L(s) = 1 | − 2·3-s + 2·5-s − 2·7-s + 3·9-s + 8·11-s − 4·15-s − 10·17-s + 10·19-s + 4·21-s − 2·23-s − 2·25-s − 4·27-s + 4·31-s − 16·33-s − 4·35-s − 4·41-s + 2·43-s + 6·45-s + 8·47-s − 6·49-s + 20·51-s + 6·53-s + 16·55-s − 20·57-s + 8·59-s − 6·63-s + 6·67-s + ⋯ |
L(s) = 1 | − 1.15·3-s + 0.894·5-s − 0.755·7-s + 9-s + 2.41·11-s − 1.03·15-s − 2.42·17-s + 2.29·19-s + 0.872·21-s − 0.417·23-s − 2/5·25-s − 0.769·27-s + 0.718·31-s − 2.78·33-s − 0.676·35-s − 0.624·41-s + 0.304·43-s + 0.894·45-s + 1.16·47-s − 6/7·49-s + 2.80·51-s + 0.824·53-s + 2.15·55-s − 2.64·57-s + 1.04·59-s − 0.755·63-s + 0.733·67-s + ⋯ |
Λ(s)=(=(19501056s/2ΓC(s)2L(s)Λ(2−s)
Λ(s)=(=(19501056s/2ΓC(s+1/2)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
19501056
= 212⋅32⋅232
|
Sign: |
1
|
Analytic conductor: |
1243.40 |
Root analytic conductor: |
5.93817 |
Motivic weight: |
1 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 19501056, ( :1/2,1/2), 1)
|
Particular Values
L(1) |
≈ |
2.647788908 |
L(21) |
≈ |
2.647788908 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Gal(Fp) | Fp(T) |
---|
bad | 2 | | 1 |
| 3 | C1 | (1+T)2 |
| 23 | C1 | (1+T)2 |
good | 5 | D4 | 1−2T+6T2−2pT3+p2T4 |
| 7 | D4 | 1+2T+10T2+2pT3+p2T4 |
| 11 | C2 | (1−4T+pT2)2 |
| 13 | C22 | 1+6T2+p2T4 |
| 17 | D4 | 1+10T+54T2+10pT3+p2T4 |
| 19 | D4 | 1−10T+58T2−10pT3+p2T4 |
| 29 | C22 | 1+38T2+p2T4 |
| 31 | C4 | 1−4T+46T2−4pT3+p2T4 |
| 37 | C22 | 1+54T2+p2T4 |
| 41 | C4 | 1+4T+6T2+4pT3+p2T4 |
| 43 | D4 | 1−2T+42T2−2pT3+p2T4 |
| 47 | C2 | (1−4T+pT2)2 |
| 53 | D4 | 1−6T+110T2−6pT3+p2T4 |
| 59 | D4 | 1−8T+54T2−8pT3+p2T4 |
| 61 | C22 | 1+102T2+p2T4 |
| 67 | D4 | 1−6T+138T2−6pT3+p2T4 |
| 71 | C2 | (1−8T+pT2)2 |
| 73 | D4 | 1+4T+70T2+4pT3+p2T4 |
| 79 | D4 | 1+6T+122T2+6pT3+p2T4 |
| 83 | C2 | (1−4T+pT2)2 |
| 89 | D4 | 1−2T+174T2−2pT3+p2T4 |
| 97 | D4 | 1−8T+190T2−8pT3+p2T4 |
show more | | |
show less | | |
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.507716418999817764574548290266, −8.441408282366711073995019785350, −7.46528762319905767988794167842, −7.40494721912235168355962595950, −6.75262703450261873663320916954, −6.74698706265037305372256343962, −6.28434014368888752179255233395, −6.18206608454870779948807654788, −5.57231049812406729684594275727, −5.45658927915618676565695952104, −4.72794266175950756363362897090, −4.53991319426220476838226849336, −4.06345242718058504815478985112, −3.58506089018139398996366427890, −3.36601026636722088450397073921, −2.55101066063760646660556144537, −1.98720633005334702452871899136, −1.73023988982698844854951473365, −0.898696741706639839845683108283, −0.63678739587641530320474763007,
0.63678739587641530320474763007, 0.898696741706639839845683108283, 1.73023988982698844854951473365, 1.98720633005334702452871899136, 2.55101066063760646660556144537, 3.36601026636722088450397073921, 3.58506089018139398996366427890, 4.06345242718058504815478985112, 4.53991319426220476838226849336, 4.72794266175950756363362897090, 5.45658927915618676565695952104, 5.57231049812406729684594275727, 6.18206608454870779948807654788, 6.28434014368888752179255233395, 6.74698706265037305372256343962, 6.75262703450261873663320916954, 7.40494721912235168355962595950, 7.46528762319905767988794167842, 8.441408282366711073995019785350, 8.507716418999817764574548290266