Properties

Label 63.3.t.a.40.3
Level $63$
Weight $3$
Character 63.40
Analytic conductor $1.717$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,3,Mod(40,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.40");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.71662566547\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 40.3
Character \(\chi\) \(=\) 63.40
Dual form 63.3.t.a.52.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.83394 q^{2} +(-2.47969 - 1.68854i) q^{3} +4.03122 q^{4} +(-2.07720 + 1.19927i) q^{5} +(7.02729 + 4.78521i) q^{6} +(6.05681 + 3.50928i) q^{7} -0.0884848 q^{8} +(3.29769 + 8.37408i) q^{9} +O(q^{10})\) \(q-2.83394 q^{2} +(-2.47969 - 1.68854i) q^{3} +4.03122 q^{4} +(-2.07720 + 1.19927i) q^{5} +(7.02729 + 4.78521i) q^{6} +(6.05681 + 3.50928i) q^{7} -0.0884848 q^{8} +(3.29769 + 8.37408i) q^{9} +(5.88667 - 3.39867i) q^{10} +(-5.69528 + 9.86452i) q^{11} +(-9.99617 - 6.80687i) q^{12} +(13.4628 + 7.77278i) q^{13} +(-17.1646 - 9.94510i) q^{14} +(7.17583 + 0.533610i) q^{15} -15.8741 q^{16} +(10.4807 - 6.05105i) q^{17} +(-9.34546 - 23.7317i) q^{18} +(-13.8576 - 8.00071i) q^{19} +(-8.37367 + 4.83454i) q^{20} +(-9.09343 - 18.9291i) q^{21} +(16.1401 - 27.9555i) q^{22} +(8.02831 + 13.9054i) q^{23} +(0.219415 + 0.149410i) q^{24} +(-9.62349 + 16.6684i) q^{25} +(-38.1529 - 22.0276i) q^{26} +(5.96270 - 26.3334i) q^{27} +(24.4163 + 14.1467i) q^{28} +(16.2339 + 28.1180i) q^{29} +(-20.3359 - 1.51222i) q^{30} +42.3999i q^{31} +45.3403 q^{32} +(30.7791 - 14.8442i) q^{33} +(-29.7018 + 17.1483i) q^{34} +(-16.7898 - 0.0257224i) q^{35} +(13.2937 + 33.7578i) q^{36} +(-3.61406 + 6.25973i) q^{37} +(39.2718 + 22.6736i) q^{38} +(-20.2590 - 42.0066i) q^{39} +(0.183801 - 0.106117i) q^{40} +(7.55990 + 4.36471i) q^{41} +(25.7703 + 53.6439i) q^{42} +(-22.2113 - 38.4711i) q^{43} +(-22.9590 + 39.7661i) q^{44} +(-16.8928 - 13.4398i) q^{45} +(-22.7518 - 39.4072i) q^{46} -26.3712i q^{47} +(39.3629 + 26.8040i) q^{48} +(24.3699 + 42.5101i) q^{49} +(27.2724 - 47.2372i) q^{50} +(-36.2063 - 2.69238i) q^{51} +(54.2717 + 31.3338i) q^{52} +(34.0624 + 58.9979i) q^{53} +(-16.8980 + 74.6272i) q^{54} -27.3208i q^{55} +(-0.535936 - 0.310518i) q^{56} +(20.8531 + 43.2384i) q^{57} +(-46.0060 - 79.6847i) q^{58} -95.1593i q^{59} +(28.9274 + 2.15110i) q^{60} -49.4424i q^{61} -120.159i q^{62} +(-9.41355 + 62.2927i) q^{63} -64.9952 q^{64} -37.2867 q^{65} +(-87.2262 + 42.0677i) q^{66} -81.8700 q^{67} +(42.2502 - 24.3931i) q^{68} +(3.57215 - 48.0372i) q^{69} +(47.5813 + 0.0728958i) q^{70} -112.881 q^{71} +(-0.291796 - 0.740979i) q^{72} +(58.8056 - 33.9514i) q^{73} +(10.2420 - 17.7397i) q^{74} +(52.0084 - 25.0827i) q^{75} +(-55.8633 - 32.2527i) q^{76} +(-69.1127 + 39.7612i) q^{77} +(57.4129 + 119.044i) q^{78} +136.888 q^{79} +(32.9738 - 19.0374i) q^{80} +(-59.2505 + 55.2302i) q^{81} +(-21.4243 - 12.3693i) q^{82} +(-18.8674 + 10.8931i) q^{83} +(-36.6577 - 76.3073i) q^{84} +(-14.5137 + 25.1385i) q^{85} +(62.9455 + 109.025i) q^{86} +(7.22320 - 97.1354i) q^{87} +(0.503946 - 0.872861i) q^{88} +(93.9050 + 54.2161i) q^{89} +(47.8732 + 38.0877i) q^{90} +(54.2650 + 94.3232i) q^{91} +(32.3639 + 56.0559i) q^{92} +(71.5937 - 105.138i) q^{93} +74.7346i q^{94} +38.3802 q^{95} +(-112.430 - 76.5587i) q^{96} +(-96.5982 + 55.7710i) q^{97} +(-69.0628 - 120.471i) q^{98} +(-101.388 - 15.1626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 2 q^{2} - 3 q^{3} + 46 q^{4} - 3 q^{5} - 12 q^{6} - 16 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 28 q - 2 q^{2} - 3 q^{3} + 46 q^{4} - 3 q^{5} - 12 q^{6} - 16 q^{8} - 15 q^{9} - 6 q^{10} + 7 q^{11} - 30 q^{12} - 15 q^{13} + 10 q^{14} - 18 q^{15} + 54 q^{16} - 33 q^{17} - 42 q^{18} - 6 q^{19} - 108 q^{20} + 21 q^{21} - 10 q^{22} + 34 q^{23} - 78 q^{24} + 31 q^{25} + 54 q^{26} + 81 q^{27} - 16 q^{28} + 70 q^{29} - 27 q^{30} - 306 q^{32} - 3 q^{33} - 12 q^{34} + 18 q^{35} - 174 q^{36} + 9 q^{37} + 87 q^{38} + 129 q^{39} - 102 q^{40} + 234 q^{41} + 306 q^{42} + 30 q^{43} + 51 q^{44} + 273 q^{45} - 22 q^{46} - 147 q^{48} - 38 q^{49} + 241 q^{50} + 12 q^{51} - 219 q^{52} + 148 q^{53} + 171 q^{54} + 110 q^{56} + 189 q^{57} + 17 q^{58} + 33 q^{60} - 471 q^{63} - 48 q^{64} - 228 q^{65} + 258 q^{66} + 68 q^{67} - 18 q^{68} - 78 q^{69} - 225 q^{70} - 350 q^{71} + 162 q^{72} - 6 q^{73} + 359 q^{74} - 510 q^{75} - 72 q^{76} - 224 q^{77} - 375 q^{78} + 164 q^{79} - 609 q^{80} - 435 q^{81} - 18 q^{82} - 738 q^{83} - 21 q^{84} + 3 q^{85} + 17 q^{86} - 561 q^{87} + 25 q^{88} + 21 q^{89} + 543 q^{90} + 39 q^{91} + 288 q^{92} - 222 q^{93} - 1014 q^{95} + 231 q^{96} + 57 q^{97} + 811 q^{98} - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.83394 −1.41697 −0.708485 0.705726i \(-0.750621\pi\)
−0.708485 + 0.705726i \(0.750621\pi\)
\(3\) −2.47969 1.68854i −0.826562 0.562845i
\(4\) 4.03122 1.00781
\(5\) −2.07720 + 1.19927i −0.415440 + 0.239855i −0.693125 0.720818i \(-0.743766\pi\)
0.277684 + 0.960672i \(0.410433\pi\)
\(6\) 7.02729 + 4.78521i 1.17121 + 0.797535i
\(7\) 6.05681 + 3.50928i 0.865258 + 0.501326i
\(8\) −0.0884848 −0.0110606
\(9\) 3.29769 + 8.37408i 0.366410 + 0.930454i
\(10\) 5.88667 3.39867i 0.588667 0.339867i
\(11\) −5.69528 + 9.86452i −0.517753 + 0.896775i 0.482034 + 0.876152i \(0.339898\pi\)
−0.999787 + 0.0206223i \(0.993435\pi\)
\(12\) −9.99617 6.80687i −0.833014 0.567239i
\(13\) 13.4628 + 7.77278i 1.03560 + 0.597906i 0.918585 0.395224i \(-0.129333\pi\)
0.117019 + 0.993130i \(0.462666\pi\)
\(14\) −17.1646 9.94510i −1.22605 0.710364i
\(15\) 7.17583 + 0.533610i 0.478388 + 0.0355740i
\(16\) −15.8741 −0.992133
\(17\) 10.4807 6.05105i 0.616513 0.355944i −0.158997 0.987279i \(-0.550826\pi\)
0.775510 + 0.631335i \(0.217493\pi\)
\(18\) −9.34546 23.7317i −0.519192 1.31843i
\(19\) −13.8576 8.00071i −0.729350 0.421090i 0.0888345 0.996046i \(-0.471686\pi\)
−0.818184 + 0.574956i \(0.805019\pi\)
\(20\) −8.37367 + 4.83454i −0.418683 + 0.241727i
\(21\) −9.09343 18.9291i −0.433021 0.901384i
\(22\) 16.1401 27.9555i 0.733641 1.27070i
\(23\) 8.02831 + 13.9054i 0.349057 + 0.604584i 0.986082 0.166259i \(-0.0531686\pi\)
−0.637025 + 0.770843i \(0.719835\pi\)
\(24\) 0.219415 + 0.149410i 0.00914228 + 0.00622541i
\(25\) −9.62349 + 16.6684i −0.384939 + 0.666735i
\(26\) −38.1529 22.0276i −1.46742 0.847215i
\(27\) 5.96270 26.3334i 0.220841 0.975310i
\(28\) 24.4163 + 14.1467i 0.872012 + 0.505239i
\(29\) 16.2339 + 28.1180i 0.559791 + 0.969586i 0.997513 + 0.0704760i \(0.0224518\pi\)
−0.437723 + 0.899110i \(0.644215\pi\)
\(30\) −20.3359 1.51222i −0.677862 0.0504073i
\(31\) 42.3999i 1.36774i 0.729605 + 0.683869i \(0.239704\pi\)
−0.729605 + 0.683869i \(0.760296\pi\)
\(32\) 45.3403 1.41688
\(33\) 30.7791 14.8442i 0.932701 0.449825i
\(34\) −29.7018 + 17.1483i −0.873581 + 0.504362i
\(35\) −16.7898 0.0257224i −0.479709 0.000734926i
\(36\) 13.2937 + 33.7578i 0.369270 + 0.937716i
\(37\) −3.61406 + 6.25973i −0.0976772 + 0.169182i −0.910723 0.413018i \(-0.864475\pi\)
0.813046 + 0.582200i \(0.197808\pi\)
\(38\) 39.2718 + 22.6736i 1.03347 + 0.596673i
\(39\) −20.2590 42.0066i −0.519462 1.07709i
\(40\) 0.183801 0.106117i 0.00459502 0.00265294i
\(41\) 7.55990 + 4.36471i 0.184388 + 0.106456i 0.589353 0.807876i \(-0.299383\pi\)
−0.404965 + 0.914332i \(0.632716\pi\)
\(42\) 25.7703 + 53.6439i 0.613578 + 1.27723i
\(43\) −22.2113 38.4711i −0.516542 0.894676i −0.999816 0.0192072i \(-0.993886\pi\)
0.483274 0.875469i \(-0.339448\pi\)
\(44\) −22.9590 + 39.7661i −0.521795 + 0.903775i
\(45\) −16.8928 13.4398i −0.375395 0.298663i
\(46\) −22.7518 39.4072i −0.494603 0.856678i
\(47\) 26.3712i 0.561090i −0.959841 0.280545i \(-0.909485\pi\)
0.959841 0.280545i \(-0.0905153\pi\)
\(48\) 39.3629 + 26.8040i 0.820060 + 0.558418i
\(49\) 24.3699 + 42.5101i 0.497344 + 0.867553i
\(50\) 27.2724 47.2372i 0.545448 0.944744i
\(51\) −36.2063 2.69238i −0.709928 0.0527918i
\(52\) 54.2717 + 31.3338i 1.04369 + 0.602573i
\(53\) 34.0624 + 58.9979i 0.642688 + 1.11317i 0.984830 + 0.173520i \(0.0555140\pi\)
−0.342143 + 0.939648i \(0.611153\pi\)
\(54\) −16.8980 + 74.6272i −0.312925 + 1.38199i
\(55\) 27.3208i 0.496742i
\(56\) −0.535936 0.310518i −0.00957028 0.00554497i
\(57\) 20.8531 + 43.2384i 0.365844 + 0.758568i
\(58\) −46.0060 79.6847i −0.793207 1.37387i
\(59\) 95.1593i 1.61287i −0.591323 0.806435i \(-0.701394\pi\)
0.591323 0.806435i \(-0.298606\pi\)
\(60\) 28.9274 + 2.15110i 0.482123 + 0.0358517i
\(61\) 49.4424i 0.810531i −0.914199 0.405266i \(-0.867179\pi\)
0.914199 0.405266i \(-0.132821\pi\)
\(62\) 120.159i 1.93804i
\(63\) −9.41355 + 62.2927i −0.149421 + 0.988774i
\(64\) −64.9952 −1.01555
\(65\) −37.2867 −0.573642
\(66\) −87.2262 + 42.0677i −1.32161 + 0.637389i
\(67\) −81.8700 −1.22194 −0.610971 0.791653i \(-0.709221\pi\)
−0.610971 + 0.791653i \(0.709221\pi\)
\(68\) 42.2502 24.3931i 0.621326 0.358723i
\(69\) 3.57215 48.0372i 0.0517703 0.696192i
\(70\) 47.5813 + 0.0728958i 0.679733 + 0.00104137i
\(71\) −112.881 −1.58987 −0.794936 0.606694i \(-0.792496\pi\)
−0.794936 + 0.606694i \(0.792496\pi\)
\(72\) −0.291796 0.740979i −0.00405272 0.0102914i
\(73\) 58.8056 33.9514i 0.805556 0.465088i −0.0398541 0.999206i \(-0.512689\pi\)
0.845410 + 0.534117i \(0.179356\pi\)
\(74\) 10.2420 17.7397i 0.138406 0.239726i
\(75\) 52.0084 25.0827i 0.693445 0.334436i
\(76\) −55.8633 32.2527i −0.735043 0.424377i
\(77\) −69.1127 + 39.7612i −0.897567 + 0.516379i
\(78\) 57.4129 + 119.044i 0.736063 + 1.52621i
\(79\) 136.888 1.73276 0.866379 0.499387i \(-0.166441\pi\)
0.866379 + 0.499387i \(0.166441\pi\)
\(80\) 32.9738 19.0374i 0.412172 0.237968i
\(81\) −59.2505 + 55.2302i −0.731487 + 0.681855i
\(82\) −21.4243 12.3693i −0.261272 0.150846i
\(83\) −18.8674 + 10.8931i −0.227318 + 0.131242i −0.609334 0.792913i \(-0.708563\pi\)
0.382016 + 0.924156i \(0.375230\pi\)
\(84\) −36.6577 76.3073i −0.436401 0.908420i
\(85\) −14.5137 + 25.1385i −0.170750 + 0.295747i
\(86\) 62.9455 + 109.025i 0.731924 + 1.26773i
\(87\) 7.22320 97.1354i 0.0830252 1.11650i
\(88\) 0.503946 0.872861i 0.00572666 0.00991887i
\(89\) 93.9050 + 54.2161i 1.05511 + 0.609169i 0.924076 0.382208i \(-0.124836\pi\)
0.131036 + 0.991378i \(0.458170\pi\)
\(90\) 47.8732 + 38.0877i 0.531924 + 0.423197i
\(91\) 54.2650 + 94.3232i 0.596319 + 1.03652i
\(92\) 32.3639 + 56.0559i 0.351782 + 0.609304i
\(93\) 71.5937 105.138i 0.769825 1.13052i
\(94\) 74.7346i 0.795049i
\(95\) 38.3802 0.404002
\(96\) −112.430 76.5587i −1.17114 0.797487i
\(97\) −96.5982 + 55.7710i −0.995857 + 0.574959i −0.907020 0.421088i \(-0.861649\pi\)
−0.0888375 + 0.996046i \(0.528315\pi\)
\(98\) −69.0628 120.471i −0.704722 1.22930i
\(99\) −101.388 15.1626i −1.02412 0.153158i
\(100\) −38.7944 + 67.1939i −0.387944 + 0.671939i
\(101\) −66.5650 38.4313i −0.659059 0.380508i 0.132859 0.991135i \(-0.457584\pi\)
−0.791919 + 0.610627i \(0.790918\pi\)
\(102\) 102.607 + 7.63005i 1.00595 + 0.0748044i
\(103\) 130.580 75.3905i 1.26777 0.731946i 0.293203 0.956050i \(-0.405279\pi\)
0.974565 + 0.224104i \(0.0719456\pi\)
\(104\) −1.19126 0.687773i −0.0114544 0.00661320i
\(105\) 41.5900 + 28.4140i 0.396095 + 0.270609i
\(106\) −96.5310 167.197i −0.910669 1.57733i
\(107\) −38.3022 + 66.3413i −0.357964 + 0.620013i −0.987621 0.156861i \(-0.949862\pi\)
0.629656 + 0.776874i \(0.283196\pi\)
\(108\) 24.0370 106.156i 0.222565 0.982923i
\(109\) 12.5985 + 21.8212i 0.115582 + 0.200195i 0.918012 0.396552i \(-0.129793\pi\)
−0.802430 + 0.596746i \(0.796460\pi\)
\(110\) 77.4256i 0.703869i
\(111\) 19.5315 9.41970i 0.175960 0.0848622i
\(112\) −96.1466 55.7068i −0.858452 0.497382i
\(113\) 37.0748 64.2154i 0.328095 0.568277i −0.654039 0.756461i \(-0.726927\pi\)
0.982134 + 0.188184i \(0.0602600\pi\)
\(114\) −59.0965 122.535i −0.518390 1.07487i
\(115\) −33.3528 19.2563i −0.290025 0.167446i
\(116\) 65.4426 + 113.350i 0.564160 + 0.977154i
\(117\) −20.6936 + 138.371i −0.176868 + 1.18266i
\(118\) 269.676i 2.28539i
\(119\) 84.7146 + 0.129785i 0.711888 + 0.00109063i
\(120\) −0.634952 0.0472164i −0.00529127 0.000393470i
\(121\) −4.37253 7.57345i −0.0361366 0.0625905i
\(122\) 140.117i 1.14850i
\(123\) −11.3762 23.5883i −0.0924896 0.191775i
\(124\) 170.923i 1.37841i
\(125\) 106.128i 0.849027i
\(126\) 26.6774 176.534i 0.211726 1.40106i
\(127\) 52.2864 0.411704 0.205852 0.978583i \(-0.434003\pi\)
0.205852 + 0.978583i \(0.434003\pi\)
\(128\) 2.83143 0.0221205
\(129\) −9.88279 + 132.901i −0.0766108 + 1.03024i
\(130\) 105.668 0.812834
\(131\) −161.548 + 93.2696i −1.23319 + 0.711982i −0.967693 0.252131i \(-0.918869\pi\)
−0.265495 + 0.964112i \(0.585535\pi\)
\(132\) 124.078 59.8404i 0.939981 0.453336i
\(133\) −55.8563 97.0892i −0.419972 0.729994i
\(134\) 232.015 1.73145
\(135\) 19.1952 + 61.8506i 0.142186 + 0.458153i
\(136\) −0.927385 + 0.535426i −0.00681901 + 0.00393696i
\(137\) 76.6871 132.826i 0.559760 0.969533i −0.437756 0.899094i \(-0.644227\pi\)
0.997516 0.0704389i \(-0.0224400\pi\)
\(138\) −10.1233 + 136.135i −0.0733570 + 0.986483i
\(139\) 79.0232 + 45.6241i 0.568513 + 0.328231i 0.756555 0.653930i \(-0.226881\pi\)
−0.188043 + 0.982161i \(0.560214\pi\)
\(140\) −67.6835 0.103693i −0.483453 0.000740662i
\(141\) −44.5288 + 65.3924i −0.315807 + 0.463776i
\(142\) 319.898 2.25280
\(143\) −153.349 + 88.5364i −1.07237 + 0.619135i
\(144\) −52.3480 132.931i −0.363528 0.923134i
\(145\) −67.4423 38.9378i −0.465119 0.268537i
\(146\) −166.652 + 96.2164i −1.14145 + 0.659016i
\(147\) 11.3503 146.561i 0.0772126 0.997015i
\(148\) −14.5691 + 25.2344i −0.0984396 + 0.170502i
\(149\) −56.2062 97.3519i −0.377223 0.653369i 0.613434 0.789746i \(-0.289787\pi\)
−0.990657 + 0.136377i \(0.956454\pi\)
\(150\) −147.389 + 71.0830i −0.982591 + 0.473886i
\(151\) −14.0984 + 24.4192i −0.0933671 + 0.161717i −0.908926 0.416958i \(-0.863096\pi\)
0.815559 + 0.578674i \(0.196430\pi\)
\(152\) 1.22619 + 0.707942i 0.00806705 + 0.00465751i
\(153\) 85.2342 + 67.8120i 0.557086 + 0.443216i
\(154\) 195.861 112.681i 1.27183 0.731693i
\(155\) −50.8490 88.0731i −0.328058 0.568214i
\(156\) −81.6686 169.338i −0.523517 1.08550i
\(157\) 10.2506i 0.0652903i 0.999467 + 0.0326452i \(0.0103931\pi\)
−0.999467 + 0.0326452i \(0.989607\pi\)
\(158\) −387.932 −2.45527
\(159\) 15.1559 203.812i 0.0953201 1.28184i
\(160\) −94.1810 + 54.3754i −0.588631 + 0.339846i
\(161\) −0.172194 + 112.396i −0.00106953 + 0.698113i
\(162\) 167.912 156.519i 1.03650 0.966168i
\(163\) 88.8411 153.877i 0.545037 0.944033i −0.453567 0.891222i \(-0.649849\pi\)
0.998605 0.0528105i \(-0.0168179\pi\)
\(164\) 30.4757 + 17.5951i 0.185827 + 0.107287i
\(165\) −46.1322 + 67.7470i −0.279589 + 0.410588i
\(166\) 53.4692 30.8705i 0.322104 0.185967i
\(167\) −53.9725 31.1611i −0.323189 0.186593i 0.329624 0.944112i \(-0.393078\pi\)
−0.652813 + 0.757519i \(0.726411\pi\)
\(168\) 0.804631 + 1.67494i 0.00478947 + 0.00996985i
\(169\) 36.3322 + 62.9292i 0.214983 + 0.372362i
\(170\) 41.1311 71.2411i 0.241947 0.419065i
\(171\) 21.3004 142.429i 0.124564 0.832918i
\(172\) −89.5387 155.086i −0.520574 0.901660i
\(173\) 88.0132i 0.508747i 0.967106 + 0.254373i \(0.0818692\pi\)
−0.967106 + 0.254373i \(0.918131\pi\)
\(174\) −20.4701 + 275.276i −0.117644 + 1.58205i
\(175\) −116.782 + 67.1856i −0.667324 + 0.383918i
\(176\) 90.4077 156.591i 0.513680 0.889720i
\(177\) −160.680 + 235.965i −0.907797 + 1.33314i
\(178\) −266.121 153.645i −1.49506 0.863175i
\(179\) −6.47603 11.2168i −0.0361789 0.0626638i 0.847369 0.531005i \(-0.178185\pi\)
−0.883548 + 0.468341i \(0.844852\pi\)
\(180\) −68.0986 54.1790i −0.378325 0.300994i
\(181\) 225.852i 1.24780i −0.781503 0.623901i \(-0.785547\pi\)
0.781503 0.623901i \(-0.214453\pi\)
\(182\) −153.784 267.306i −0.844966 1.46872i
\(183\) −83.4853 + 122.602i −0.456204 + 0.669955i
\(184\) −0.710384 1.23042i −0.00386078 0.00668707i
\(185\) 17.3370i 0.0937133i
\(186\) −202.892 + 297.956i −1.09082 + 1.60191i
\(187\) 137.850i 0.737165i
\(188\) 106.308i 0.565470i
\(189\) 128.526 138.571i 0.680033 0.733182i
\(190\) −108.767 −0.572459
\(191\) 103.891 0.543929 0.271965 0.962307i \(-0.412327\pi\)
0.271965 + 0.962307i \(0.412327\pi\)
\(192\) 161.168 + 109.747i 0.839415 + 0.571598i
\(193\) 162.342 0.841151 0.420575 0.907258i \(-0.361828\pi\)
0.420575 + 0.907258i \(0.361828\pi\)
\(194\) 273.754 158.052i 1.41110 0.814699i
\(195\) 92.4594 + 62.9600i 0.474151 + 0.322872i
\(196\) 98.2404 + 171.368i 0.501226 + 0.874325i
\(197\) 301.595 1.53094 0.765470 0.643472i \(-0.222507\pi\)
0.765470 + 0.643472i \(0.222507\pi\)
\(198\) 287.326 + 42.9700i 1.45114 + 0.217020i
\(199\) 50.0571 28.9005i 0.251543 0.145229i −0.368927 0.929458i \(-0.620275\pi\)
0.620471 + 0.784230i \(0.286942\pi\)
\(200\) 0.851533 1.47490i 0.00425766 0.00737449i
\(201\) 203.012 + 138.241i 1.01001 + 0.687764i
\(202\) 188.641 + 108.912i 0.933868 + 0.539169i
\(203\) −0.348191 + 227.275i −0.00171522 + 1.11958i
\(204\) −145.956 10.8536i −0.715470 0.0532039i
\(205\) −20.9379 −0.102136
\(206\) −370.056 + 213.652i −1.79639 + 1.03715i
\(207\) −89.9704 + 113.086i −0.434640 + 0.546307i
\(208\) −213.711 123.386i −1.02746 0.593202i
\(209\) 157.846 91.1327i 0.755246 0.436042i
\(210\) −117.864 80.5236i −0.561256 0.383446i
\(211\) −21.2197 + 36.7535i −0.100567 + 0.174187i −0.911918 0.410371i \(-0.865399\pi\)
0.811351 + 0.584559i \(0.198732\pi\)
\(212\) 137.313 + 237.834i 0.647704 + 1.12186i
\(213\) 279.909 + 190.603i 1.31413 + 0.894852i
\(214\) 108.546 188.007i 0.507225 0.878540i
\(215\) 92.2747 + 53.2748i 0.429185 + 0.247790i
\(216\) −0.527609 + 2.33010i −0.00244263 + 0.0107875i
\(217\) −148.793 + 256.808i −0.685683 + 1.18345i
\(218\) −35.7034 61.8400i −0.163777 0.283670i
\(219\) −203.148 15.1065i −0.927615 0.0689794i
\(220\) 110.136i 0.500619i
\(221\) 188.134 0.851285
\(222\) −55.3511 + 26.6949i −0.249329 + 0.120247i
\(223\) −166.212 + 95.9625i −0.745345 + 0.430325i −0.824009 0.566576i \(-0.808268\pi\)
0.0786645 + 0.996901i \(0.474934\pi\)
\(224\) 274.618 + 159.112i 1.22597 + 0.710321i
\(225\) −171.318 25.6208i −0.761411 0.113870i
\(226\) −105.068 + 181.983i −0.464901 + 0.805233i
\(227\) 194.664 + 112.390i 0.857552 + 0.495108i 0.863192 0.504876i \(-0.168462\pi\)
−0.00563942 + 0.999984i \(0.501795\pi\)
\(228\) 84.0636 + 174.304i 0.368700 + 0.764490i
\(229\) −138.693 + 80.0742i −0.605644 + 0.349669i −0.771259 0.636522i \(-0.780373\pi\)
0.165614 + 0.986191i \(0.447039\pi\)
\(230\) 94.5200 + 54.5712i 0.410957 + 0.237266i
\(231\) 238.516 + 18.1040i 1.03254 + 0.0783724i
\(232\) −1.43646 2.48802i −0.00619162 0.0107242i
\(233\) 123.299 213.560i 0.529180 0.916566i −0.470241 0.882538i \(-0.655833\pi\)
0.999421 0.0340281i \(-0.0108336\pi\)
\(234\) 58.6444 392.136i 0.250617 1.67579i
\(235\) 31.6263 + 54.7784i 0.134580 + 0.233100i
\(236\) 383.608i 1.62546i
\(237\) −339.439 231.140i −1.43223 0.975275i
\(238\) −240.076 0.367803i −1.00872 0.00154539i
\(239\) −110.141 + 190.769i −0.460839 + 0.798197i −0.999003 0.0446434i \(-0.985785\pi\)
0.538164 + 0.842840i \(0.319118\pi\)
\(240\) −113.910 8.47059i −0.474625 0.0352941i
\(241\) −228.282 131.799i −0.947230 0.546883i −0.0550106 0.998486i \(-0.517519\pi\)
−0.892219 + 0.451602i \(0.850853\pi\)
\(242\) 12.3915 + 21.4627i 0.0512045 + 0.0886889i
\(243\) 240.181 36.9071i 0.988399 0.151881i
\(244\) 199.313i 0.816858i
\(245\) −101.602 59.0760i −0.414704 0.241126i
\(246\) 32.2395 + 66.8478i 0.131055 + 0.271739i
\(247\) −124.376 215.425i −0.503545 0.872165i
\(248\) 3.75175i 0.0151280i
\(249\) 65.1787 + 4.84683i 0.261762 + 0.0194652i
\(250\) 300.762i 1.20305i
\(251\) 23.0003i 0.0916348i −0.998950 0.0458174i \(-0.985411\pi\)
0.998950 0.0458174i \(-0.0145892\pi\)
\(252\) −37.9481 + 251.116i −0.150588 + 0.996492i
\(253\) −182.894 −0.722901
\(254\) −148.177 −0.583372
\(255\) 78.4368 37.8287i 0.307595 0.148348i
\(256\) 251.957 0.984206
\(257\) −15.4300 + 8.90852i −0.0600389 + 0.0346635i −0.529719 0.848173i \(-0.677703\pi\)
0.469680 + 0.882837i \(0.344369\pi\)
\(258\) 28.0072 376.633i 0.108555 1.45982i
\(259\) −43.8568 + 25.2312i −0.169331 + 0.0974179i
\(260\) −150.311 −0.578120
\(261\) −181.928 + 228.669i −0.697042 + 0.876125i
\(262\) 457.817 264.321i 1.74739 1.00886i
\(263\) 181.504 314.375i 0.690130 1.19534i −0.281665 0.959513i \(-0.590887\pi\)
0.971795 0.235828i \(-0.0757801\pi\)
\(264\) −2.72349 + 1.31349i −0.0103162 + 0.00497534i
\(265\) −141.509 81.7004i −0.533997 0.308303i
\(266\) 158.294 + 275.145i 0.595089 + 1.03438i
\(267\) −141.309 293.001i −0.529248 1.09738i
\(268\) −330.036 −1.23148
\(269\) 169.879 98.0794i 0.631519 0.364607i −0.149821 0.988713i \(-0.547870\pi\)
0.781340 + 0.624106i \(0.214537\pi\)
\(270\) −54.3980 175.281i −0.201474 0.649189i
\(271\) −82.5249 47.6458i −0.304520 0.175815i 0.339952 0.940443i \(-0.389589\pi\)
−0.644472 + 0.764628i \(0.722923\pi\)
\(272\) −166.372 + 96.0552i −0.611663 + 0.353144i
\(273\) 24.7079 325.520i 0.0905052 1.19238i
\(274\) −217.327 + 376.421i −0.793163 + 1.37380i
\(275\) −109.617 189.862i −0.398607 0.690408i
\(276\) 14.4001 193.649i 0.0521744 0.701626i
\(277\) 107.725 186.586i 0.388901 0.673596i −0.603401 0.797438i \(-0.706188\pi\)
0.992302 + 0.123842i \(0.0395216\pi\)
\(278\) −223.947 129.296i −0.805566 0.465093i
\(279\) −355.060 + 139.822i −1.27262 + 0.501153i
\(280\) 1.48564 + 0.00227604i 0.00530587 + 8.12872e-6i
\(281\) 101.916 + 176.523i 0.362689 + 0.628196i 0.988402 0.151857i \(-0.0485254\pi\)
−0.625713 + 0.780053i \(0.715192\pi\)
\(282\) 126.192 185.318i 0.447490 0.657157i
\(283\) 120.459i 0.425650i 0.977090 + 0.212825i \(0.0682664\pi\)
−0.977090 + 0.212825i \(0.931734\pi\)
\(284\) −455.048 −1.60228
\(285\) −95.1708 64.8063i −0.333933 0.227391i
\(286\) 434.583 250.907i 1.51952 0.877297i
\(287\) 30.4719 + 52.9661i 0.106174 + 0.184551i
\(288\) 149.518 + 379.683i 0.519161 + 1.31834i
\(289\) −71.2696 + 123.442i −0.246607 + 0.427137i
\(290\) 191.128 + 110.348i 0.659061 + 0.380509i
\(291\) 333.705 + 24.8150i 1.14675 + 0.0852749i
\(292\) 237.059 136.866i 0.811844 0.468719i
\(293\) −151.688 87.5769i −0.517705 0.298897i 0.218290 0.975884i \(-0.429952\pi\)
−0.735995 + 0.676987i \(0.763285\pi\)
\(294\) −32.1660 + 415.346i −0.109408 + 1.41274i
\(295\) 114.122 + 197.665i 0.386854 + 0.670051i
\(296\) 0.319789 0.553891i 0.00108037 0.00187125i
\(297\) 225.807 + 208.795i 0.760292 + 0.703014i
\(298\) 159.285 + 275.890i 0.534513 + 0.925804i
\(299\) 249.609i 0.834813i
\(300\) 209.657 101.114i 0.698858 0.337047i
\(301\) 0.476395 310.958i 0.00158271 1.03308i
\(302\) 39.9541 69.2026i 0.132298 0.229148i
\(303\) 100.168 + 207.695i 0.330586 + 0.685462i
\(304\) 219.978 + 127.004i 0.723612 + 0.417778i
\(305\) 59.2950 + 102.702i 0.194410 + 0.336728i
\(306\) −241.549 192.175i −0.789375 0.628023i
\(307\) 18.3665i 0.0598259i 0.999553 + 0.0299129i \(0.00952300\pi\)
−0.999553 + 0.0299129i \(0.990477\pi\)
\(308\) −278.609 + 160.286i −0.904573 + 0.520409i
\(309\) −451.097 33.5446i −1.45986 0.108558i
\(310\) 144.103 + 249.594i 0.464849 + 0.805142i
\(311\) 407.832i 1.31136i −0.755040 0.655679i \(-0.772383\pi\)
0.755040 0.655679i \(-0.227617\pi\)
\(312\) 1.79262 + 3.71694i 0.00574556 + 0.0119133i
\(313\) 402.749i 1.28674i −0.765556 0.643369i \(-0.777536\pi\)
0.765556 0.643369i \(-0.222464\pi\)
\(314\) 29.0495i 0.0925145i
\(315\) −55.1522 140.684i −0.175086 0.446616i
\(316\) 551.826 1.74628
\(317\) −296.547 −0.935479 −0.467739 0.883866i \(-0.654931\pi\)
−0.467739 + 0.883866i \(0.654931\pi\)
\(318\) −42.9509 + 577.591i −0.135066 + 1.81632i
\(319\) −369.827 −1.15933
\(320\) 135.008 77.9470i 0.421901 0.243584i
\(321\) 206.997 99.8311i 0.644851 0.311000i
\(322\) 0.487987 318.524i 0.00151549 0.989206i
\(323\) −193.651 −0.599539
\(324\) −238.852 + 222.645i −0.737197 + 0.687177i
\(325\) −259.119 + 149.602i −0.797289 + 0.460315i
\(326\) −251.770 + 436.079i −0.772302 + 1.33767i
\(327\) 5.60562 75.3828i 0.0171426 0.230528i
\(328\) −0.668937 0.386211i −0.00203944 0.00117747i
\(329\) 92.5442 159.726i 0.281289 0.485488i
\(330\) 130.736 191.991i 0.396169 0.581791i
\(331\) 532.959 1.61015 0.805074 0.593175i \(-0.202126\pi\)
0.805074 + 0.593175i \(0.202126\pi\)
\(332\) −76.0588 + 43.9126i −0.229093 + 0.132267i
\(333\) −64.3375 9.62176i −0.193206 0.0288942i
\(334\) 152.955 + 88.3086i 0.457949 + 0.264397i
\(335\) 170.061 98.1846i 0.507644 0.293088i
\(336\) 144.350 + 300.482i 0.429614 + 0.894293i
\(337\) 149.044 258.152i 0.442267 0.766029i −0.555590 0.831456i \(-0.687508\pi\)
0.997857 + 0.0654274i \(0.0208411\pi\)
\(338\) −102.963 178.338i −0.304625 0.527626i
\(339\) −200.364 + 96.6319i −0.591043 + 0.285050i
\(340\) −58.5081 + 101.339i −0.172083 + 0.298056i
\(341\) −418.255 241.479i −1.22655 0.708151i
\(342\) −60.3642 + 403.635i −0.176503 + 1.18022i
\(343\) −1.57645 + 342.996i −0.00459605 + 0.999989i
\(344\) 1.96536 + 3.40411i 0.00571326 + 0.00989566i
\(345\) 50.1897 + 104.067i 0.145477 + 0.301644i
\(346\) 249.424i 0.720879i
\(347\) −180.804 −0.521049 −0.260524 0.965467i \(-0.583895\pi\)
−0.260524 + 0.965467i \(0.583895\pi\)
\(348\) 29.1183 391.574i 0.0836733 1.12521i
\(349\) −151.888 + 87.6925i −0.435209 + 0.251268i −0.701563 0.712607i \(-0.747514\pi\)
0.266354 + 0.963875i \(0.414181\pi\)
\(350\) 330.952 190.400i 0.945578 0.544000i
\(351\) 284.958 308.175i 0.811847 0.877992i
\(352\) −258.226 + 447.260i −0.733596 + 1.27063i
\(353\) 34.0434 + 19.6549i 0.0964401 + 0.0556797i 0.547444 0.836842i \(-0.315601\pi\)
−0.451004 + 0.892522i \(0.648934\pi\)
\(354\) 455.358 668.712i 1.28632 1.88902i
\(355\) 234.476 135.375i 0.660497 0.381338i
\(356\) 378.552 + 218.557i 1.06335 + 0.613924i
\(357\) −209.847 143.366i −0.587805 0.401584i
\(358\) 18.3527 + 31.7878i 0.0512645 + 0.0887927i
\(359\) −123.823 + 214.468i −0.344912 + 0.597405i −0.985338 0.170615i \(-0.945425\pi\)
0.640426 + 0.768020i \(0.278758\pi\)
\(360\) 1.49475 + 1.18922i 0.00415210 + 0.00330339i
\(361\) −52.4771 90.8930i −0.145366 0.251781i
\(362\) 640.052i 1.76810i
\(363\) −1.94553 + 26.1630i −0.00535959 + 0.0720742i
\(364\) 218.754 + 380.238i 0.600974 + 1.04461i
\(365\) −81.4341 + 141.048i −0.223107 + 0.386433i
\(366\) 236.592 347.446i 0.646428 0.949306i
\(367\) 343.635 + 198.398i 0.936334 + 0.540593i 0.888809 0.458277i \(-0.151533\pi\)
0.0475248 + 0.998870i \(0.484867\pi\)
\(368\) −127.442 220.737i −0.346311 0.599828i
\(369\) −11.6202 + 77.7007i −0.0314912 + 0.210571i
\(370\) 49.1319i 0.132789i
\(371\) −0.730582 + 476.874i −0.00196922 + 1.28537i
\(372\) 288.610 423.836i 0.775834 1.13935i
\(373\) −186.570 323.149i −0.500189 0.866352i −1.00000 0.000217836i \(-0.999931\pi\)
0.499811 0.866134i \(-0.333403\pi\)
\(374\) 390.658i 1.04454i
\(375\) −179.202 + 263.165i −0.477871 + 0.701774i
\(376\) 2.33346i 0.00620600i
\(377\) 504.731i 1.33881i
\(378\) −364.236 + 392.703i −0.963587 + 1.03890i
\(379\) 548.285 1.44666 0.723331 0.690502i \(-0.242610\pi\)
0.723331 + 0.690502i \(0.242610\pi\)
\(380\) 154.719 0.407155
\(381\) −129.654 88.2874i −0.340299 0.231726i
\(382\) −294.420 −0.770732
\(383\) 4.04111 2.33314i 0.0105512 0.00609174i −0.494715 0.869055i \(-0.664728\pi\)
0.505266 + 0.862963i \(0.331394\pi\)
\(384\) −7.02105 4.78097i −0.0182840 0.0124504i
\(385\) 95.8765 165.477i 0.249030 0.429810i
\(386\) −460.068 −1.19189
\(387\) 248.914 312.865i 0.643189 0.808436i
\(388\) −389.409 + 224.825i −1.00363 + 0.579447i
\(389\) 336.313 582.511i 0.864558 1.49746i −0.00292782 0.999996i \(-0.500932\pi\)
0.867486 0.497462i \(-0.165735\pi\)
\(390\) −262.025 178.425i −0.671858 0.457500i
\(391\) 168.285 + 97.1594i 0.430397 + 0.248490i
\(392\) −2.15636 3.76150i −0.00550093 0.00959566i
\(393\) 558.077 + 41.4998i 1.42004 + 0.105597i
\(394\) −854.703 −2.16930
\(395\) −284.344 + 164.166i −0.719858 + 0.415610i
\(396\) −408.716 61.1240i −1.03211 0.154354i
\(397\) 92.0332 + 53.1354i 0.231822 + 0.133842i 0.611412 0.791312i \(-0.290602\pi\)
−0.379591 + 0.925155i \(0.623935\pi\)
\(398\) −141.859 + 81.9023i −0.356429 + 0.205785i
\(399\) −25.4325 + 335.066i −0.0637405 + 0.839765i
\(400\) 152.765 264.596i 0.381911 0.661490i
\(401\) 149.197 + 258.416i 0.372061 + 0.644429i 0.989882 0.141890i \(-0.0453178\pi\)
−0.617821 + 0.786319i \(0.711985\pi\)
\(402\) −575.324 391.766i −1.43115 0.974541i
\(403\) −329.565 + 570.823i −0.817779 + 1.41643i
\(404\) −268.338 154.925i −0.664204 0.383478i
\(405\) 56.8391 185.782i 0.140343 0.458721i
\(406\) 0.986752 644.083i 0.00243042 1.58641i
\(407\) −41.1662 71.3019i −0.101145 0.175189i
\(408\) 3.20371 + 0.238235i 0.00785224 + 0.000583909i
\(409\) 659.097i 1.61149i 0.592266 + 0.805743i \(0.298234\pi\)
−0.592266 + 0.805743i \(0.701766\pi\)
\(410\) 59.3369 0.144724
\(411\) −414.441 + 199.878i −1.00837 + 0.486321i
\(412\) 526.398 303.916i 1.27766 0.737660i
\(413\) 333.941 576.362i 0.808574 1.39555i
\(414\) 254.971 320.478i 0.615872 0.774101i
\(415\) 26.1276 45.2544i 0.0629582 0.109047i
\(416\) 610.409 + 352.420i 1.46733 + 0.847164i
\(417\) −118.915 246.567i −0.285168 0.591288i
\(418\) −447.328 + 258.265i −1.07016 + 0.617858i
\(419\) 485.296 + 280.186i 1.15822 + 0.668701i 0.950878 0.309566i \(-0.100184\pi\)
0.207346 + 0.978268i \(0.433517\pi\)
\(420\) 167.659 + 114.543i 0.399187 + 0.272722i
\(421\) 57.9969 + 100.454i 0.137760 + 0.238607i 0.926648 0.375929i \(-0.122676\pi\)
−0.788889 + 0.614536i \(0.789343\pi\)
\(422\) 60.1353 104.157i 0.142501 0.246818i
\(423\) 220.835 86.9642i 0.522069 0.205589i
\(424\) −3.01401 5.22042i −0.00710851 0.0123123i
\(425\) 232.929i 0.548068i
\(426\) −793.246 540.159i −1.86208 1.26798i
\(427\) 173.507 299.463i 0.406341 0.701319i
\(428\) −154.405 + 267.437i −0.360759 + 0.624852i
\(429\) 529.756 + 39.3938i 1.23486 + 0.0918269i
\(430\) −261.501 150.978i −0.608142 0.351111i
\(431\) 161.254 + 279.299i 0.374138 + 0.648027i 0.990198 0.139673i \(-0.0446052\pi\)
−0.616059 + 0.787700i \(0.711272\pi\)
\(432\) −94.6528 + 418.019i −0.219104 + 0.967637i
\(433\) 117.316i 0.270937i 0.990782 + 0.135468i \(0.0432539\pi\)
−0.990782 + 0.135468i \(0.956746\pi\)
\(434\) 421.671 727.779i 0.971592 1.67691i
\(435\) 101.488 + 210.432i 0.233305 + 0.483753i
\(436\) 50.7873 + 87.9662i 0.116485 + 0.201757i
\(437\) 256.929i 0.587938i
\(438\) 575.709 + 42.8109i 1.31440 + 0.0977418i
\(439\) 216.839i 0.493938i −0.969023 0.246969i \(-0.920565\pi\)
0.969023 0.246969i \(-0.0794346\pi\)
\(440\) 2.41748i 0.00549427i
\(441\) −275.619 + 344.260i −0.624986 + 0.780636i
\(442\) −533.160 −1.20625
\(443\) −149.742 −0.338018 −0.169009 0.985615i \(-0.554057\pi\)
−0.169009 + 0.985615i \(0.554057\pi\)
\(444\) 78.7359 37.9729i 0.177333 0.0855246i
\(445\) −260.080 −0.584448
\(446\) 471.035 271.952i 1.05613 0.609758i
\(447\) −25.0086 + 336.308i −0.0559477 + 0.752368i
\(448\) −393.664 228.087i −0.878713 0.509122i
\(449\) −263.767 −0.587455 −0.293727 0.955889i \(-0.594896\pi\)
−0.293727 + 0.955889i \(0.594896\pi\)
\(450\) 485.504 + 72.6077i 1.07890 + 0.161350i
\(451\) −86.1116 + 49.7166i −0.190935 + 0.110236i
\(452\) 149.457 258.866i 0.330656 0.572713i
\(453\) 76.1924 36.7462i 0.168195 0.0811175i
\(454\) −551.668 318.505i −1.21513 0.701554i
\(455\) −225.839 130.850i −0.496349 0.287582i
\(456\) −1.84518 3.82594i −0.00404646 0.00839023i
\(457\) −218.793 −0.478759 −0.239379 0.970926i \(-0.576944\pi\)
−0.239379 + 0.970926i \(0.576944\pi\)
\(458\) 393.047 226.926i 0.858180 0.495471i
\(459\) −96.8511 312.073i −0.211004 0.679899i
\(460\) −134.453 77.6263i −0.292289 0.168753i
\(461\) −334.892 + 193.350i −0.726446 + 0.419414i −0.817121 0.576467i \(-0.804431\pi\)
0.0906743 + 0.995881i \(0.471098\pi\)
\(462\) −675.940 51.3057i −1.46307 0.111051i
\(463\) 241.881 418.950i 0.522421 0.904860i −0.477238 0.878774i \(-0.658362\pi\)
0.999660 0.0260863i \(-0.00830447\pi\)
\(464\) −257.700 446.349i −0.555387 0.961959i
\(465\) −22.6250 + 304.254i −0.0486559 + 0.654310i
\(466\) −349.422 + 605.216i −0.749832 + 1.29875i
\(467\) −100.042 57.7593i −0.214223 0.123682i 0.389049 0.921217i \(-0.372804\pi\)
−0.603272 + 0.797535i \(0.706137\pi\)
\(468\) −83.4205 + 557.805i −0.178249 + 1.19189i
\(469\) −495.871 287.305i −1.05729 0.612591i
\(470\) −89.6272 155.239i −0.190696 0.330295i
\(471\) 17.3085 25.4182i 0.0367484 0.0539665i
\(472\) 8.42016i 0.0178393i
\(473\) 505.999 1.06976
\(474\) 961.950 + 655.038i 2.02943 + 1.38194i
\(475\) 266.718 153.990i 0.561511 0.324189i
\(476\) 341.504 + 0.523192i 0.717444 + 0.00109914i
\(477\) −381.726 + 479.798i −0.800264 + 1.00587i
\(478\) 312.132 540.628i 0.652996 1.13102i
\(479\) −394.602 227.823i −0.823803 0.475623i 0.0279230 0.999610i \(-0.491111\pi\)
−0.851726 + 0.523987i \(0.824444\pi\)
\(480\) 325.354 + 24.1940i 0.677821 + 0.0504042i
\(481\) −97.3110 + 56.1825i −0.202310 + 0.116804i
\(482\) 646.939 + 373.510i 1.34220 + 0.774918i
\(483\) 190.212 278.417i 0.393814 0.576432i
\(484\) −17.6267 30.5303i −0.0364187 0.0630790i
\(485\) 133.769 231.695i 0.275813 0.477722i
\(486\) −680.659 + 104.593i −1.40053 + 0.215211i
\(487\) −162.334 281.171i −0.333335 0.577354i 0.649828 0.760081i \(-0.274841\pi\)
−0.983164 + 0.182727i \(0.941507\pi\)
\(488\) 4.37490i 0.00896497i
\(489\) −480.126 + 231.556i −0.981852 + 0.473530i
\(490\) 287.935 + 167.418i 0.587623 + 0.341669i
\(491\) −155.221 + 268.850i −0.316132 + 0.547557i −0.979678 0.200579i \(-0.935718\pi\)
0.663545 + 0.748136i \(0.269051\pi\)
\(492\) −45.8601 95.0897i −0.0932115 0.193272i
\(493\) 340.287 + 196.465i 0.690237 + 0.398509i
\(494\) 352.473 + 610.501i 0.713508 + 1.23583i
\(495\) 228.787 90.0956i 0.462195 0.182011i
\(496\) 673.061i 1.35698i
\(497\) −683.698 396.131i −1.37565 0.797044i
\(498\) −184.713 13.7356i −0.370909 0.0275816i
\(499\) 387.110 + 670.494i 0.775771 + 1.34368i 0.934360 + 0.356331i \(0.115972\pi\)
−0.158589 + 0.987345i \(0.550694\pi\)
\(500\) 427.827i 0.855655i
\(501\) 81.2184 + 168.404i 0.162113 + 0.336136i
\(502\) 65.1816i 0.129844i
\(503\) 106.472i 0.211674i −0.994384 0.105837i \(-0.966248\pi\)
0.994384 0.105837i \(-0.0337521\pi\)
\(504\) 0.832956 5.51196i 0.00165269 0.0109364i
\(505\) 184.359 0.365067
\(506\) 518.311 1.02433
\(507\) 16.1658 217.393i 0.0318852 0.428783i
\(508\) 210.778 0.414917
\(509\) −293.258 + 169.313i −0.576146 + 0.332638i −0.759600 0.650390i \(-0.774605\pi\)
0.183454 + 0.983028i \(0.441272\pi\)
\(510\) −222.285 + 107.204i −0.435853 + 0.210204i
\(511\) 475.319 + 0.728201i 0.930175 + 0.00142505i
\(512\) −725.356 −1.41671
\(513\) −293.315 + 317.213i −0.571764 + 0.618348i
\(514\) 43.7277 25.2462i 0.0850734 0.0491172i
\(515\) −180.828 + 313.202i −0.351121 + 0.608160i
\(516\) −39.8397 + 535.753i −0.0772088 + 1.03828i
\(517\) 260.140 + 150.192i 0.503172 + 0.290506i
\(518\) 124.288 71.5038i 0.239938 0.138038i
\(519\) 148.613 218.245i 0.286346 0.420511i
\(520\) 3.29931 0.00634483
\(521\) −84.1424 + 48.5796i −0.161502 + 0.0932431i −0.578573 0.815631i \(-0.696390\pi\)
0.417071 + 0.908874i \(0.363057\pi\)
\(522\) 515.573 648.034i 0.987688 1.24144i
\(523\) 513.773 + 296.627i 0.982357 + 0.567164i 0.902981 0.429681i \(-0.141374\pi\)
0.0793761 + 0.996845i \(0.474707\pi\)
\(524\) −651.235 + 375.990i −1.24281 + 0.717539i
\(525\) 403.027 + 30.5909i 0.767671 + 0.0582684i
\(526\) −514.372 + 890.919i −0.977894 + 1.69376i
\(527\) 256.564 + 444.382i 0.486838 + 0.843229i
\(528\) −488.592 + 235.639i −0.925363 + 0.446286i
\(529\) 135.592 234.853i 0.256319 0.443957i
\(530\) 401.029 + 231.534i 0.756658 + 0.436857i
\(531\) 796.872 313.806i 1.50070 0.590972i
\(532\) −225.169 391.388i −0.423251 0.735692i
\(533\) 67.8519 + 117.523i 0.127302 + 0.220493i
\(534\) 400.462 + 830.347i 0.749928 + 1.55496i
\(535\) 183.739i 0.343438i
\(536\) 7.24426 0.0135154
\(537\) −2.88147 + 38.7492i −0.00536587 + 0.0721586i
\(538\) −481.426 + 277.951i −0.894843 + 0.516638i
\(539\) −558.135 1.71016i −1.03550 0.00317283i
\(540\) 77.3800 + 249.334i 0.143296 + 0.461729i
\(541\) 289.077 500.696i 0.534338 0.925500i −0.464857 0.885386i \(-0.653894\pi\)
0.999195 0.0401146i \(-0.0127723\pi\)
\(542\) 233.871 + 135.025i 0.431496 + 0.249124i
\(543\) −381.360 + 560.043i −0.702320 + 1.03139i
\(544\) 475.199 274.356i 0.873528 0.504332i
\(545\) −52.3392 30.2181i −0.0960352 0.0554460i
\(546\) −70.0208 + 922.506i −0.128243 + 1.68957i
\(547\) 110.283 + 191.016i 0.201615 + 0.349207i 0.949049 0.315129i \(-0.102048\pi\)
−0.747434 + 0.664336i \(0.768714\pi\)
\(548\) 309.143 535.451i 0.564129 0.977101i
\(549\) 414.035 163.046i 0.754162 0.296987i
\(550\) 310.648 + 538.058i 0.564815 + 0.978288i
\(551\) 519.532i 0.942890i
\(552\) −0.316081 + 4.25057i −0.000572611 + 0.00770030i
\(553\) 829.104 + 480.378i 1.49928 + 0.868677i
\(554\) −305.288 + 528.774i −0.551061 + 0.954465i
\(555\) −29.2741 + 42.9902i −0.0527461 + 0.0774599i
\(556\) 318.560 + 183.921i 0.572950 + 0.330793i
\(557\) 179.797 + 311.417i 0.322795 + 0.559098i 0.981064 0.193686i \(-0.0620442\pi\)
−0.658268 + 0.752783i \(0.728711\pi\)
\(558\) 1006.22 396.246i 1.80326 0.710119i
\(559\) 690.574i 1.23537i
\(560\) 266.524 + 0.408321i 0.475935 + 0.000729144i
\(561\) 232.764 341.824i 0.414910 0.609313i
\(562\) −288.823 500.256i −0.513920 0.890135i
\(563\) 986.797i 1.75275i −0.481631 0.876374i \(-0.659955\pi\)
0.481631 0.876374i \(-0.340045\pi\)
\(564\) −179.506 + 263.611i −0.318272 + 0.467396i
\(565\) 177.851i 0.314781i
\(566\) 341.373i 0.603133i
\(567\) −552.687 + 126.592i −0.974757 + 0.223267i
\(568\) 9.98825 0.0175849
\(569\) 83.7874 0.147254 0.0736269 0.997286i \(-0.476543\pi\)
0.0736269 + 0.997286i \(0.476543\pi\)
\(570\) 269.708 + 183.657i 0.473173 + 0.322206i
\(571\) −350.700 −0.614186 −0.307093 0.951679i \(-0.599356\pi\)
−0.307093 + 0.951679i \(0.599356\pi\)
\(572\) −618.186 + 356.910i −1.08074 + 0.623968i
\(573\) −257.616 175.423i −0.449592 0.306148i
\(574\) −86.3555 150.103i −0.150445 0.261503i
\(575\) −309.041 −0.537463
\(576\) −214.334 544.275i −0.372108 0.944922i
\(577\) −652.529 + 376.738i −1.13090 + 0.652925i −0.944161 0.329485i \(-0.893125\pi\)
−0.186738 + 0.982410i \(0.559792\pi\)
\(578\) 201.974 349.829i 0.349436 0.605240i
\(579\) −402.558 274.121i −0.695263 0.473438i
\(580\) −271.875 156.967i −0.468750 0.270633i
\(581\) −152.503 0.233639i −0.262484 0.000402133i
\(582\) −945.699 70.3242i −1.62491 0.120832i
\(583\) −775.981 −1.33101
\(584\) −5.20340 + 3.00419i −0.00890994 + 0.00514416i
\(585\) −122.960 312.242i −0.210188 0.533747i
\(586\) 429.874 + 248.188i 0.733573 + 0.423528i
\(587\) 112.348 64.8642i 0.191394 0.110501i −0.401241 0.915972i \(-0.631421\pi\)
0.592635 + 0.805471i \(0.298088\pi\)
\(588\) 45.7554 590.821i 0.0778153 1.00480i
\(589\) 339.229 587.562i 0.575941 0.997559i
\(590\) −323.415 560.172i −0.548161 0.949443i
\(591\) −747.861 509.254i −1.26542 0.861682i
\(592\) 57.3700 99.3678i 0.0969088 0.167851i
\(593\) 435.912 + 251.674i 0.735096 + 0.424408i 0.820283 0.571957i \(-0.193816\pi\)
−0.0851878 + 0.996365i \(0.527149\pi\)
\(594\) −639.923 591.713i −1.07731 0.996151i
\(595\) −176.125 + 101.326i −0.296008 + 0.170296i
\(596\) −226.580 392.447i −0.380167 0.658469i
\(597\) −172.925 12.8591i −0.289657 0.0215395i
\(598\) 707.377i 1.18291i
\(599\) −282.557 −0.471714 −0.235857 0.971788i \(-0.575790\pi\)
−0.235857 + 0.971788i \(0.575790\pi\)
\(600\) −4.60195 + 2.21944i −0.00766992 + 0.00369907i
\(601\) 159.905 92.3214i 0.266065 0.153613i −0.361033 0.932553i \(-0.617576\pi\)
0.627098 + 0.778940i \(0.284242\pi\)
\(602\) −1.35008 + 881.236i −0.00224265 + 1.46385i
\(603\) −269.982 685.586i −0.447731 1.13696i
\(604\) −56.8339 + 98.4392i −0.0940959 + 0.162979i
\(605\) 18.1653 + 10.4877i 0.0300252 + 0.0173351i
\(606\) −283.869 588.596i −0.468431 0.971280i
\(607\) −905.567 + 522.829i −1.49187 + 0.861333i −0.999957 0.00930928i \(-0.997037\pi\)
−0.491916 + 0.870643i \(0.663703\pi\)
\(608\) −628.310 362.755i −1.03340 0.596636i
\(609\) 384.625 562.982i 0.631568 0.924437i
\(610\) −168.038 291.051i −0.275473 0.477133i
\(611\) 204.978 355.032i 0.335479 0.581067i
\(612\) 343.598 + 273.365i 0.561435 + 0.446675i
\(613\) −52.6647 91.2179i −0.0859131 0.148806i 0.819867 0.572554i \(-0.194047\pi\)
−0.905780 + 0.423748i \(0.860714\pi\)
\(614\) 52.0497i 0.0847715i
\(615\) 51.9195 + 35.3545i 0.0844220 + 0.0574869i
\(616\) 6.11542 3.51826i 0.00992763 0.00571146i
\(617\) 269.908 467.495i 0.437452 0.757690i −0.560040 0.828466i \(-0.689214\pi\)
0.997492 + 0.0707759i \(0.0225475\pi\)
\(618\) 1278.38 + 95.0633i 2.06858 + 0.153824i
\(619\) −968.123 558.946i −1.56401 0.902982i −0.996845 0.0793787i \(-0.974706\pi\)
−0.567166 0.823603i \(-0.691960\pi\)
\(620\) −204.984 355.042i −0.330619 0.572649i
\(621\) 414.047 128.498i 0.666743 0.206922i
\(622\) 1155.77i 1.85816i
\(623\) 378.505 + 657.916i 0.607552 + 1.05604i
\(624\) 321.594 + 666.818i 0.515376 + 1.06862i
\(625\) −113.310 196.259i −0.181296 0.314014i
\(626\) 1141.37i 1.82327i
\(627\) −545.291 40.5490i −0.869682 0.0646714i
\(628\) 41.3224i 0.0658000i
\(629\) 87.4754i 0.139071i
\(630\) 156.298 + 398.690i 0.248092 + 0.632842i
\(631\) −710.879 −1.12659 −0.563296 0.826255i \(-0.690467\pi\)
−0.563296 + 0.826255i \(0.690467\pi\)
\(632\) −12.1125 −0.0191654
\(633\) 114.678 55.3070i 0.181165 0.0873729i
\(634\) 840.396 1.32555
\(635\) −108.609 + 62.7057i −0.171038 + 0.0987491i
\(636\) 61.0968 821.611i 0.0960641 1.29184i
\(637\) −2.33398 + 761.729i −0.00366402 + 1.19581i
\(638\) 1048.07 1.64274
\(639\) −372.246 945.274i −0.582545 1.47930i
\(640\) −5.88145 + 3.39566i −0.00918977 + 0.00530571i
\(641\) −535.389 + 927.321i −0.835240 + 1.44668i 0.0585942 + 0.998282i \(0.481338\pi\)
−0.893835 + 0.448397i \(0.851995\pi\)
\(642\) −586.618 + 282.915i −0.913735 + 0.440678i
\(643\) 664.371 + 383.575i 1.03324 + 0.596539i 0.917910 0.396788i \(-0.129875\pi\)
0.115326 + 0.993328i \(0.463209\pi\)
\(644\) −0.694151 + 453.094i −0.00107787 + 0.703562i
\(645\) −138.856 287.914i −0.215280 0.446378i
\(646\) 548.795 0.849528
\(647\) 14.8163 8.55422i 0.0229001 0.0132214i −0.488506 0.872560i \(-0.662458\pi\)
0.511406 + 0.859339i \(0.329125\pi\)
\(648\) 5.24277 4.88704i 0.00809069 0.00754173i
\(649\) 938.701 + 541.959i 1.44638 + 0.835068i
\(650\) 734.328 423.965i 1.12974 0.652253i
\(651\) 802.590 385.560i 1.23286 0.592259i
\(652\) 358.138 620.314i 0.549292 0.951402i
\(653\) 484.144 + 838.561i 0.741414 + 1.28417i 0.951851 + 0.306560i \(0.0991779\pi\)
−0.210437 + 0.977607i \(0.567489\pi\)
\(654\) −15.8860 + 213.630i −0.0242905 + 0.326652i
\(655\) 223.711 387.480i 0.341544 0.591572i
\(656\) −120.007 69.2860i −0.182937 0.105619i
\(657\) 478.235 + 380.482i 0.727907 + 0.579120i
\(658\) −262.265 + 452.653i −0.398579 + 0.687923i
\(659\) 470.849 + 815.535i 0.714490 + 1.23753i 0.963156 + 0.268944i \(0.0866747\pi\)
−0.248665 + 0.968589i \(0.579992\pi\)
\(660\) −185.969 + 273.103i −0.281771 + 0.413793i
\(661\) 5.49494i 0.00831307i −0.999991 0.00415653i \(-0.998677\pi\)
0.999991 0.00415653i \(-0.00132307\pi\)
\(662\) −1510.37 −2.28153
\(663\) −466.513 317.671i −0.703640 0.479142i
\(664\) 1.66948 0.963876i 0.00251428 0.00145162i
\(665\) 232.461 + 134.687i 0.349566 + 0.202537i
\(666\) 182.329 + 27.2675i 0.273767 + 0.0409422i
\(667\) −260.662 + 451.480i −0.390798 + 0.676881i
\(668\) −217.575 125.617i −0.325712 0.188050i
\(669\) 574.190 + 42.6980i 0.858280 + 0.0638236i
\(670\) −481.942 + 278.249i −0.719316 + 0.415297i
\(671\) 487.726 + 281.589i 0.726864 + 0.419655i
\(672\) −412.299 858.249i −0.613540 1.27716i
\(673\) 329.366 + 570.479i 0.489400 + 0.847666i 0.999926 0.0121964i \(-0.00388233\pi\)
−0.510525 + 0.859863i \(0.670549\pi\)
\(674\) −422.382 + 731.587i −0.626679 + 1.08544i
\(675\) 381.552 + 352.807i 0.565263 + 0.522678i
\(676\) 146.463 + 253.681i 0.216661 + 0.375268i
\(677\) 843.527i 1.24598i −0.782231 0.622989i \(-0.785918\pi\)
0.782231 0.622989i \(-0.214082\pi\)
\(678\) 567.819 273.849i 0.837491 0.403907i
\(679\) −780.793 1.19619i −1.14992 0.00176170i
\(680\) 1.28424 2.22438i 0.00188860 0.00327114i
\(681\) −292.933 607.389i −0.430151 0.891907i
\(682\) 1185.31 + 684.338i 1.73799 + 1.00343i
\(683\) −290.414 503.012i −0.425203 0.736474i 0.571236 0.820786i \(-0.306464\pi\)
−0.996439 + 0.0843121i \(0.973131\pi\)
\(684\) 85.8668 574.163i 0.125536 0.839419i
\(685\) 367.875i 0.537044i
\(686\) 4.46756 972.032i 0.00651247 1.41696i
\(687\) 479.122 + 35.6286i 0.697412 + 0.0518611i
\(688\) 352.585 + 610.695i 0.512478 + 0.887638i
\(689\) 1059.04i 1.53707i
\(690\) −142.235 294.920i −0.206137 0.427420i
\(691\) 1127.85i 1.63220i −0.577914 0.816098i \(-0.696133\pi\)
0.577914 0.816098i \(-0.303867\pi\)
\(692\) 354.801i 0.512718i
\(693\) −560.875 447.635i −0.809344 0.645938i
\(694\) 512.388 0.738311
\(695\) −218.863 −0.314911
\(696\) −0.639143 + 8.59501i −0.000918309 + 0.0123492i
\(697\) 105.644 0.151570
\(698\) 430.441 248.515i 0.616678 0.356039i
\(699\) −666.346 + 321.367i −0.953285 + 0.459752i
\(700\) −470.773 + 270.840i −0.672533 + 0.386914i
\(701\) 352.754 0.503216 0.251608 0.967829i \(-0.419041\pi\)
0.251608 + 0.967829i \(0.419041\pi\)
\(702\) −807.555 + 873.351i −1.15036 + 1.24409i
\(703\) 100.165 57.8301i 0.142482 0.0822618i
\(704\) 370.166 641.147i 0.525804 0.910720i
\(705\) 14.0720 189.236i 0.0199602 0.268419i
\(706\) −96.4769 55.7009i −0.136653 0.0788965i
\(707\) −268.305 466.367i −0.379498 0.659642i
\(708\) −647.737 + 951.229i −0.914883 + 1.34354i
\(709\) −792.077 −1.11717 −0.558587 0.829446i \(-0.688656\pi\)
−0.558587 + 0.829446i \(0.688656\pi\)
\(710\) −664.492 + 383.645i −0.935905 + 0.540345i
\(711\) 451.414 + 1146.31i 0.634900 + 1.61225i
\(712\) −8.30917 4.79730i −0.0116702 0.00673778i
\(713\) −589.589 + 340.399i −0.826913 + 0.477418i
\(714\) 594.693 + 406.290i 0.832903 + 0.569033i
\(715\) 212.359 367.816i 0.297005 0.514428i
\(716\) −26.1063 45.2175i −0.0364613 0.0631529i
\(717\) 595.235 287.071i 0.830174 0.400378i
\(718\) 350.908 607.791i 0.488730 0.846505i
\(719\) 473.277 + 273.247i 0.658244 + 0.380037i 0.791608 0.611030i \(-0.209244\pi\)
−0.133364 + 0.991067i \(0.542578\pi\)
\(720\) 268.158 + 213.346i 0.372442 + 0.296313i
\(721\) 1055.47 + 1.61700i 1.46389 + 0.00224272i
\(722\) 148.717 + 257.586i 0.205979 + 0.356767i
\(723\) 343.522 + 712.283i 0.475134 + 0.985177i
\(724\) 910.461i 1.25754i
\(725\) −624.908 −0.861942
\(726\) 5.51353 74.1443i 0.00759439 0.102127i
\(727\) 113.839 65.7248i 0.156587 0.0904055i −0.419659 0.907682i \(-0.637850\pi\)
0.576246 + 0.817276i \(0.304517\pi\)
\(728\) −4.80163 8.34617i −0.00659565 0.0114645i
\(729\) −657.892 314.036i −0.902459 0.430777i
\(730\) 230.779 399.722i 0.316136 0.547564i
\(731\) −465.581 268.803i −0.636910 0.367720i
\(732\) −336.548 + 494.235i −0.459765 + 0.675184i
\(733\) −1107.87 + 639.630i −1.51142 + 0.872620i −0.511511 + 0.859277i \(0.670914\pi\)
−0.999911 + 0.0133434i \(0.995753\pi\)
\(734\) −973.840 562.247i −1.32676 0.766004i
\(735\) 152.190 + 318.049i 0.207061 + 0.432720i
\(736\) 364.006 + 630.477i 0.494573 + 0.856626i
\(737\) 466.273 807.609i 0.632664 1.09581i
\(738\) 32.9311 220.199i 0.0446221 0.298373i
\(739\) 9.93656 + 17.2106i 0.0134460 + 0.0232891i 0.872670 0.488310i \(-0.162387\pi\)
−0.859224 + 0.511599i \(0.829053\pi\)
\(740\) 69.8892i 0.0944448i
\(741\) −55.3402 + 744.199i −0.0746831 + 1.00432i
\(742\) 2.07043 1351.43i 0.00279033 1.82134i
\(743\) 729.663 1263.81i 0.982050 1.70096i 0.327677 0.944790i \(-0.393734\pi\)
0.654374 0.756171i \(-0.272932\pi\)
\(744\) −6.33496 + 9.30315i −0.00851473 + 0.0125042i
\(745\) 233.503 + 134.813i 0.313427 + 0.180957i
\(746\) 528.729 + 915.786i 0.708753 + 1.22760i
\(747\) −153.439 122.075i −0.205407 0.163421i
\(748\) 555.703i 0.742919i
\(749\) −464.800 + 267.404i −0.620560 + 0.357014i
\(750\) 507.847 745.795i 0.677130 0.994393i
\(751\) 494.911 + 857.211i 0.659003 + 1.14143i 0.980874 + 0.194643i \(0.0623549\pi\)
−0.321871 + 0.946784i \(0.604312\pi\)
\(752\) 418.621i 0.556676i
\(753\) −38.8369 + 57.0336i −0.0515762 + 0.0757418i
\(754\) 1430.38i 1.89705i
\(755\) 67.6315i 0.0895781i
\(756\) 518.118 558.612i 0.685341 0.738905i
\(757\) −499.688 −0.660089 −0.330045 0.943965i \(-0.607064\pi\)
−0.330045 + 0.943965i \(0.607064\pi\)
\(758\) −1553.81 −2.04988
\(759\) 453.520 + 308.823i 0.597523 + 0.406882i
\(760\) −3.39606 −0.00446850
\(761\) −594.048 + 342.974i −0.780614 + 0.450688i −0.836648 0.547741i \(-0.815488\pi\)
0.0560336 + 0.998429i \(0.482155\pi\)
\(762\) 367.431 + 250.201i 0.482193 + 0.328348i
\(763\) −0.270216 + 176.379i −0.000354150 + 0.231165i
\(764\) 418.806 0.548175
\(765\) −258.374 38.6401i −0.337743 0.0505100i
\(766\) −11.4523 + 6.61197i −0.0149507 + 0.00863182i
\(767\) 739.652 1281.12i 0.964345 1.67029i
\(768\) −624.774 425.438i −0.813507 0.553956i
\(769\) −586.160 338.420i −0.762237 0.440078i 0.0678613 0.997695i \(-0.478382\pi\)
−0.830098 + 0.557617i \(0.811716\pi\)
\(770\) −271.708 + 468.952i −0.352868 + 0.609028i
\(771\) 53.3039 + 3.96379i 0.0691361 + 0.00514111i
\(772\) 654.437 0.847717
\(773\) 437.359 252.509i 0.565794 0.326661i −0.189674 0.981847i \(-0.560743\pi\)
0.755468 + 0.655186i \(0.227410\pi\)
\(774\) −705.408 + 886.641i −0.911380 + 1.14553i
\(775\) −706.737 408.035i −0.911918 0.526496i
\(776\) 8.54747 4.93489i 0.0110148 0.00635939i
\(777\) 151.355 + 11.4883i 0.194794 + 0.0147854i
\(778\) −953.091 + 1650.80i −1.22505 + 2.12185i
\(779\) −69.8416 120.969i −0.0896555 0.155288i
\(780\) 372.725 + 253.806i 0.477852 + 0.325392i
\(781\) 642.889 1113.52i 0.823161 1.42576i
\(782\) −476.910 275.344i −0.609859 0.352102i
\(783\) 837.240 259.835i 1.06927 0.331845i
\(784\) −386.850 674.811i −0.493432 0.860729i
\(785\) −12.2932 21.2925i −0.0156602 0.0271242i
\(786\) −1581.56 117.608i −2.01216 0.149628i
\(787\) 18.5193i 0.0235315i 0.999931 + 0.0117657i \(0.00374524\pi\)
−0.999931 + 0.0117657i \(0.996255\pi\)
\(788\) 1215.80 1.54289
\(789\) −980.906 + 473.074i −1.24323 + 0.599587i
\(790\) 805.814 465.237i 1.02002 0.588907i
\(791\) 449.905 258.834i 0.568779 0.327224i
\(792\) 8.97126 + 1.34166i 0.0113274 + 0.00169402i
\(793\) 384.305 665.636i 0.484622 0.839389i
\(794\) −260.817 150.583i −0.328484 0.189651i
\(795\) 212.944 + 441.535i 0.267855 + 0.555390i
\(796\) 201.791 116.504i 0.253507 0.146362i
\(797\) 615.232 + 355.205i 0.771935 + 0.445677i 0.833565 0.552422i \(-0.186296\pi\)
−0.0616293 + 0.998099i \(0.519630\pi\)
\(798\) 72.0741 949.558i 0.0903184 1.18992i
\(799\) −159.574 276.390i −0.199717 0.345920i
\(800\) −436.332 + 755.749i −0.545415 + 0.944686i
\(801\) −144.340 + 965.156i −0.180200 + 1.20494i
\(802\) −422.814 732.336i −0.527200 0.913137i
\(803\) 773.452i 0.963203i
\(804\) 818.387 + 557.279i 1.01789 + 0.693133i
\(805\) −134.436 233.676i −0.167001 0.290281i
\(806\) 933.967 1617.68i 1.15877 2.00705i
\(807\) −586.856 43.6399i −0.727207 0.0540767i
\(808\) 5.88999 + 3.40059i 0.00728960 + 0.00420865i
\(809\) −565.769 979.941i −0.699344 1.21130i −0.968694 0.248257i \(-0.920142\pi\)
0.269351 0.963042i \(-0.413191\pi\)
\(810\) −161.079 + 526.495i −0.198862 + 0.649994i
\(811\) 199.736i 0.246283i 0.992389 + 0.123142i \(0.0392970\pi\)
−0.992389 + 0.123142i \(0.960703\pi\)
\(812\) −1.40363 + 916.195i −0.00172861 + 1.12832i
\(813\) 124.184 + 257.493i 0.152748 + 0.316720i
\(814\) 116.662 + 202.065i 0.143320 + 0.248238i
\(815\) 426.179i 0.522919i
\(816\) 574.744 + 42.7392i 0.704343 + 0.0523765i
\(817\) 710.825i 0.870043i
\(818\) 1867.84i 2.28343i
\(819\) −610.921 + 765.468i −0.745935 + 0.934638i
\(820\) −84.4055 −0.102934
\(821\) 393.360 0.479123 0.239562 0.970881i \(-0.422996\pi\)
0.239562 + 0.970881i \(0.422996\pi\)
\(822\) 1174.50 566.442i 1.42884 0.689102i
\(823\) −848.757 −1.03130 −0.515648 0.856801i \(-0.672449\pi\)
−0.515648 + 0.856801i \(0.672449\pi\)
\(824\) −11.5544 + 6.67091i −0.0140223 + 0.00809577i
\(825\) −48.7735 + 655.891i −0.0591193 + 0.795019i
\(826\) −946.369 + 1633.38i −1.14573 + 1.97745i
\(827\) 495.009 0.598559 0.299280 0.954165i \(-0.403254\pi\)
0.299280 + 0.954165i \(0.403254\pi\)
\(828\) −362.691 + 455.873i −0.438032 + 0.550571i
\(829\) 820.334 473.620i 0.989546 0.571315i 0.0844077 0.996431i \(-0.473100\pi\)
0.905139 + 0.425116i \(0.139767\pi\)
\(830\) −74.0442 + 128.248i −0.0892099 + 0.154516i
\(831\) −582.183 + 280.776i −0.700581 + 0.337878i
\(832\) −875.021 505.193i −1.05171 0.607204i
\(833\) 512.645 + 298.074i 0.615420 + 0.357832i
\(834\) 336.998 + 698.757i 0.404074 + 0.837838i
\(835\) 149.482 0.179021
\(836\) 636.314 367.376i 0.761142 0.439445i
\(837\) 1116.53 + 252.818i 1.33397 + 0.302052i
\(838\) −1375.30 794.030i −1.64117 0.947530i
\(839\) 787.270 454.531i 0.938343 0.541753i 0.0489028 0.998804i \(-0.484428\pi\)
0.889441 + 0.457051i \(0.151094\pi\)
\(840\) −3.68009 2.51421i −0.00438106 0.00299310i
\(841\) −106.581 + 184.604i −0.126731 + 0.219505i
\(842\) −164.360 284.680i −0.195202 0.338099i
\(843\) 45.3468 609.810i 0.0537921 0.723381i
\(844\) −85.5412 + 148.162i −0.101352 + 0.175547i
\(845\) −150.939 87.1444i −0.178625 0.103129i
\(846\) −625.833 + 246.451i −0.739756 + 0.291314i
\(847\) 0.0937834 61.2154i 0.000110724 0.0722732i
\(848\) −540.712 936.540i −0.637632 1.10441i
\(849\) 203.399 298.700i 0.239575 0.351826i
\(850\) 660.107i 0.776596i
\(851\) −116.059 −0.136380
\(852\) 1128.38 + 768.365i 1.32439 + 0.901837i
\(853\) −768.763 + 443.845i −0.901246 + 0.520335i −0.877604 0.479386i \(-0.840859\pi\)
−0.0236417 + 0.999720i \(0.507526\pi\)
\(854\) −491.710 + 848.661i −0.575773 + 0.993749i
\(855\) 126.566 + 321.399i 0.148030 + 0.375905i
\(856\) 3.38916 5.87020i 0.00395930 0.00685771i
\(857\) 151.668 + 87.5656i 0.176976 + 0.102177i 0.585871 0.810404i \(-0.300753\pi\)
−0.408895 + 0.912581i \(0.634086\pi\)
\(858\) −1501.30 111.640i −1.74976 0.130116i
\(859\) 1192.54 688.515i 1.38829 0.801531i 0.395170 0.918608i \(-0.370686\pi\)
0.993123 + 0.117077i \(0.0373525\pi\)
\(860\) 371.980 + 214.763i 0.432535 + 0.249724i
\(861\) 13.8744 182.792i 0.0161143 0.212302i
\(862\) −456.983 791.518i −0.530143 0.918235i
\(863\) −761.374 + 1318.74i −0.882241 + 1.52809i −0.0333969 + 0.999442i \(0.510633\pi\)
−0.848844 + 0.528644i \(0.822701\pi\)
\(864\) 270.351 1193.96i 0.312906 1.38190i
\(865\) −105.552 182.821i −0.122025 0.211354i
\(866\) 332.465i 0.383909i
\(867\) 385.163 185.757i 0.444248 0.214253i
\(868\) −599.818 + 1035.25i −0.691035 + 1.19268i
\(869\) −779.616 + 1350.33i −0.897141 + 1.55389i
\(870\) −287.611 596.353i −0.330587 0.685463i
\(871\) −1102.20 636.358i −1.26545 0.730606i
\(872\) −1.11477 1.93085i −0.00127841 0.00221427i
\(873\) −785.582 625.006i −0.899864 0.715929i
\(874\) 728.121i 0.833091i
\(875\) 372.435 642.800i 0.425640 0.734628i
\(876\) −818.934 60.8977i −0.934856 0.0695179i
\(877\) 359.527 + 622.719i 0.409951 + 0.710056i 0.994884 0.101026i \(-0.0322124\pi\)
−0.584933 + 0.811082i \(0.698879\pi\)
\(878\) 614.509i 0.699896i
\(879\) 228.261 + 473.293i 0.259682 + 0.538445i
\(880\) 433.694i 0.492834i
\(881\) 1065.56i 1.20949i −0.796418 0.604747i \(-0.793274\pi\)
0.796418 0.604747i \(-0.206726\pi\)
\(882\) 781.088 975.614i 0.885587 1.10614i
\(883\) −378.403 −0.428543 −0.214271 0.976774i \(-0.568738\pi\)
−0.214271 + 0.976774i \(0.568738\pi\)
\(884\) 758.410 0.857930
\(885\) 50.7780 682.847i 0.0573762 0.771578i
\(886\) 424.360 0.478961
\(887\) 1522.62 879.087i 1.71660 0.991079i 0.791661 0.610960i \(-0.209217\pi\)
0.924938 0.380118i \(-0.124117\pi\)
\(888\) −1.72824 + 0.833501i −0.00194622 + 0.000938627i
\(889\) 316.689 + 183.488i 0.356230 + 0.206398i
\(890\) 737.050 0.828146
\(891\) −207.372 899.030i −0.232740 1.00901i
\(892\) −670.037 + 386.846i −0.751163 + 0.433684i
\(893\) −210.989 + 365.443i −0.236270 + 0.409231i
\(894\) 70.8729 953.078i 0.0792762 1.06608i
\(895\) 26.9040 + 15.5331i 0.0300604 + 0.0173554i
\(896\) 17.1494 + 9.93628i 0.0191400 + 0.0110896i
\(897\) 421.474 618.952i 0.469871 0.690025i
\(898\) 747.501 0.832406
\(899\) −1192.20 + 688.317i −1.32614 + 0.765647i
\(900\) −690.619 103.283i −0.767355 0.114759i
\(901\) 713.998 + 412.227i 0.792451 + 0.457522i
\(902\) 244.035 140.894i 0.270549 0.156202i
\(903\) −526.245 + 770.273i −0.582774 + 0.853016i
\(904\) −3.28055 + 5.68209i −0.00362893 + 0.00628549i
\(905\) 270.859 + 469.141i 0.299291 + 0.518388i
\(906\) −215.925 + 104.137i −0.238328 + 0.114941i
\(907\) −371.175 + 642.893i −0.409233 + 0.708813i −0.994804 0.101808i \(-0.967537\pi\)
0.585571 + 0.810621i \(0.300870\pi\)
\(908\) 784.736 + 453.067i 0.864246 + 0.498973i
\(909\) 102.316 684.155i 0.112559 0.752646i
\(910\) 640.014 + 370.820i 0.703312 + 0.407495i
\(911\) 394.703 + 683.645i 0.433263 + 0.750434i 0.997152 0.0754169i \(-0.0240288\pi\)
−0.563889 + 0.825851i \(0.690695\pi\)
\(912\) −331.025 686.372i −0.362966 0.752601i
\(913\) 248.158i 0.271805i
\(914\) 620.046 0.678387
\(915\) 26.3830 354.790i 0.0288338 0.387749i
\(916\) −559.101 + 322.797i −0.610372 + 0.352398i
\(917\) −1305.77 2.00048i −1.42396 0.00218154i
\(918\) 274.470 + 884.398i 0.298987 + 0.963396i
\(919\) 213.779 370.276i 0.232621 0.402912i −0.725957 0.687740i \(-0.758603\pi\)
0.958579 + 0.284828i \(0.0919363\pi\)
\(920\) 2.95122 + 1.70389i 0.00320785 + 0.00185205i
\(921\) 31.0126 45.5433i 0.0336727 0.0494498i
\(922\) 949.064 547.942i 1.02935 0.594297i
\(923\) −1519.70 877.398i −1.64648 0.950594i
\(924\) 961.511 + 72.9814i 1.04060 + 0.0789842i
\(925\) −69.5596 120.481i −0.0751996 0.130250i
\(926\) −685.477 + 1187.28i −0.740256 + 1.28216i
\(927\) 1061.94 + 844.874i 1.14556 + 0.911407i
\(928\) 736.051 + 1274.88i 0.793159 + 1.37379i
\(929\) 1129.42i 1.21574i −0.794037 0.607869i \(-0.792024\pi\)
0.794037 0.607869i \(-0.207976\pi\)
\(930\) 64.1179 862.238i 0.0689440 0.927138i
\(931\) 2.40242 784.066i 0.00258048 0.842177i
\(932\) 497.045 860.908i 0.533310 0.923721i
\(933\) −688.640 + 1011.30i −0.738092 + 1.08392i
\(934\) 283.514 + 163.687i 0.303548 + 0.175253i
\(935\) −165.320 286.342i −0.176812 0.306248i
\(936\) 1.83107 12.2438i 0.00195627 0.0130809i
\(937\) 736.130i 0.785625i −0.919619 0.392812i \(-0.871502\pi\)
0.919619 0.392812i \(-0.128498\pi\)
\(938\) 1405.27 + 814.206i 1.49816 + 0.868024i
\(939\) −680.056 + 998.691i −0.724234 + 1.06357i
\(940\) 127.493 + 220.824i 0.135631 + 0.234919i
\(941\) 86.6207i 0.0920517i −0.998940 0.0460259i \(-0.985344\pi\)
0.998940 0.0460259i \(-0.0146557\pi\)
\(942\) −49.0512 + 72.0338i −0.0520714 + 0.0764690i
\(943\) 140.165i 0.148637i
\(944\) 1510.57i 1.60018i
\(945\) −100.790 + 441.979i −0.106656 + 0.467702i
\(946\) −1433.97 −1.51582
\(947\) 587.369 0.620241 0.310121 0.950697i \(-0.399631\pi\)
0.310121 + 0.950697i \(0.399631\pi\)
\(948\) −1368.35 931.778i −1.44341 0.982888i
\(949\) 1055.59 1.11232
\(950\) −755.862 + 436.397i −0.795645 + 0.459366i
\(951\) 735.343 + 500.730i 0.773232 + 0.526530i
\(952\) −7.49596 0.0114840i −0.00787391 1.20630e-5i
\(953\) −396.549 −0.416106 −0.208053 0.978118i \(-0.566713\pi\)
−0.208053 + 0.978118i \(0.566713\pi\)
\(954\) 1081.79 1359.72i 1.13395 1.42528i
\(955\) −215.802 + 124.593i −0.225970 + 0.130464i
\(956\) −444.001 + 769.033i −0.464436 + 0.804427i
\(957\) 917.056 + 624.467i 0.958261 + 0.652526i
\(958\) 1118.28 + 645.638i 1.16730 + 0.673944i
\(959\) 930.603 535.385i 0.970389 0.558274i
\(960\) −466.394 34.6821i −0.485828 0.0361272i
\(961\) −836.749 −0.870707
\(962\) 275.774 159.218i 0.286667 0.165507i
\(963\) −681.857 101.973i −0.708055 0.105890i
\(964\) −920.257 531.311i −0.954624 0.551152i
\(965\) −337.217 + 194.693i −0.349448 + 0.201754i
\(966\) −539.050 + 789.016i −0.558023 + 0.816787i
\(967\) −163.959 + 283.985i −0.169554 + 0.293676i −0.938263 0.345922i \(-0.887566\pi\)
0.768709 + 0.639598i \(0.220899\pi\)
\(968\) 0.386903 + 0.670135i 0.000399693 + 0.000692288i
\(969\) 480.194 + 326.987i 0.495556 + 0.337448i
\(970\) −379.094 + 656.611i −0.390819 + 0.676918i
\(971\) 900.251 + 519.760i 0.927138 + 0.535283i 0.885905 0.463866i \(-0.153538\pi\)
0.0412328 + 0.999150i \(0.486871\pi\)
\(972\) 968.223 148.781i 0.996114 0.153067i
\(973\) 318.521 + 553.651i 0.327359 + 0.569015i
\(974\) 460.046 + 796.823i 0.472326 + 0.818093i
\(975\) 895.143 + 66.5648i 0.918096 + 0.0682716i
\(976\) 784.855i 0.804155i
\(977\) 1486.83 1.52184 0.760918 0.648848i \(-0.224749\pi\)
0.760918 + 0.648848i \(0.224749\pi\)
\(978\) 1360.65 656.216i 1.39126 0.670978i
\(979\) −1069.63 + 617.552i −1.09258 + 0.630799i
\(980\) −409.582 238.148i −0.417941 0.243009i
\(981\) −141.187 + 177.460i −0.143921 + 0.180897i
\(982\) 439.887 761.906i 0.447950 0.775872i
\(983\) 958.645 + 553.474i 0.975223 + 0.563045i 0.900825 0.434183i \(-0.142963\pi\)
0.0743987 + 0.997229i \(0.476296\pi\)
\(984\) 1.00662 + 2.08721i 0.00102299 + 0.00212114i
\(985\) −626.474 + 361.695i −0.636014 + 0.367203i
\(986\) −964.353 556.769i −0.978046 0.564675i
\(987\) −499.183 + 239.805i −0.505758 + 0.242964i
\(988\) −501.386 868.425i −0.507475 0.878973i
\(989\) 356.638 617.716i 0.360605 0.624586i
\(990\) −648.368 + 255.326i −0.654917 + 0.257905i
\(991\) −543.503 941.374i −0.548439 0.949924i −0.998382 0.0568665i \(-0.981889\pi\)
0.449943 0.893057i \(-0.351444\pi\)
\(992\) 1922.42i 1.93793i
\(993\) −1321.57 899.920i −1.33089 0.906264i
\(994\) 1937.56 + 1122.61i 1.94926 + 1.12939i
\(995\) −69.3191 + 120.064i −0.0696675 + 0.120668i
\(996\) 262.750 + 19.5387i 0.263805 + 0.0196171i
\(997\) 716.543 + 413.696i 0.718699 + 0.414941i 0.814274 0.580481i \(-0.197136\pi\)
−0.0955746 + 0.995422i \(0.530469\pi\)
\(998\) −1097.05 1900.14i −1.09925 1.90395i
\(999\) 143.290 + 132.495i 0.143434 + 0.132628i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.3.t.a.40.3 yes 28
3.2 odd 2 189.3.t.a.145.12 28
7.2 even 3 441.3.l.b.391.12 28
7.3 odd 6 63.3.k.a.31.12 28
7.4 even 3 441.3.k.b.31.12 28
7.5 odd 6 441.3.l.a.391.12 28
7.6 odd 2 441.3.t.a.166.3 28
9.2 odd 6 189.3.k.a.19.3 28
9.7 even 3 63.3.k.a.61.12 yes 28
21.17 even 6 189.3.k.a.10.3 28
63.16 even 3 441.3.l.a.97.12 28
63.25 even 3 441.3.t.a.178.3 28
63.34 odd 6 441.3.k.b.313.12 28
63.38 even 6 189.3.t.a.73.12 28
63.52 odd 6 inner 63.3.t.a.52.3 yes 28
63.61 odd 6 441.3.l.b.97.12 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.k.a.31.12 28 7.3 odd 6
63.3.k.a.61.12 yes 28 9.7 even 3
63.3.t.a.40.3 yes 28 1.1 even 1 trivial
63.3.t.a.52.3 yes 28 63.52 odd 6 inner
189.3.k.a.10.3 28 21.17 even 6
189.3.k.a.19.3 28 9.2 odd 6
189.3.t.a.73.12 28 63.38 even 6
189.3.t.a.145.12 28 3.2 odd 2
441.3.k.b.31.12 28 7.4 even 3
441.3.k.b.313.12 28 63.34 odd 6
441.3.l.a.97.12 28 63.16 even 3
441.3.l.a.391.12 28 7.5 odd 6
441.3.l.b.97.12 28 63.61 odd 6
441.3.l.b.391.12 28 7.2 even 3
441.3.t.a.166.3 28 7.6 odd 2
441.3.t.a.178.3 28 63.25 even 3