Properties

Label 63.3.k
Level $63$
Weight $3$
Character orbit 63.k
Rep. character $\chi_{63}(31,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $28$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.k (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 63 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(63, [\chi])\).

Total New Old
Modular forms 36 36 0
Cusp forms 28 28 0
Eisenstein series 8 8 0

Trace form

\( 28 q + q^{2} - 3 q^{3} - 23 q^{4} + 12 q^{6} - 16 q^{8} + 9 q^{9} - 6 q^{10} - 14 q^{11} - 3 q^{12} + 15 q^{13} - 11 q^{14} - 18 q^{15} - 27 q^{16} - 33 q^{17} + 33 q^{18} - 6 q^{19} + 108 q^{20} + 12 q^{21}+ \cdots - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(63, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
63.3.k.a 63.k 63.k $28$ $1.717$ None 63.3.k.a \(1\) \(-3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$