 q^{71} - 339 q^{72} - 6 q^{73} - 718 q^{74} - 123 q^{75} + 72 q^{76} - 32 q^{77} - 375 q^{78} - 82 q^{79} - 609 q^{80} - 3 q^{81} - 18 q^{82} + 738 q^{83} + 609 q^{84} + 3 q^{85} - 34 q^{86} + 3 q^{87} - 50 q^{88} + 21 q^{89} - 543 q^{90} + 39 q^{91} + 288 q^{92} + 252 q^{93} - 3 q^{94} + 507 q^{95} - 582 q^{96} - 57 q^{97} + 811 q^{98} - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
31.1 −1.67789 + 2.90618i 2.39606 1.80524i −3.63061 6.28839i 8.51666i 1.22605 + 9.99238i −2.34142 + 6.59680i 10.9439 2.48221 8.65093i −24.7510 14.2900i
31.2 −1.67756 + 2.90562i −2.99109 0.230993i −3.62842 6.28461i 0.888628i 5.68892 8.30348i −3.29335 6.17688i 10.9271 8.89328 + 1.38184i −2.58202 1.49073i
31.3 −1.32841 + 2.30087i 0.187748 2.99412i −1.52933 2.64888i 9.20400i 6.63967 + 4.40939i 6.96620 + 0.687028i −2.50096 −8.92950 1.12428i 21.1772 + 12.2267i
31.4 −1.12025 + 1.94033i 1.92745 + 2.29890i −0.509909 0.883189i 1.93444i −6.61983 + 1.16455i 3.87064 5.83251i −6.67708 −1.56985 + 8.86203i −3.75345 2.16706i
31.5 −0.840995 + 1.45665i −1.62217 + 2.52360i 0.585454 + 1.01404i 2.34462i −2.31176 4.48526i −3.93446 + 5.78964i −8.69742 −3.73715 8.18741i 3.41529 + 1.97182i
31.6 −0.227576 + 0.394173i −2.69941 1.30889i 1.89642 + 3.28469i 4.37081i 1.13025 0.766164i 5.22047 + 4.66334i −3.54692 5.57364 + 7.06644i −1.72285 0.994690i
31.7 −0.178911 + 0.309883i 2.99942 0.0589959i 1.93598 + 3.35322i 4.59004i −0.518348 + 0.940026i −6.01934 + 3.57317i −2.81677 8.99304 0.353907i 1.42238 + 0.821210i
31.8 0.198068 0.343064i 1.78343 2.41234i 1.92154 + 3.32820i 2.97240i −0.474346 1.08964i 2.98301 6.33259i 3.10693 −2.63876 8.60447i 1.01972 + 0.588737i
31.9 0.662399 1.14731i −1.57692 + 2.55212i 1.12246 + 1.94415i 7.23514i 1.88353 + 3.49973i −3.90816 5.80744i 8.27324 −4.02667 8.04897i 8.30093 + 4.79254i
31.10 0.826674 1.43184i −2.53185 1.60927i 0.633221 + 1.09677i 7.86923i −4.39723 + 2.29486i −5.81886 3.89113i 8.70726 3.82051 + 8.14885i −11.2675 6.50529i
31.11 0.902282 1.56280i 0.540538 + 2.95090i 0.371774 + 0.643931i 5.75495i 5.09938 + 1.81779i 6.44289 + 2.73664i 8.56004 −8.41564 + 3.19015i −8.99383 5.19259i
31.12 1.41697 2.45427i 0.222472 2.99174i −2.01561 3.49114i 2.39855i −7.02729 4.78521i 0.0107242 + 6.99999i −0.0884848 −8.90101 1.33116i 5.88667 + 3.39867i
31.13 1.62718 2.81835i 2.71323 + 1.27999i −3.29541 5.70782i 3.39483i 8.02237 5.56407i −6.91332 1.09817i −8.43145 5.72324 + 6.94582i 9.56782 + 5.52398i
31.14 1.91801 3.32210i −2.84892 + 0.940039i −5.35756 9.27956i 0.216546i −2.34136 + 11.2674i 6.73498 1.90790i −25.7594 7.23265 5.35619i −0.719386 0.415338i
61.1 −1.67789 2.90618i 2.39606 + 1.80524i −3.63061 + 6.28839i 8.51666i 1.22605 9.99238i −2.34142 6.59680i 10.9439 2.48221 + 8.65093i −24.7510 + 14.2900i
61.2 −1.67756 2.90562i −2.99109 + 0.230993i −3.62842 + 6.28461i 0.888628i 5.68892 + 8.30348i −3.29335 + 6.17688i 10.9271 8.89328 1.38184i −2.58202 + 1.49073i
61.3 −1.32841 2.30087i 0.187748 + 2.99412i −1.52933 + 2.64888i 9.20400i 6.63967 4.40939i 6.96620 0.687028i −2.50096 −8.92950 + 1.12428i 21.1772 12.2267i
61.4 −1.12025 1.94033i 1.92745 2.29890i −0.509909 + 0.883189i 1.93444i −6.61983 1.16455i 3.87064 + 5.83251i −6.67708 −1.56985 8.86203i −3.75345 + 2.16706i
61.5 −0.840995 1.45665i −1.62217 2.52360i 0.585454 1.01404i 2.34462i −2.31176 + 4.48526i −3.93446 5.78964i −8.69742 −3.73715 + 8.18741i 3.41529 1.97182i
61.6 −0.227576 0.394173i −2.69941 + 1.30889i 1.89642 3.28469i 4.37081i 1.13025 + 0.766164i 5.22047 4.66334i −3.54692 5.57364 7.06644i −1.72285 + 0.994690i
See all 28 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 31.14
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
63.k odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 63.3.k.a 28
3.b odd 2 1 189.3.k.a 28
7.b odd 2 1 441.3.k.b 28
7.c even 3 1 441.3.l.a 28
7.c even 3 1 441.3.t.a 28
7.d odd 6 1 63.3.t.a yes 28
7.d odd 6 1 441.3.l.b 28
9.c even 3 1 63.3.t.a yes 28
9.d odd 6 1 189.3.t.a 28
21.g even 6 1 189.3.t.a 28
63.g even 3 1 441.3.k.b 28
63.h even 3 1 441.3.l.b 28
63.k odd 6 1 inner 63.3.k.a 28
63.l odd 6 1 441.3.t.a 28
63.s even 6 1 189.3.k.a 28
63.t odd 6 1 441.3.l.a 28
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
63.3.k.a 28 1.a even 1 1 trivial
63.3.k.a 28 63.k odd 6 1 inner
63.3.t.a yes 28 7.d odd 6 1
63.3.t.a yes 28 9.c even 3 1
189.3.k.a 28 3.b odd 2 1
189.3.k.a 28 63.s even 6 1
189.3.t.a 28 9.d odd 6 1
189.3.t.a 28 21.g even 6 1
441.3.k.b 28 7.b odd 2 1
441.3.k.b 28 63.g even 3 1
441.3.l.a 28 7.c even 3 1
441.3.l.a 28 63.t odd 6 1
441.3.l.b 28 7.d odd 6 1
441.3.l.b 28 63.h even 3 1
441.3.t.a 28 7.c even 3 1
441.3.t.a 28 63.l odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(63, [\chi])\).