Properties

Label 4416.2.a.bg
Level $4416$
Weight $2$
Character orbit 4416.a
Self dual yes
Analytic conductor $35.262$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4416,2,Mod(1,4416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4416, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4416.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4416 = 2^{6} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4416.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(35.2619375326\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + (\beta + 1) q^{5} + (\beta - 1) q^{7} + q^{9} + 4 q^{11} - 2 \beta q^{13} + ( - \beta - 1) q^{15} + ( - \beta - 5) q^{17} + ( - \beta + 5) q^{19} + ( - \beta + 1) q^{21} - q^{23} + (2 \beta + 1) q^{25} + \cdots + 4 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 2 q^{5} - 2 q^{7} + 2 q^{9} + 8 q^{11} - 2 q^{15} - 10 q^{17} + 10 q^{19} + 2 q^{21} - 2 q^{23} + 2 q^{25} - 2 q^{27} + 4 q^{31} - 8 q^{33} + 8 q^{35} - 4 q^{41} + 2 q^{43} + 2 q^{45} + 8 q^{47}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.618034
1.61803
0 −1.00000 0 −1.23607 0 −3.23607 0 1.00000 0
1.2 0 −1.00000 0 3.23607 0 1.23607 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4416.2.a.bg 2
4.b odd 2 1 4416.2.a.bm 2
8.b even 2 1 1104.2.a.m 2
8.d odd 2 1 69.2.a.b 2
24.f even 2 1 207.2.a.c 2
24.h odd 2 1 3312.2.a.bb 2
40.e odd 2 1 1725.2.a.ba 2
40.k even 4 2 1725.2.b.o 4
56.e even 2 1 3381.2.a.t 2
88.g even 2 1 8349.2.a.i 2
120.m even 2 1 5175.2.a.bk 2
184.h even 2 1 1587.2.a.i 2
552.h odd 2 1 4761.2.a.v 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
69.2.a.b 2 8.d odd 2 1
207.2.a.c 2 24.f even 2 1
1104.2.a.m 2 8.b even 2 1
1587.2.a.i 2 184.h even 2 1
1725.2.a.ba 2 40.e odd 2 1
1725.2.b.o 4 40.k even 4 2
3312.2.a.bb 2 24.h odd 2 1
3381.2.a.t 2 56.e even 2 1
4416.2.a.bg 2 1.a even 1 1 trivial
4416.2.a.bm 2 4.b odd 2 1
4761.2.a.v 2 552.h odd 2 1
5175.2.a.bk 2 120.m even 2 1
8349.2.a.i 2 88.g even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4416))\):

\( T_{5}^{2} - 2T_{5} - 4 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 4 \) Copy content Toggle raw display
\( T_{11} - 4 \) Copy content Toggle raw display
\( T_{17}^{2} + 10T_{17} + 20 \) Copy content Toggle raw display
\( T_{19}^{2} - 10T_{19} + 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$11$ \( (T - 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 20 \) Copy content Toggle raw display
$17$ \( T^{2} + 10T + 20 \) Copy content Toggle raw display
$19$ \( T^{2} - 10T + 20 \) Copy content Toggle raw display
$23$ \( (T + 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 20 \) Copy content Toggle raw display
$31$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$37$ \( T^{2} - 20 \) Copy content Toggle raw display
$41$ \( T^{2} + 4T - 76 \) Copy content Toggle raw display
$43$ \( T^{2} - 2T - 44 \) Copy content Toggle raw display
$47$ \( (T - 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$59$ \( T^{2} - 8T - 64 \) Copy content Toggle raw display
$61$ \( T^{2} - 20 \) Copy content Toggle raw display
$67$ \( T^{2} - 6T + 4 \) Copy content Toggle raw display
$71$ \( (T - 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 4T - 76 \) Copy content Toggle raw display
$79$ \( T^{2} + 6T - 36 \) Copy content Toggle raw display
$83$ \( (T - 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 2T - 4 \) Copy content Toggle raw display
$97$ \( T^{2} - 8T - 4 \) Copy content Toggle raw display
show more
show less