Properties

Label 2-5175-1.1-c1-0-168
Degree $2$
Conductor $5175$
Sign $-1$
Analytic cond. $41.3225$
Root an. cond. $6.42826$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.23·2-s + 3.00·4-s + 1.23·7-s + 2.23·8-s − 4·11-s − 4.47·13-s + 2.76·14-s − 0.999·16-s − 7.23·17-s + 2.76·19-s − 8.94·22-s + 23-s − 10.0·26-s + 3.70·28-s + 4.47·29-s + 2.47·31-s − 6.70·32-s − 16.1·34-s + 4.47·37-s + 6.18·38-s − 6.94·41-s − 7.70·43-s − 12.0·44-s + 2.23·46-s − 4·47-s − 5.47·49-s − 13.4·52-s + ⋯
L(s)  = 1  + 1.58·2-s + 1.50·4-s + 0.467·7-s + 0.790·8-s − 1.20·11-s − 1.24·13-s + 0.738·14-s − 0.249·16-s − 1.75·17-s + 0.634·19-s − 1.90·22-s + 0.208·23-s − 1.96·26-s + 0.700·28-s + 0.830·29-s + 0.444·31-s − 1.18·32-s − 2.77·34-s + 0.735·37-s + 1.00·38-s − 1.08·41-s − 1.17·43-s − 1.80·44-s + 0.329·46-s − 0.583·47-s − 0.781·49-s − 1.86·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5175 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5175\)    =    \(3^{2} \cdot 5^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(41.3225\)
Root analytic conductor: \(6.42826\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5175,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
23 \( 1 - T \)
good2 \( 1 - 2.23T + 2T^{2} \)
7 \( 1 - 1.23T + 7T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 + 4.47T + 13T^{2} \)
17 \( 1 + 7.23T + 17T^{2} \)
19 \( 1 - 2.76T + 19T^{2} \)
29 \( 1 - 4.47T + 29T^{2} \)
31 \( 1 - 2.47T + 31T^{2} \)
37 \( 1 - 4.47T + 37T^{2} \)
41 \( 1 + 6.94T + 41T^{2} \)
43 \( 1 + 7.70T + 43T^{2} \)
47 \( 1 + 4T + 47T^{2} \)
53 \( 1 + 0.763T + 53T^{2} \)
59 \( 1 + 12.9T + 59T^{2} \)
61 \( 1 + 4.47T + 61T^{2} \)
67 \( 1 + 5.23T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 - 10.9T + 73T^{2} \)
79 \( 1 + 3.70T + 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 + 3.23T + 89T^{2} \)
97 \( 1 - 0.472T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68478877897372664592891740590, −6.86187893238974572079922039142, −6.34348417438734229098535940613, −5.33712232661972509256012598326, −4.77619728132496108747145644917, −4.53891000696561703427098557246, −3.26811208157143016797753365659, −2.65209461058203472766778692329, −1.90726276821360446601291293866, 0, 1.90726276821360446601291293866, 2.65209461058203472766778692329, 3.26811208157143016797753365659, 4.53891000696561703427098557246, 4.77619728132496108747145644917, 5.33712232661972509256012598326, 6.34348417438734229098535940613, 6.86187893238974572079922039142, 7.68478877897372664592891740590

Graph of the $Z$-function along the critical line