Properties

Label 5175.2.a.bk
Level $5175$
Weight $2$
Character orbit 5175.a
Self dual yes
Analytic conductor $41.323$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5175,2,Mod(1,5175)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5175, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5175.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5175 = 3^{2} \cdot 5^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5175.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.3225830460\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + 3 q^{4} + ( - \beta - 1) q^{7} - \beta q^{8} - 4 q^{11} + 2 \beta q^{13} + (\beta + 5) q^{14} - q^{16} + (\beta - 5) q^{17} + (\beta + 5) q^{19} + 4 \beta q^{22} + q^{23} - 10 q^{26} + \cdots + (\beta - 10) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{4} - 2 q^{7} - 8 q^{11} + 10 q^{14} - 2 q^{16} - 10 q^{17} + 10 q^{19} + 2 q^{23} - 20 q^{26} - 6 q^{28} - 4 q^{31} - 10 q^{34} - 10 q^{38} + 4 q^{41} - 2 q^{43} - 24 q^{44} - 8 q^{47} - 2 q^{49}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−2.23607 0 3.00000 0 0 −3.23607 −2.23607 0 0
1.2 2.23607 0 3.00000 0 0 1.23607 2.23607 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5175.2.a.bk 2
3.b odd 2 1 1725.2.a.ba 2
5.b even 2 1 207.2.a.c 2
15.d odd 2 1 69.2.a.b 2
15.e even 4 2 1725.2.b.o 4
20.d odd 2 1 3312.2.a.bb 2
60.h even 2 1 1104.2.a.m 2
105.g even 2 1 3381.2.a.t 2
115.c odd 2 1 4761.2.a.v 2
120.i odd 2 1 4416.2.a.bm 2
120.m even 2 1 4416.2.a.bg 2
165.d even 2 1 8349.2.a.i 2
345.h even 2 1 1587.2.a.i 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
69.2.a.b 2 15.d odd 2 1
207.2.a.c 2 5.b even 2 1
1104.2.a.m 2 60.h even 2 1
1587.2.a.i 2 345.h even 2 1
1725.2.a.ba 2 3.b odd 2 1
1725.2.b.o 4 15.e even 4 2
3312.2.a.bb 2 20.d odd 2 1
3381.2.a.t 2 105.g even 2 1
4416.2.a.bg 2 120.m even 2 1
4416.2.a.bm 2 120.i odd 2 1
4761.2.a.v 2 115.c odd 2 1
5175.2.a.bk 2 1.a even 1 1 trivial
8349.2.a.i 2 165.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5175))\):

\( T_{2}^{2} - 5 \) Copy content Toggle raw display
\( T_{7}^{2} + 2T_{7} - 4 \) Copy content Toggle raw display
\( T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 5 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$11$ \( (T + 4)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} - 20 \) Copy content Toggle raw display
$17$ \( T^{2} + 10T + 20 \) Copy content Toggle raw display
$19$ \( T^{2} - 10T + 20 \) Copy content Toggle raw display
$23$ \( (T - 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 20 \) Copy content Toggle raw display
$31$ \( T^{2} + 4T - 16 \) Copy content Toggle raw display
$37$ \( T^{2} - 20 \) Copy content Toggle raw display
$41$ \( T^{2} - 4T - 76 \) Copy content Toggle raw display
$43$ \( T^{2} + 2T - 44 \) Copy content Toggle raw display
$47$ \( (T + 4)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 6T + 4 \) Copy content Toggle raw display
$59$ \( T^{2} + 8T - 64 \) Copy content Toggle raw display
$61$ \( T^{2} - 20 \) Copy content Toggle raw display
$67$ \( T^{2} + 6T + 4 \) Copy content Toggle raw display
$71$ \( (T - 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 4T - 76 \) Copy content Toggle raw display
$79$ \( T^{2} - 6T - 36 \) Copy content Toggle raw display
$83$ \( (T - 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 2T - 4 \) Copy content Toggle raw display
$97$ \( T^{2} + 8T - 4 \) Copy content Toggle raw display
show more
show less