Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [441,3,Mod(97,441)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("441.97");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.l (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(12.0163796583\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 63) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.1 | −1.67789 | + | 2.90618i | −2.76141 | + | 1.17243i | −3.63061 | − | 6.28839i | −7.37564 | + | 4.25833i | 1.22605 | − | 9.99238i | 0 | 10.9439 | 6.25082 | − | 6.47512i | − | 28.5800i | |||||
97.2 | −1.67756 | + | 2.90562i | 1.29550 | − | 2.70586i | −3.62842 | − | 6.28461i | −0.769575 | + | 0.444314i | 5.68892 | + | 8.30348i | 0 | 10.9271 | −5.64335 | − | 7.01089i | − | 2.98146i | |||||
97.3 | −1.32841 | + | 2.30087i | −2.68686 | − | 1.33447i | −1.52933 | − | 2.64888i | 7.97090 | − | 4.60200i | 6.63967 | − | 4.40939i | 0 | −2.50096 | 5.43840 | + | 7.17104i | 24.4533i | ||||||
97.4 | −1.12025 | + | 1.94033i | 1.02718 | + | 2.81867i | −0.509909 | − | 0.883189i | −1.67528 | + | 0.967222i | −6.61983 | − | 1.16455i | 0 | −6.67708 | −6.88982 | + | 5.79054i | − | 4.33411i | |||||
97.5 | −0.840995 | + | 1.45665i | 2.99659 | − | 0.143035i | 0.585454 | + | 1.01404i | 2.03050 | − | 1.17231i | −2.31176 | + | 4.48526i | 0 | −8.69742 | 8.95908 | − | 0.857237i | 3.94363i | ||||||
97.6 | −0.227576 | + | 0.394173i | 0.216177 | − | 2.99220i | 1.89642 | + | 3.28469i | −3.78523 | + | 2.18540i | 1.13025 | + | 0.766164i | 0 | −3.54692 | −8.90653 | − | 1.29369i | − | 1.98938i | |||||
97.7 | −0.178911 | + | 0.309883i | −1.55080 | + | 2.56808i | 1.93598 | + | 3.35322i | 3.97509 | − | 2.29502i | −0.518348 | − | 0.940026i | 0 | −2.81677 | −4.19003 | − | 7.96515i | 1.64242i | ||||||
97.8 | 0.198068 | − | 0.343064i | −2.98086 | + | 0.338326i | 1.92154 | + | 3.32820i | −2.57417 | + | 1.48620i | −0.474346 | + | 1.08964i | 0 | 3.10693 | 8.77107 | − | 2.01701i | 1.17747i | ||||||
97.9 | 0.662399 | − | 1.14731i | 2.99866 | − | 0.0895871i | 1.12246 | + | 1.94415i | −6.26581 | + | 3.61757i | 1.88353 | − | 3.49973i | 0 | 8.27324 | 8.98395 | − | 0.537283i | 9.58509i | ||||||
97.10 | 0.826674 | − | 1.43184i | −0.127743 | − | 2.99728i | 0.633221 | + | 1.09677i | 6.81496 | − | 3.93462i | −4.39723 | − | 2.29486i | 0 | 8.70726 | −8.96736 | + | 0.765761i | − | 13.0106i | |||||
97.11 | 0.902282 | − | 1.56280i | 2.28529 | + | 1.94357i | 0.371774 | + | 0.643931i | 4.98393 | − | 2.87747i | 5.09938 | − | 1.81779i | 0 | 8.56004 | 1.44507 | + | 8.88323i | − | 10.3852i | |||||
97.12 | 1.41697 | − | 2.45427i | −2.70216 | − | 1.30320i | −2.01561 | − | 3.49114i | −2.07720 | + | 1.19927i | −7.02729 | + | 4.78521i | 0 | −0.0884848 | 5.60332 | + | 7.04292i | 6.79734i | ||||||
97.13 | 1.62718 | − | 2.81835i | −0.248110 | + | 2.98972i | −3.29541 | − | 5.70782i | −2.94001 | + | 1.69741i | 8.02237 | + | 5.56407i | 0 | −8.43145 | −8.87688 | − | 1.48356i | 11.0480i | ||||||
97.14 | 1.91801 | − | 3.32210i | 2.23856 | − | 1.99721i | −5.35756 | − | 9.27956i | 0.187534 | − | 0.108273i | −2.34136 | − | 11.2674i | 0 | −25.7594 | 1.02227 | − | 8.94175i | − | 0.830676i | |||||
391.1 | −1.67789 | − | 2.90618i | −2.76141 | − | 1.17243i | −3.63061 | + | 6.28839i | −7.37564 | − | 4.25833i | 1.22605 | + | 9.99238i | 0 | 10.9439 | 6.25082 | + | 6.47512i | 28.5800i | ||||||
391.2 | −1.67756 | − | 2.90562i | 1.29550 | + | 2.70586i | −3.62842 | + | 6.28461i | −0.769575 | − | 0.444314i | 5.68892 | − | 8.30348i | 0 | 10.9271 | −5.64335 | + | 7.01089i | 2.98146i | ||||||
391.3 | −1.32841 | − | 2.30087i | −2.68686 | + | 1.33447i | −1.52933 | + | 2.64888i | 7.97090 | + | 4.60200i | 6.63967 | + | 4.40939i | 0 | −2.50096 | 5.43840 | − | 7.17104i | − | 24.4533i | |||||
391.4 | −1.12025 | − | 1.94033i | 1.02718 | − | 2.81867i | −0.509909 | + | 0.883189i | −1.67528 | − | 0.967222i | −6.61983 | + | 1.16455i | 0 | −6.67708 | −6.88982 | − | 5.79054i | 4.33411i | ||||||
391.5 | −0.840995 | − | 1.45665i | 2.99659 | + | 0.143035i | 0.585454 | − | 1.01404i | 2.03050 | + | 1.17231i | −2.31176 | − | 4.48526i | 0 | −8.69742 | 8.95908 | + | 0.857237i | − | 3.94363i | |||||
391.6 | −0.227576 | − | 0.394173i | 0.216177 | + | 2.99220i | 1.89642 | − | 3.28469i | −3.78523 | − | 2.18540i | 1.13025 | − | 0.766164i | 0 | −3.54692 | −8.90653 | + | 1.29369i | 1.98938i | ||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.l | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 441.3.l.a | 28 | |
7.b | odd | 2 | 1 | 441.3.l.b | 28 | ||
7.c | even | 3 | 1 | 63.3.k.a | ✓ | 28 | |
7.c | even | 3 | 1 | 441.3.t.a | 28 | ||
7.d | odd | 6 | 1 | 63.3.t.a | yes | 28 | |
7.d | odd | 6 | 1 | 441.3.k.b | 28 | ||
9.c | even | 3 | 1 | 441.3.l.b | 28 | ||
21.g | even | 6 | 1 | 189.3.t.a | 28 | ||
21.h | odd | 6 | 1 | 189.3.k.a | 28 | ||
63.g | even | 3 | 1 | 63.3.t.a | yes | 28 | |
63.h | even | 3 | 1 | 441.3.k.b | 28 | ||
63.i | even | 6 | 1 | 189.3.k.a | 28 | ||
63.k | odd | 6 | 1 | 441.3.t.a | 28 | ||
63.l | odd | 6 | 1 | inner | 441.3.l.a | 28 | |
63.n | odd | 6 | 1 | 189.3.t.a | 28 | ||
63.t | odd | 6 | 1 | 63.3.k.a | ✓ | 28 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
63.3.k.a | ✓ | 28 | 7.c | even | 3 | 1 | |
63.3.k.a | ✓ | 28 | 63.t | odd | 6 | 1 | |
63.3.t.a | yes | 28 | 7.d | odd | 6 | 1 | |
63.3.t.a | yes | 28 | 63.g | even | 3 | 1 | |
189.3.k.a | 28 | 21.h | odd | 6 | 1 | ||
189.3.k.a | 28 | 63.i | even | 6 | 1 | ||
189.3.t.a | 28 | 21.g | even | 6 | 1 | ||
189.3.t.a | 28 | 63.n | odd | 6 | 1 | ||
441.3.k.b | 28 | 7.d | odd | 6 | 1 | ||
441.3.k.b | 28 | 63.h | even | 3 | 1 | ||
441.3.l.a | 28 | 1.a | even | 1 | 1 | trivial | |
441.3.l.a | 28 | 63.l | odd | 6 | 1 | inner | |
441.3.l.b | 28 | 7.b | odd | 2 | 1 | ||
441.3.l.b | 28 | 9.c | even | 3 | 1 | ||
441.3.t.a | 28 | 7.c | even | 3 | 1 | ||
441.3.t.a | 28 | 63.k | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(441, [\chi])\):
\( T_{2}^{28} - T_{2}^{27} + 40 T_{2}^{26} - 29 T_{2}^{25} + 977 T_{2}^{24} - 620 T_{2}^{23} + \cdots + 1034289 \) |
\( T_{5}^{28} + 3 T_{5}^{27} - 186 T_{5}^{26} - 567 T_{5}^{25} + 22593 T_{5}^{24} + 82521 T_{5}^{23} + \cdots + 118476672320601 \) |