L(s) = 1 | + 2.23·2-s + 3.00·4-s + 1.23·7-s + 2.23·8-s − 4·11-s − 4.47·13-s + 2.76·14-s − 0.999·16-s − 7.23·17-s + 2.76·19-s − 8.94·22-s + 23-s − 10.0·26-s + 3.70·28-s + 4.47·29-s + 2.47·31-s − 6.70·32-s − 16.1·34-s + 4.47·37-s + 6.18·38-s − 6.94·41-s − 7.70·43-s − 12.0·44-s + 2.23·46-s − 4·47-s − 5.47·49-s − 13.4·52-s + ⋯ |
L(s) = 1 | + 1.58·2-s + 1.50·4-s + 0.467·7-s + 0.790·8-s − 1.20·11-s − 1.24·13-s + 0.738·14-s − 0.249·16-s − 1.75·17-s + 0.634·19-s − 1.90·22-s + 0.208·23-s − 1.96·26-s + 0.700·28-s + 0.830·29-s + 0.444·31-s − 1.18·32-s − 2.77·34-s + 0.735·37-s + 1.00·38-s − 1.08·41-s − 1.17·43-s − 1.80·44-s + 0.329·46-s − 0.583·47-s − 0.781·49-s − 1.86·52-s + ⋯ |
Λ(s)=(=(5175s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(5175s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
| 23 | 1−T |
good | 2 | 1−2.23T+2T2 |
| 7 | 1−1.23T+7T2 |
| 11 | 1+4T+11T2 |
| 13 | 1+4.47T+13T2 |
| 17 | 1+7.23T+17T2 |
| 19 | 1−2.76T+19T2 |
| 29 | 1−4.47T+29T2 |
| 31 | 1−2.47T+31T2 |
| 37 | 1−4.47T+37T2 |
| 41 | 1+6.94T+41T2 |
| 43 | 1+7.70T+43T2 |
| 47 | 1+4T+47T2 |
| 53 | 1+0.763T+53T2 |
| 59 | 1+12.9T+59T2 |
| 61 | 1+4.47T+61T2 |
| 67 | 1+5.23T+67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1−10.9T+73T2 |
| 79 | 1+3.70T+79T2 |
| 83 | 1−4T+83T2 |
| 89 | 1+3.23T+89T2 |
| 97 | 1−0.472T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.68478877897372664592891740590, −6.86187893238974572079922039142, −6.34348417438734229098535940613, −5.33712232661972509256012598326, −4.77619728132496108747145644917, −4.53891000696561703427098557246, −3.26811208157143016797753365659, −2.65209461058203472766778692329, −1.90726276821360446601291293866, 0,
1.90726276821360446601291293866, 2.65209461058203472766778692329, 3.26811208157143016797753365659, 4.53891000696561703427098557246, 4.77619728132496108747145644917, 5.33712232661972509256012598326, 6.34348417438734229098535940613, 6.86187893238974572079922039142, 7.68478877897372664592891740590