L(s) = 1 | + (1.73 − 1.73i)3-s + (1.73 − 1.73i)5-s + (2 − 1.73i)7-s − 2.99i·9-s + (−3 + 3i)11-s + (1.73 + 1.73i)13-s − 5.99i·15-s + (−5.19 + 5.19i)19-s + (0.464 − 6.46i)21-s − 4·23-s − 0.999i·25-s + (−1 + i)29-s + 6.92·31-s + 10.3i·33-s + (0.464 − 6.46i)35-s + ⋯ |
L(s) = 1 | + (0.999 − 0.999i)3-s + (0.774 − 0.774i)5-s + (0.755 − 0.654i)7-s − 0.999i·9-s + (−0.904 + 0.904i)11-s + (0.480 + 0.480i)13-s − 1.54i·15-s + (−1.19 + 1.19i)19-s + (0.101 − 1.41i)21-s − 0.834·23-s − 0.199i·25-s + (−0.185 + 0.185i)29-s + 1.24·31-s + 1.80i·33-s + (0.0784 − 1.09i)35-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)(0.315+0.948i)Λ(2−s)
Λ(s)=(=(448s/2ΓC(s+1/2)L(s)(0.315+0.948i)Λ(1−s)
Degree: |
2 |
Conductor: |
448
= 26⋅7
|
Sign: |
0.315+0.948i
|
Analytic conductor: |
3.57729 |
Root analytic conductor: |
1.89137 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(335,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 448, ( :1/2), 0.315+0.948i)
|
Particular Values
L(1) |
≈ |
1.77043−1.27703i |
L(21) |
≈ |
1.77043−1.27703i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−2+1.73i)T |
good | 3 | 1+(−1.73+1.73i)T−3iT2 |
| 5 | 1+(−1.73+1.73i)T−5iT2 |
| 11 | 1+(3−3i)T−11iT2 |
| 13 | 1+(−1.73−1.73i)T+13iT2 |
| 17 | 1−17T2 |
| 19 | 1+(5.19−5.19i)T−19iT2 |
| 23 | 1+4T+23T2 |
| 29 | 1+(1−i)T−29iT2 |
| 31 | 1−6.92T+31T2 |
| 37 | 1+(5+5i)T+37iT2 |
| 41 | 1+3.46T+41T2 |
| 43 | 1+(−1+i)T−43iT2 |
| 47 | 1−6.92T+47T2 |
| 53 | 1+(−3−3i)T+53iT2 |
| 59 | 1+(8.66+8.66i)T+59iT2 |
| 61 | 1+(5.19+5.19i)T+61iT2 |
| 67 | 1+(−7−7i)T+67iT2 |
| 71 | 1+4T+71T2 |
| 73 | 1−10.3T+73T2 |
| 79 | 1+2iT−79T2 |
| 83 | 1+(−1.73+1.73i)T−83iT2 |
| 89 | 1+3.46T+89T2 |
| 97 | 1−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.75394406722260626457008333998, −9.960250891604774584576080773723, −8.851272935628582998623881583594, −8.150587815170368605984695726553, −7.49297242633907576214351225586, −6.39056139587399566686664815132, −5.13580793369108407138204949821, −4.00026884744127410785103692246, −2.19766122255295951016106398865, −1.55116467791809345414874933503,
2.36467818548282549620160120415, 3.01687137233733318075405017661, 4.39582372557744403637613722850, 5.51427358424172059383476477608, 6.47709431036068933829509773669, 8.097023630883514118928827000810, 8.533198746207018025616520850098, 9.458868589011985383933622960679, 10.55145719360837288237524214178, 10.72767159300261519967591279242