Properties

Label 4-5175e2-1.1-c1e2-0-9
Degree $4$
Conductor $26780625$
Sign $1$
Analytic cond. $1707.55$
Root an. cond. $6.42826$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4-s − 2·7-s − 8·11-s − 3·16-s − 10·17-s + 10·19-s + 2·23-s − 2·28-s − 4·31-s + 4·41-s − 2·43-s − 8·44-s − 8·47-s − 6·49-s − 6·53-s − 8·59-s − 7·64-s − 6·67-s − 10·68-s + 16·71-s + 4·73-s + 10·76-s + 16·77-s + 6·79-s + 8·83-s − 2·89-s + 2·92-s + ⋯
L(s)  = 1  + 1/2·4-s − 0.755·7-s − 2.41·11-s − 3/4·16-s − 2.42·17-s + 2.29·19-s + 0.417·23-s − 0.377·28-s − 0.718·31-s + 0.624·41-s − 0.304·43-s − 1.20·44-s − 1.16·47-s − 6/7·49-s − 0.824·53-s − 1.04·59-s − 7/8·64-s − 0.733·67-s − 1.21·68-s + 1.89·71-s + 0.468·73-s + 1.14·76-s + 1.82·77-s + 0.675·79-s + 0.878·83-s − 0.211·89-s + 0.208·92-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 26780625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 26780625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(26780625\)    =    \(3^{4} \cdot 5^{4} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(1707.55\)
Root analytic conductor: \(6.42826\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 26780625,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
23$C_1$ \( ( 1 - T )^{2} \)
good2$C_2^2$ \( 1 - T^{2} + p^{2} T^{4} \)
7$D_{4}$ \( 1 + 2 T + 10 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
13$C_2^2$ \( 1 + 6 T^{2} + p^{2} T^{4} \)
17$D_{4}$ \( 1 + 10 T + 54 T^{2} + 10 p T^{3} + p^{2} T^{4} \)
19$D_{4}$ \( 1 - 10 T + 58 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
29$C_2^2$ \( 1 + 38 T^{2} + p^{2} T^{4} \)
31$C_4$ \( 1 + 4 T + 46 T^{2} + 4 p T^{3} + p^{2} T^{4} \)
37$C_2^2$ \( 1 + 54 T^{2} + p^{2} T^{4} \)
41$C_4$ \( 1 - 4 T + 6 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
43$D_{4}$ \( 1 + 2 T + 42 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
47$C_2$ \( ( 1 + 4 T + p T^{2} )^{2} \)
53$D_{4}$ \( 1 + 6 T + 110 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
59$D_{4}$ \( 1 + 8 T + 54 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
61$C_2^2$ \( 1 + 102 T^{2} + p^{2} T^{4} \)
67$D_{4}$ \( 1 + 6 T + 138 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
71$C_2$ \( ( 1 - 8 T + p T^{2} )^{2} \)
73$D_{4}$ \( 1 - 4 T + 70 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 6 T + 122 T^{2} - 6 p T^{3} + p^{2} T^{4} \)
83$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
89$D_{4}$ \( 1 + 2 T + 174 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 8 T + 190 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.82463167262979279694724553688, −7.68478877897372664592891740590, −7.43196996995358747366211413033, −6.86187893238974572079922039142, −6.66397888430848349963318502448, −6.34348417438734229098535940613, −5.93002667687888608312569214767, −5.33712232661972509256012598326, −5.16179081394574476551575418707, −4.77619728132496108747145644917, −4.53891000696561703427098557246, −3.82958618855256696754814448354, −3.26811208157143016797753365659, −3.06376280827926172525959248817, −2.65209461058203472766778692329, −2.16821535571126578535357402272, −1.90726276821360446601291293866, −1.00932586045321112289016426425, 0, 0, 1.00932586045321112289016426425, 1.90726276821360446601291293866, 2.16821535571126578535357402272, 2.65209461058203472766778692329, 3.06376280827926172525959248817, 3.26811208157143016797753365659, 3.82958618855256696754814448354, 4.53891000696561703427098557246, 4.77619728132496108747145644917, 5.16179081394574476551575418707, 5.33712232661972509256012598326, 5.93002667687888608312569214767, 6.34348417438734229098535940613, 6.66397888430848349963318502448, 6.86187893238974572079922039142, 7.43196996995358747366211413033, 7.68478877897372664592891740590, 7.82463167262979279694724553688

Graph of the $Z$-function along the critical line