Properties

Label 448.2.j.c.335.2
Level $448$
Weight $2$
Character 448.335
Analytic conductor $3.577$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,2,Mod(111,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.111");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 335.2
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 448.335
Dual form 448.2.j.c.111.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.73205 - 1.73205i) q^{3} +(1.73205 - 1.73205i) q^{5} +(2.00000 - 1.73205i) q^{7} -3.00000i q^{9} +(-3.00000 + 3.00000i) q^{11} +(1.73205 + 1.73205i) q^{13} -6.00000i q^{15} +(-5.19615 + 5.19615i) q^{19} +(0.464102 - 6.46410i) q^{21} -4.00000 q^{23} -1.00000i q^{25} +(-1.00000 + 1.00000i) q^{29} +6.92820 q^{31} +10.3923i q^{33} +(0.464102 - 6.46410i) q^{35} +(-5.00000 - 5.00000i) q^{37} +6.00000 q^{39} -3.46410 q^{41} +(1.00000 - 1.00000i) q^{43} +(-5.19615 - 5.19615i) q^{45} +6.92820 q^{47} +(1.00000 - 6.92820i) q^{49} +(3.00000 + 3.00000i) q^{53} +10.3923i q^{55} +18.0000i q^{57} +(-8.66025 - 8.66025i) q^{59} +(-5.19615 - 5.19615i) q^{61} +(-5.19615 - 6.00000i) q^{63} +6.00000 q^{65} +(7.00000 + 7.00000i) q^{67} +(-6.92820 + 6.92820i) q^{69} -4.00000 q^{71} +10.3923 q^{73} +(-1.73205 - 1.73205i) q^{75} +(-0.803848 + 11.1962i) q^{77} -2.00000i q^{79} +9.00000 q^{81} +(1.73205 - 1.73205i) q^{83} +3.46410i q^{87} -3.46410 q^{89} +(6.46410 + 0.464102i) q^{91} +(12.0000 - 12.0000i) q^{93} +18.0000i q^{95} +(9.00000 + 9.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{7} - 12 q^{11} - 12 q^{21} - 16 q^{23} - 4 q^{29} - 12 q^{35} - 20 q^{37} + 24 q^{39} + 4 q^{43} + 4 q^{49} + 12 q^{53} + 24 q^{65} + 28 q^{67} - 16 q^{71} - 24 q^{77} + 36 q^{81} + 12 q^{91}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205 1.73205i 1.00000 1.00000i 1.00000i \(-0.5\pi\)
1.00000 \(0\)
\(4\) 0 0
\(5\) 1.73205 1.73205i 0.774597 0.774597i −0.204310 0.978906i \(-0.565495\pi\)
0.978906 + 0.204310i \(0.0654949\pi\)
\(6\) 0 0
\(7\) 2.00000 1.73205i 0.755929 0.654654i
\(8\) 0 0
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) −3.00000 + 3.00000i −0.904534 + 0.904534i −0.995824 0.0912903i \(-0.970901\pi\)
0.0912903 + 0.995824i \(0.470901\pi\)
\(12\) 0 0
\(13\) 1.73205 + 1.73205i 0.480384 + 0.480384i 0.905254 0.424870i \(-0.139680\pi\)
−0.424870 + 0.905254i \(0.639680\pi\)
\(14\) 0 0
\(15\) 6.00000i 1.54919i
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) −5.19615 + 5.19615i −1.19208 + 1.19208i −0.215597 + 0.976483i \(0.569170\pi\)
−0.976483 + 0.215597i \(0.930830\pi\)
\(20\) 0 0
\(21\) 0.464102 6.46410i 0.101275 1.41058i
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 + 1.00000i −0.185695 + 0.185695i −0.793832 0.608137i \(-0.791917\pi\)
0.608137 + 0.793832i \(0.291917\pi\)
\(30\) 0 0
\(31\) 6.92820 1.24434 0.622171 0.782881i \(-0.286251\pi\)
0.622171 + 0.782881i \(0.286251\pi\)
\(32\) 0 0
\(33\) 10.3923i 1.80907i
\(34\) 0 0
\(35\) 0.464102 6.46410i 0.0784475 1.09263i
\(36\) 0 0
\(37\) −5.00000 5.00000i −0.821995 0.821995i 0.164399 0.986394i \(-0.447432\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) −3.46410 −0.541002 −0.270501 0.962720i \(-0.587189\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) 0 0
\(43\) 1.00000 1.00000i 0.152499 0.152499i −0.626734 0.779233i \(-0.715609\pi\)
0.779233 + 0.626734i \(0.215609\pi\)
\(44\) 0 0
\(45\) −5.19615 5.19615i −0.774597 0.774597i
\(46\) 0 0
\(47\) 6.92820 1.01058 0.505291 0.862949i \(-0.331385\pi\)
0.505291 + 0.862949i \(0.331385\pi\)
\(48\) 0 0
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.00000 + 3.00000i 0.412082 + 0.412082i 0.882463 0.470381i \(-0.155884\pi\)
−0.470381 + 0.882463i \(0.655884\pi\)
\(54\) 0 0
\(55\) 10.3923i 1.40130i
\(56\) 0 0
\(57\) 18.0000i 2.38416i
\(58\) 0 0
\(59\) −8.66025 8.66025i −1.12747 1.12747i −0.990587 0.136882i \(-0.956292\pi\)
−0.136882 0.990587i \(-0.543708\pi\)
\(60\) 0 0
\(61\) −5.19615 5.19615i −0.665299 0.665299i 0.291325 0.956624i \(-0.405904\pi\)
−0.956624 + 0.291325i \(0.905904\pi\)
\(62\) 0 0
\(63\) −5.19615 6.00000i −0.654654 0.755929i
\(64\) 0 0
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) 7.00000 + 7.00000i 0.855186 + 0.855186i 0.990766 0.135580i \(-0.0432899\pi\)
−0.135580 + 0.990766i \(0.543290\pi\)
\(68\) 0 0
\(69\) −6.92820 + 6.92820i −0.834058 + 0.834058i
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) 10.3923 1.21633 0.608164 0.793812i \(-0.291906\pi\)
0.608164 + 0.793812i \(0.291906\pi\)
\(74\) 0 0
\(75\) −1.73205 1.73205i −0.200000 0.200000i
\(76\) 0 0
\(77\) −0.803848 + 11.1962i −0.0916069 + 1.27592i
\(78\) 0 0
\(79\) 2.00000i 0.225018i −0.993651 0.112509i \(-0.964111\pi\)
0.993651 0.112509i \(-0.0358886\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) 1.73205 1.73205i 0.190117 0.190117i −0.605629 0.795747i \(-0.707079\pi\)
0.795747 + 0.605629i \(0.207079\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.46410i 0.371391i
\(88\) 0 0
\(89\) −3.46410 −0.367194 −0.183597 0.983002i \(-0.558774\pi\)
−0.183597 + 0.983002i \(0.558774\pi\)
\(90\) 0 0
\(91\) 6.46410 + 0.464102i 0.677622 + 0.0486511i
\(92\) 0 0
\(93\) 12.0000 12.0000i 1.24434 1.24434i
\(94\) 0 0
\(95\) 18.0000i 1.84676i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 9.00000 + 9.00000i 0.904534 + 0.904534i
\(100\) 0 0
\(101\) 1.73205 1.73205i 0.172345 0.172345i −0.615664 0.788009i \(-0.711112\pi\)
0.788009 + 0.615664i \(0.211112\pi\)
\(102\) 0 0
\(103\) 10.3923i 1.02398i −0.858990 0.511992i \(-0.828908\pi\)
0.858990 0.511992i \(-0.171092\pi\)
\(104\) 0 0
\(105\) −10.3923 12.0000i −1.01419 1.17108i
\(106\) 0 0
\(107\) −7.00000 + 7.00000i −0.676716 + 0.676716i −0.959256 0.282540i \(-0.908823\pi\)
0.282540 + 0.959256i \(0.408823\pi\)
\(108\) 0 0
\(109\) −13.0000 + 13.0000i −1.24517 + 1.24517i −0.287348 + 0.957826i \(0.592774\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) 0 0
\(111\) −17.3205 −1.64399
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) −6.92820 + 6.92820i −0.646058 + 0.646058i
\(116\) 0 0
\(117\) 5.19615 5.19615i 0.480384 0.480384i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000i 0.636364i
\(122\) 0 0
\(123\) −6.00000 + 6.00000i −0.541002 + 0.541002i
\(124\) 0 0
\(125\) 6.92820 + 6.92820i 0.619677 + 0.619677i
\(126\) 0 0
\(127\) 6.00000i 0.532414i 0.963916 + 0.266207i \(0.0857705\pi\)
−0.963916 + 0.266207i \(0.914230\pi\)
\(128\) 0 0
\(129\) 3.46410i 0.304997i
\(130\) 0 0
\(131\) −5.19615 + 5.19615i −0.453990 + 0.453990i −0.896676 0.442687i \(-0.854025\pi\)
0.442687 + 0.896676i \(0.354025\pi\)
\(132\) 0 0
\(133\) −1.39230 + 19.3923i −0.120728 + 1.68153i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000i 0.683486i 0.939793 + 0.341743i \(0.111017\pi\)
−0.939793 + 0.341743i \(0.888983\pi\)
\(138\) 0 0
\(139\) 5.19615 + 5.19615i 0.440732 + 0.440732i 0.892258 0.451526i \(-0.149120\pi\)
−0.451526 + 0.892258i \(0.649120\pi\)
\(140\) 0 0
\(141\) 12.0000 12.0000i 1.01058 1.01058i
\(142\) 0 0
\(143\) −10.3923 −0.869048
\(144\) 0 0
\(145\) 3.46410i 0.287678i
\(146\) 0 0
\(147\) −10.2679 13.7321i −0.846886 1.13260i
\(148\) 0 0
\(149\) −5.00000 5.00000i −0.409616 0.409616i 0.471989 0.881605i \(-0.343536\pi\)
−0.881605 + 0.471989i \(0.843536\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 12.0000 12.0000i 0.963863 0.963863i
\(156\) 0 0
\(157\) 8.66025 + 8.66025i 0.691164 + 0.691164i 0.962488 0.271324i \(-0.0874616\pi\)
−0.271324 + 0.962488i \(0.587462\pi\)
\(158\) 0 0
\(159\) 10.3923 0.824163
\(160\) 0 0
\(161\) −8.00000 + 6.92820i −0.630488 + 0.546019i
\(162\) 0 0
\(163\) −5.00000 5.00000i −0.391630 0.391630i 0.483638 0.875268i \(-0.339315\pi\)
−0.875268 + 0.483638i \(0.839315\pi\)
\(164\) 0 0
\(165\) 18.0000 + 18.0000i 1.40130 + 1.40130i
\(166\) 0 0
\(167\) 10.3923i 0.804181i −0.915600 0.402090i \(-0.868284\pi\)
0.915600 0.402090i \(-0.131716\pi\)
\(168\) 0 0
\(169\) 7.00000i 0.538462i
\(170\) 0 0
\(171\) 15.5885 + 15.5885i 1.19208 + 1.19208i
\(172\) 0 0
\(173\) −12.1244 12.1244i −0.921798 0.921798i 0.0753588 0.997156i \(-0.475990\pi\)
−0.997156 + 0.0753588i \(0.975990\pi\)
\(174\) 0 0
\(175\) −1.73205 2.00000i −0.130931 0.151186i
\(176\) 0 0
\(177\) −30.0000 −2.25494
\(178\) 0 0
\(179\) −17.0000 17.0000i −1.27064 1.27064i −0.945753 0.324887i \(-0.894674\pi\)
−0.324887 0.945753i \(-0.605326\pi\)
\(180\) 0 0
\(181\) 8.66025 8.66025i 0.643712 0.643712i −0.307754 0.951466i \(-0.599577\pi\)
0.951466 + 0.307754i \(0.0995775\pi\)
\(182\) 0 0
\(183\) −18.0000 −1.33060
\(184\) 0 0
\(185\) −17.3205 −1.27343
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.0000i 0.723575i −0.932261 0.361787i \(-0.882167\pi\)
0.932261 0.361787i \(-0.117833\pi\)
\(192\) 0 0
\(193\) 10.0000 0.719816 0.359908 0.932988i \(-0.382808\pi\)
0.359908 + 0.932988i \(0.382808\pi\)
\(194\) 0 0
\(195\) 10.3923 10.3923i 0.744208 0.744208i
\(196\) 0 0
\(197\) −1.00000 1.00000i −0.0712470 0.0712470i 0.670585 0.741832i \(-0.266043\pi\)
−0.741832 + 0.670585i \(0.766043\pi\)
\(198\) 0 0
\(199\) 10.3923i 0.736691i −0.929689 0.368345i \(-0.879924\pi\)
0.929689 0.368345i \(-0.120076\pi\)
\(200\) 0 0
\(201\) 24.2487 1.71037
\(202\) 0 0
\(203\) −0.267949 + 3.73205i −0.0188063 + 0.261939i
\(204\) 0 0
\(205\) −6.00000 + 6.00000i −0.419058 + 0.419058i
\(206\) 0 0
\(207\) 12.0000i 0.834058i
\(208\) 0 0
\(209\) 31.1769i 2.15655i
\(210\) 0 0
\(211\) 19.0000 + 19.0000i 1.30801 + 1.30801i 0.922847 + 0.385167i \(0.125856\pi\)
0.385167 + 0.922847i \(0.374144\pi\)
\(212\) 0 0
\(213\) −6.92820 + 6.92820i −0.474713 + 0.474713i
\(214\) 0 0
\(215\) 3.46410i 0.236250i
\(216\) 0 0
\(217\) 13.8564 12.0000i 0.940634 0.814613i
\(218\) 0 0
\(219\) 18.0000 18.0000i 1.21633 1.21633i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 13.8564 0.927894 0.463947 0.885863i \(-0.346433\pi\)
0.463947 + 0.885863i \(0.346433\pi\)
\(224\) 0 0
\(225\) −3.00000 −0.200000
\(226\) 0 0
\(227\) 8.66025 8.66025i 0.574801 0.574801i −0.358665 0.933466i \(-0.616768\pi\)
0.933466 + 0.358665i \(0.116768\pi\)
\(228\) 0 0
\(229\) −5.19615 + 5.19615i −0.343371 + 0.343371i −0.857633 0.514262i \(-0.828066\pi\)
0.514262 + 0.857633i \(0.328066\pi\)
\(230\) 0 0
\(231\) 18.0000 + 20.7846i 1.18431 + 1.36753i
\(232\) 0 0
\(233\) 4.00000i 0.262049i −0.991379 0.131024i \(-0.958173\pi\)
0.991379 0.131024i \(-0.0418266\pi\)
\(234\) 0 0
\(235\) 12.0000 12.0000i 0.782794 0.782794i
\(236\) 0 0
\(237\) −3.46410 3.46410i −0.225018 0.225018i
\(238\) 0 0
\(239\) 2.00000i 0.129369i −0.997906 0.0646846i \(-0.979396\pi\)
0.997906 0.0646846i \(-0.0206041\pi\)
\(240\) 0 0
\(241\) 13.8564i 0.892570i 0.894891 + 0.446285i \(0.147253\pi\)
−0.894891 + 0.446285i \(0.852747\pi\)
\(242\) 0 0
\(243\) 15.5885 15.5885i 1.00000 1.00000i
\(244\) 0 0
\(245\) −10.2679 13.7321i −0.655995 0.877309i
\(246\) 0 0
\(247\) −18.0000 −1.14531
\(248\) 0 0
\(249\) 6.00000i 0.380235i
\(250\) 0 0
\(251\) −1.73205 1.73205i −0.109326 0.109326i 0.650328 0.759654i \(-0.274632\pi\)
−0.759654 + 0.650328i \(0.774632\pi\)
\(252\) 0 0
\(253\) 12.0000 12.0000i 0.754434 0.754434i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.7128i 1.72868i −0.502910 0.864339i \(-0.667737\pi\)
0.502910 0.864339i \(-0.332263\pi\)
\(258\) 0 0
\(259\) −18.6603 1.33975i −1.15949 0.0832478i
\(260\) 0 0
\(261\) 3.00000 + 3.00000i 0.185695 + 0.185695i
\(262\) 0 0
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 0 0
\(265\) 10.3923 0.638394
\(266\) 0 0
\(267\) −6.00000 + 6.00000i −0.367194 + 0.367194i
\(268\) 0 0
\(269\) −5.19615 5.19615i −0.316815 0.316815i 0.530728 0.847543i \(-0.321919\pi\)
−0.847543 + 0.530728i \(0.821919\pi\)
\(270\) 0 0
\(271\) −13.8564 −0.841717 −0.420858 0.907126i \(-0.638271\pi\)
−0.420858 + 0.907126i \(0.638271\pi\)
\(272\) 0 0
\(273\) 12.0000 10.3923i 0.726273 0.628971i
\(274\) 0 0
\(275\) 3.00000 + 3.00000i 0.180907 + 0.180907i
\(276\) 0 0
\(277\) −1.00000 1.00000i −0.0600842 0.0600842i 0.676426 0.736510i \(-0.263528\pi\)
−0.736510 + 0.676426i \(0.763528\pi\)
\(278\) 0 0
\(279\) 20.7846i 1.24434i
\(280\) 0 0
\(281\) 28.0000i 1.67034i 0.549992 + 0.835170i \(0.314631\pi\)
−0.549992 + 0.835170i \(0.685369\pi\)
\(282\) 0 0
\(283\) 5.19615 + 5.19615i 0.308879 + 0.308879i 0.844475 0.535595i \(-0.179913\pi\)
−0.535595 + 0.844475i \(0.679913\pi\)
\(284\) 0 0
\(285\) 31.1769 + 31.1769i 1.84676 + 1.84676i
\(286\) 0 0
\(287\) −6.92820 + 6.00000i −0.408959 + 0.354169i
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.73205 1.73205i 0.101187 0.101187i −0.654701 0.755888i \(-0.727205\pi\)
0.755888 + 0.654701i \(0.227205\pi\)
\(294\) 0 0
\(295\) −30.0000 −1.74667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.92820 6.92820i −0.400668 0.400668i
\(300\) 0 0
\(301\) 0.267949 3.73205i 0.0154443 0.215112i
\(302\) 0 0
\(303\) 6.00000i 0.344691i
\(304\) 0 0
\(305\) −18.0000 −1.03068
\(306\) 0 0
\(307\) 1.73205 1.73205i 0.0988534 0.0988534i −0.655951 0.754804i \(-0.727732\pi\)
0.754804 + 0.655951i \(0.227732\pi\)
\(308\) 0 0
\(309\) −18.0000 18.0000i −1.02398 1.02398i
\(310\) 0 0
\(311\) 10.3923i 0.589294i 0.955606 + 0.294647i \(0.0952020\pi\)
−0.955606 + 0.294647i \(0.904798\pi\)
\(312\) 0 0
\(313\) −17.3205 −0.979013 −0.489506 0.872000i \(-0.662823\pi\)
−0.489506 + 0.872000i \(0.662823\pi\)
\(314\) 0 0
\(315\) −19.3923 1.39230i −1.09263 0.0784475i
\(316\) 0 0
\(317\) 3.00000 3.00000i 0.168497 0.168497i −0.617822 0.786318i \(-0.711985\pi\)
0.786318 + 0.617822i \(0.211985\pi\)
\(318\) 0 0
\(319\) 6.00000i 0.335936i
\(320\) 0 0
\(321\) 24.2487i 1.35343i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 1.73205 1.73205i 0.0960769 0.0960769i
\(326\) 0 0
\(327\) 45.0333i 2.49035i
\(328\) 0 0
\(329\) 13.8564 12.0000i 0.763928 0.661581i
\(330\) 0 0
\(331\) 17.0000 17.0000i 0.934405 0.934405i −0.0635727 0.997977i \(-0.520249\pi\)
0.997977 + 0.0635727i \(0.0202495\pi\)
\(332\) 0 0
\(333\) −15.0000 + 15.0000i −0.821995 + 0.821995i
\(334\) 0 0
\(335\) 24.2487 1.32485
\(336\) 0 0
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 0 0
\(339\) −17.3205 + 17.3205i −0.940721 + 0.940721i
\(340\) 0 0
\(341\) −20.7846 + 20.7846i −1.12555 + 1.12555i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 24.0000i 1.29212i
\(346\) 0 0
\(347\) −23.0000 + 23.0000i −1.23470 + 1.23470i −0.272568 + 0.962136i \(0.587873\pi\)
−0.962136 + 0.272568i \(0.912127\pi\)
\(348\) 0 0
\(349\) −19.0526 19.0526i −1.01986 1.01986i −0.999799 0.0200613i \(-0.993614\pi\)
−0.0200613 0.999799i \(-0.506386\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.8564i 0.737502i 0.929528 + 0.368751i \(0.120215\pi\)
−0.929528 + 0.368751i \(0.879785\pi\)
\(354\) 0 0
\(355\) −6.92820 + 6.92820i −0.367711 + 0.367711i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 0 0
\(361\) 35.0000i 1.84211i
\(362\) 0 0
\(363\) −12.1244 12.1244i −0.636364 0.636364i
\(364\) 0 0
\(365\) 18.0000 18.0000i 0.942163 0.942163i
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 10.3923i 0.541002i
\(370\) 0 0
\(371\) 11.1962 + 0.803848i 0.581275 + 0.0417337i
\(372\) 0 0
\(373\) 7.00000 + 7.00000i 0.362446 + 0.362446i 0.864713 0.502267i \(-0.167500\pi\)
−0.502267 + 0.864713i \(0.667500\pi\)
\(374\) 0 0
\(375\) 24.0000 1.23935
\(376\) 0 0
\(377\) −3.46410 −0.178410
\(378\) 0 0
\(379\) −11.0000 + 11.0000i −0.565032 + 0.565032i −0.930733 0.365701i \(-0.880829\pi\)
0.365701 + 0.930733i \(0.380829\pi\)
\(380\) 0 0
\(381\) 10.3923 + 10.3923i 0.532414 + 0.532414i
\(382\) 0 0
\(383\) −34.6410 −1.77007 −0.885037 0.465521i \(-0.845867\pi\)
−0.885037 + 0.465521i \(0.845867\pi\)
\(384\) 0 0
\(385\) 18.0000 + 20.7846i 0.917365 + 1.05928i
\(386\) 0 0
\(387\) −3.00000 3.00000i −0.152499 0.152499i
\(388\) 0 0
\(389\) 3.00000 + 3.00000i 0.152106 + 0.152106i 0.779058 0.626952i \(-0.215698\pi\)
−0.626952 + 0.779058i \(0.715698\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 18.0000i 0.907980i
\(394\) 0 0
\(395\) −3.46410 3.46410i −0.174298 0.174298i
\(396\) 0 0
\(397\) −19.0526 19.0526i −0.956221 0.956221i 0.0428605 0.999081i \(-0.486353\pi\)
−0.999081 + 0.0428605i \(0.986353\pi\)
\(398\) 0 0
\(399\) 31.1769 + 36.0000i 1.56080 + 1.80225i
\(400\) 0 0
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) 12.0000 + 12.0000i 0.597763 + 0.597763i
\(404\) 0 0
\(405\) 15.5885 15.5885i 0.774597 0.774597i
\(406\) 0 0
\(407\) 30.0000 1.48704
\(408\) 0 0
\(409\) −17.3205 −0.856444 −0.428222 0.903674i \(-0.640860\pi\)
−0.428222 + 0.903674i \(0.640860\pi\)
\(410\) 0 0
\(411\) 13.8564 + 13.8564i 0.683486 + 0.683486i
\(412\) 0 0
\(413\) −32.3205 2.32051i −1.59039 0.114185i
\(414\) 0 0
\(415\) 6.00000i 0.294528i
\(416\) 0 0
\(417\) 18.0000 0.881464
\(418\) 0 0
\(419\) −25.9808 + 25.9808i −1.26924 + 1.26924i −0.322764 + 0.946480i \(0.604612\pi\)
−0.946480 + 0.322764i \(0.895388\pi\)
\(420\) 0 0
\(421\) 11.0000 + 11.0000i 0.536107 + 0.536107i 0.922383 0.386276i \(-0.126239\pi\)
−0.386276 + 0.922383i \(0.626239\pi\)
\(422\) 0 0
\(423\) 20.7846i 1.01058i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −19.3923 1.39230i −0.938459 0.0673784i
\(428\) 0 0
\(429\) −18.0000 + 18.0000i −0.869048 + 0.869048i
\(430\) 0 0
\(431\) 10.0000i 0.481683i −0.970564 0.240842i \(-0.922577\pi\)
0.970564 0.240842i \(-0.0774234\pi\)
\(432\) 0 0
\(433\) 27.7128i 1.33179i 0.746044 + 0.665896i \(0.231951\pi\)
−0.746044 + 0.665896i \(0.768049\pi\)
\(434\) 0 0
\(435\) 6.00000 + 6.00000i 0.287678 + 0.287678i
\(436\) 0 0
\(437\) 20.7846 20.7846i 0.994263 0.994263i
\(438\) 0 0
\(439\) 17.3205i 0.826663i −0.910581 0.413331i \(-0.864365\pi\)
0.910581 0.413331i \(-0.135635\pi\)
\(440\) 0 0
\(441\) −20.7846 3.00000i −0.989743 0.142857i
\(442\) 0 0
\(443\) −15.0000 + 15.0000i −0.712672 + 0.712672i −0.967093 0.254422i \(-0.918115\pi\)
0.254422 + 0.967093i \(0.418115\pi\)
\(444\) 0 0
\(445\) −6.00000 + 6.00000i −0.284427 + 0.284427i
\(446\) 0 0
\(447\) −17.3205 −0.819232
\(448\) 0 0
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 0 0
\(451\) 10.3923 10.3923i 0.489355 0.489355i
\(452\) 0 0
\(453\) 20.7846 20.7846i 0.976546 0.976546i
\(454\) 0 0
\(455\) 12.0000 10.3923i 0.562569 0.487199i
\(456\) 0 0
\(457\) 36.0000i 1.68401i 0.539471 + 0.842004i \(0.318624\pi\)
−0.539471 + 0.842004i \(0.681376\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 8.66025 + 8.66025i 0.403348 + 0.403348i 0.879411 0.476063i \(-0.157937\pi\)
−0.476063 + 0.879411i \(0.657937\pi\)
\(462\) 0 0
\(463\) 34.0000i 1.58011i −0.613033 0.790057i \(-0.710051\pi\)
0.613033 0.790057i \(-0.289949\pi\)
\(464\) 0 0
\(465\) 41.5692i 1.92773i
\(466\) 0 0
\(467\) 15.5885 15.5885i 0.721348 0.721348i −0.247532 0.968880i \(-0.579620\pi\)
0.968880 + 0.247532i \(0.0796195\pi\)
\(468\) 0 0
\(469\) 26.1244 + 1.87564i 1.20631 + 0.0866092i
\(470\) 0 0
\(471\) 30.0000 1.38233
\(472\) 0 0
\(473\) 6.00000i 0.275880i
\(474\) 0 0
\(475\) 5.19615 + 5.19615i 0.238416 + 0.238416i
\(476\) 0 0
\(477\) 9.00000 9.00000i 0.412082 0.412082i
\(478\) 0 0
\(479\) −6.92820 −0.316558 −0.158279 0.987394i \(-0.550594\pi\)
−0.158279 + 0.987394i \(0.550594\pi\)
\(480\) 0 0
\(481\) 17.3205i 0.789747i
\(482\) 0 0
\(483\) −1.85641 + 25.8564i −0.0844694 + 1.17651i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 12.0000 0.543772 0.271886 0.962329i \(-0.412353\pi\)
0.271886 + 0.962329i \(0.412353\pi\)
\(488\) 0 0
\(489\) −17.3205 −0.783260
\(490\) 0 0
\(491\) 9.00000 9.00000i 0.406164 0.406164i −0.474234 0.880399i \(-0.657275\pi\)
0.880399 + 0.474234i \(0.157275\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 31.1769 1.40130
\(496\) 0 0
\(497\) −8.00000 + 6.92820i −0.358849 + 0.310772i
\(498\) 0 0
\(499\) 11.0000 + 11.0000i 0.492428 + 0.492428i 0.909070 0.416643i \(-0.136793\pi\)
−0.416643 + 0.909070i \(0.636793\pi\)
\(500\) 0 0
\(501\) −18.0000 18.0000i −0.804181 0.804181i
\(502\) 0 0
\(503\) 38.1051i 1.69902i 0.527570 + 0.849512i \(0.323103\pi\)
−0.527570 + 0.849512i \(0.676897\pi\)
\(504\) 0 0
\(505\) 6.00000i 0.266996i
\(506\) 0 0
\(507\) −12.1244 12.1244i −0.538462 0.538462i
\(508\) 0 0
\(509\) 29.4449 + 29.4449i 1.30512 + 1.30512i 0.924893 + 0.380228i \(0.124154\pi\)
0.380228 + 0.924893i \(0.375846\pi\)
\(510\) 0 0
\(511\) 20.7846 18.0000i 0.919457 0.796273i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −18.0000 18.0000i −0.793175 0.793175i
\(516\) 0 0
\(517\) −20.7846 + 20.7846i −0.914106 + 0.914106i
\(518\) 0 0
\(519\) −42.0000 −1.84360
\(520\) 0 0
\(521\) 10.3923 0.455295 0.227648 0.973744i \(-0.426897\pi\)
0.227648 + 0.973744i \(0.426897\pi\)
\(522\) 0 0
\(523\) −1.73205 1.73205i −0.0757373 0.0757373i 0.668223 0.743961i \(-0.267055\pi\)
−0.743961 + 0.668223i \(0.767055\pi\)
\(524\) 0 0
\(525\) −6.46410 0.464102i −0.282117 0.0202551i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −25.9808 + 25.9808i −1.12747 + 1.12747i
\(532\) 0 0
\(533\) −6.00000 6.00000i −0.259889 0.259889i
\(534\) 0 0
\(535\) 24.2487i 1.04836i
\(536\) 0 0
\(537\) −58.8897 −2.54128
\(538\) 0 0
\(539\) 17.7846 + 23.7846i 0.766037 + 1.02448i
\(540\) 0 0
\(541\) −5.00000 + 5.00000i −0.214967 + 0.214967i −0.806373 0.591407i \(-0.798573\pi\)
0.591407 + 0.806373i \(0.298573\pi\)
\(542\) 0 0
\(543\) 30.0000i 1.28742i
\(544\) 0 0
\(545\) 45.0333i 1.92902i
\(546\) 0 0
\(547\) −1.00000 1.00000i −0.0427569 0.0427569i 0.685405 0.728162i \(-0.259625\pi\)
−0.728162 + 0.685405i \(0.759625\pi\)
\(548\) 0 0
\(549\) −15.5885 + 15.5885i −0.665299 + 0.665299i
\(550\) 0 0
\(551\) 10.3923i 0.442727i
\(552\) 0 0
\(553\) −3.46410 4.00000i −0.147309 0.170097i
\(554\) 0 0
\(555\) −30.0000 + 30.0000i −1.27343 + 1.27343i
\(556\) 0 0
\(557\) 7.00000 7.00000i 0.296600 0.296600i −0.543081 0.839680i \(-0.682742\pi\)
0.839680 + 0.543081i \(0.182742\pi\)
\(558\) 0 0
\(559\) 3.46410 0.146516
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 22.5167 22.5167i 0.948964 0.948964i −0.0497953 0.998759i \(-0.515857\pi\)
0.998759 + 0.0497953i \(0.0158569\pi\)
\(564\) 0 0
\(565\) −17.3205 + 17.3205i −0.728679 + 0.728679i
\(566\) 0 0
\(567\) 18.0000 15.5885i 0.755929 0.654654i
\(568\) 0 0
\(569\) 4.00000i 0.167689i 0.996479 + 0.0838444i \(0.0267199\pi\)
−0.996479 + 0.0838444i \(0.973280\pi\)
\(570\) 0 0
\(571\) 5.00000 5.00000i 0.209243 0.209243i −0.594702 0.803946i \(-0.702730\pi\)
0.803946 + 0.594702i \(0.202730\pi\)
\(572\) 0 0
\(573\) −17.3205 17.3205i −0.723575 0.723575i
\(574\) 0 0
\(575\) 4.00000i 0.166812i
\(576\) 0 0
\(577\) 13.8564i 0.576850i −0.957503 0.288425i \(-0.906868\pi\)
0.957503 0.288425i \(-0.0931316\pi\)
\(578\) 0 0
\(579\) 17.3205 17.3205i 0.719816 0.719816i
\(580\) 0 0
\(581\) 0.464102 6.46410i 0.0192542 0.268176i
\(582\) 0 0
\(583\) −18.0000 −0.745484
\(584\) 0 0
\(585\) 18.0000i 0.744208i
\(586\) 0 0
\(587\) −1.73205 1.73205i −0.0714894 0.0714894i 0.670458 0.741947i \(-0.266098\pi\)
−0.741947 + 0.670458i \(0.766098\pi\)
\(588\) 0 0
\(589\) −36.0000 + 36.0000i −1.48335 + 1.48335i
\(590\) 0 0
\(591\) −3.46410 −0.142494
\(592\) 0 0
\(593\) 13.8564i 0.569014i 0.958674 + 0.284507i \(0.0918300\pi\)
−0.958674 + 0.284507i \(0.908170\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −18.0000 18.0000i −0.736691 0.736691i
\(598\) 0 0
\(599\) −44.0000 −1.79779 −0.898896 0.438163i \(-0.855629\pi\)
−0.898896 + 0.438163i \(0.855629\pi\)
\(600\) 0 0
\(601\) 38.1051 1.55434 0.777170 0.629291i \(-0.216654\pi\)
0.777170 + 0.629291i \(0.216654\pi\)
\(602\) 0 0
\(603\) 21.0000 21.0000i 0.855186 0.855186i
\(604\) 0 0
\(605\) −12.1244 12.1244i −0.492925 0.492925i
\(606\) 0 0
\(607\) −27.7128 −1.12483 −0.562414 0.826856i \(-0.690127\pi\)
−0.562414 + 0.826856i \(0.690127\pi\)
\(608\) 0 0
\(609\) 6.00000 + 6.92820i 0.243132 + 0.280745i
\(610\) 0 0
\(611\) 12.0000 + 12.0000i 0.485468 + 0.485468i
\(612\) 0 0
\(613\) −29.0000 29.0000i −1.17130 1.17130i −0.981900 0.189399i \(-0.939346\pi\)
−0.189399 0.981900i \(-0.560654\pi\)
\(614\) 0 0
\(615\) 20.7846i 0.838116i
\(616\) 0 0
\(617\) 16.0000i 0.644136i −0.946717 0.322068i \(-0.895622\pi\)
0.946717 0.322068i \(-0.104378\pi\)
\(618\) 0 0
\(619\) −22.5167 22.5167i −0.905021 0.905021i 0.0908441 0.995865i \(-0.471043\pi\)
−0.995865 + 0.0908441i \(0.971043\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −6.92820 + 6.00000i −0.277573 + 0.240385i
\(624\) 0 0
\(625\) 29.0000 1.16000
\(626\) 0 0
\(627\) −54.0000 54.0000i −2.15655 2.15655i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −12.0000 −0.477712 −0.238856 0.971055i \(-0.576772\pi\)
−0.238856 + 0.971055i \(0.576772\pi\)
\(632\) 0 0
\(633\) 65.8179 2.61603
\(634\) 0 0
\(635\) 10.3923 + 10.3923i 0.412406 + 0.412406i
\(636\) 0 0
\(637\) 13.7321 10.2679i 0.544084 0.406831i
\(638\) 0 0
\(639\) 12.0000i 0.474713i
\(640\) 0 0
\(641\) 10.0000 0.394976 0.197488 0.980305i \(-0.436722\pi\)
0.197488 + 0.980305i \(0.436722\pi\)
\(642\) 0 0
\(643\) 1.73205 1.73205i 0.0683054 0.0683054i −0.672129 0.740434i \(-0.734620\pi\)
0.740434 + 0.672129i \(0.234620\pi\)
\(644\) 0 0
\(645\) −6.00000 6.00000i −0.236250 0.236250i
\(646\) 0 0
\(647\) 17.3205i 0.680939i 0.940255 + 0.340470i \(0.110586\pi\)
−0.940255 + 0.340470i \(0.889414\pi\)
\(648\) 0 0
\(649\) 51.9615 2.03967
\(650\) 0 0
\(651\) 3.21539 44.7846i 0.126021 1.75525i
\(652\) 0 0
\(653\) 31.0000 31.0000i 1.21312 1.21312i 0.243130 0.969994i \(-0.421826\pi\)
0.969994 0.243130i \(-0.0781742\pi\)
\(654\) 0 0
\(655\) 18.0000i 0.703318i
\(656\) 0 0
\(657\) 31.1769i 1.21633i
\(658\) 0 0
\(659\) 23.0000 + 23.0000i 0.895953 + 0.895953i 0.995075 0.0991224i \(-0.0316036\pi\)
−0.0991224 + 0.995075i \(0.531604\pi\)
\(660\) 0 0
\(661\) 8.66025 8.66025i 0.336845 0.336845i −0.518334 0.855178i \(-0.673447\pi\)
0.855178 + 0.518334i \(0.173447\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 31.1769 + 36.0000i 1.20899 + 1.39602i
\(666\) 0 0
\(667\) 4.00000 4.00000i 0.154881 0.154881i
\(668\) 0 0
\(669\) 24.0000 24.0000i 0.927894 0.927894i
\(670\) 0 0
\(671\) 31.1769 1.20357
\(672\) 0 0
\(673\) −42.0000 −1.61898 −0.809491 0.587133i \(-0.800257\pi\)
−0.809491 + 0.587133i \(0.800257\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.5167 22.5167i 0.865386 0.865386i −0.126572 0.991957i \(-0.540397\pi\)
0.991957 + 0.126572i \(0.0403974\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 30.0000i 1.14960i
\(682\) 0 0
\(683\) 21.0000 21.0000i 0.803543 0.803543i −0.180105 0.983647i \(-0.557644\pi\)
0.983647 + 0.180105i \(0.0576437\pi\)
\(684\) 0 0
\(685\) 13.8564 + 13.8564i 0.529426 + 0.529426i
\(686\) 0 0
\(687\) 18.0000i 0.686743i
\(688\) 0 0
\(689\) 10.3923i 0.395915i
\(690\) 0 0
\(691\) 1.73205 1.73205i 0.0658903 0.0658903i −0.673394 0.739284i \(-0.735164\pi\)
0.739284 + 0.673394i \(0.235164\pi\)
\(692\) 0 0
\(693\) 33.5885 + 2.41154i 1.27592 + 0.0916069i
\(694\) 0 0
\(695\) 18.0000 0.682779
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) −6.92820 6.92820i −0.262049 0.262049i
\(700\) 0 0
\(701\) 27.0000 27.0000i 1.01978 1.01978i 0.0199755 0.999800i \(-0.493641\pi\)
0.999800 0.0199755i \(-0.00635881\pi\)
\(702\) 0 0
\(703\) 51.9615 1.95977
\(704\) 0 0
\(705\) 41.5692i 1.56559i
\(706\) 0 0
\(707\) 0.464102 6.46410i 0.0174543 0.243108i
\(708\) 0 0
\(709\) 19.0000 + 19.0000i 0.713560 + 0.713560i 0.967278 0.253718i \(-0.0816536\pi\)
−0.253718 + 0.967278i \(0.581654\pi\)
\(710\) 0 0
\(711\) −6.00000 −0.225018
\(712\) 0 0
\(713\) −27.7128 −1.03785
\(714\) 0 0
\(715\) −18.0000 + 18.0000i −0.673162 + 0.673162i
\(716\) 0 0
\(717\) −3.46410 3.46410i −0.129369 0.129369i
\(718\) 0 0
\(719\) −6.92820 −0.258378 −0.129189 0.991620i \(-0.541237\pi\)
−0.129189 + 0.991620i \(0.541237\pi\)
\(720\) 0 0
\(721\) −18.0000 20.7846i −0.670355 0.774059i
\(722\) 0 0
\(723\) 24.0000 + 24.0000i 0.892570 + 0.892570i
\(724\) 0 0
\(725\) 1.00000 + 1.00000i 0.0371391 + 0.0371391i
\(726\) 0 0
\(727\) 38.1051i 1.41324i −0.707593 0.706620i \(-0.750219\pi\)
0.707593 0.706620i \(-0.249781\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 1.73205 + 1.73205i 0.0639748 + 0.0639748i 0.738370 0.674396i \(-0.235596\pi\)
−0.674396 + 0.738370i \(0.735596\pi\)
\(734\) 0 0
\(735\) −41.5692 6.00000i −1.53330 0.221313i
\(736\) 0 0
\(737\) −42.0000 −1.54709
\(738\) 0 0
\(739\) 11.0000 + 11.0000i 0.404642 + 0.404642i 0.879865 0.475224i \(-0.157633\pi\)
−0.475224 + 0.879865i \(0.657633\pi\)
\(740\) 0 0
\(741\) −31.1769 + 31.1769i −1.14531 + 1.14531i
\(742\) 0 0
\(743\) 20.0000 0.733729 0.366864 0.930274i \(-0.380431\pi\)
0.366864 + 0.930274i \(0.380431\pi\)
\(744\) 0 0
\(745\) −17.3205 −0.634574
\(746\) 0 0
\(747\) −5.19615 5.19615i −0.190117 0.190117i
\(748\) 0 0
\(749\) −1.87564 + 26.1244i −0.0685346 + 0.954563i
\(750\) 0 0
\(751\) 46.0000i 1.67856i 0.543696 + 0.839282i \(0.317024\pi\)
−0.543696 + 0.839282i \(0.682976\pi\)
\(752\) 0 0
\(753\) −6.00000 −0.218652
\(754\) 0 0
\(755\) 20.7846 20.7846i 0.756429 0.756429i
\(756\) 0 0
\(757\) −13.0000 13.0000i −0.472493 0.472493i 0.430227 0.902721i \(-0.358433\pi\)
−0.902721 + 0.430227i \(0.858433\pi\)
\(758\) 0 0
\(759\) 41.5692i 1.50887i
\(760\) 0 0
\(761\) −3.46410 −0.125574 −0.0627868 0.998027i \(-0.519999\pi\)
−0.0627868 + 0.998027i \(0.519999\pi\)
\(762\) 0 0
\(763\) −3.48334 + 48.5167i −0.126105 + 1.75642i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 30.0000i 1.08324i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −48.0000 48.0000i −1.72868 1.72868i
\(772\) 0 0
\(773\) −12.1244 + 12.1244i −0.436083 + 0.436083i −0.890691 0.454609i \(-0.849779\pi\)
0.454609 + 0.890691i \(0.349779\pi\)
\(774\) 0 0
\(775\) 6.92820i 0.248868i
\(776\) 0 0
\(777\) −34.6410 + 30.0000i −1.24274 + 1.07624i
\(778\) 0 0
\(779\) 18.0000 18.0000i 0.644917 0.644917i
\(780\) 0 0
\(781\) 12.0000 12.0000i 0.429394 0.429394i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 30.0000 1.07075
\(786\) 0 0
\(787\) 1.73205 1.73205i 0.0617409 0.0617409i −0.675562 0.737303i \(-0.736099\pi\)
0.737303 + 0.675562i \(0.236099\pi\)
\(788\) 0 0
\(789\) 6.92820 6.92820i 0.246651 0.246651i
\(790\) 0 0
\(791\) −20.0000 + 17.3205i −0.711118 + 0.615846i
\(792\) 0 0
\(793\) 18.0000i 0.639199i
\(794\) 0 0
\(795\) 18.0000 18.0000i 0.638394 0.638394i
\(796\) 0 0
\(797\) 15.5885 + 15.5885i 0.552171 + 0.552171i 0.927067 0.374896i \(-0.122321\pi\)
−0.374896 + 0.927067i \(0.622321\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 10.3923i 0.367194i
\(802\) 0 0
\(803\) −31.1769 + 31.1769i −1.10021 + 1.10021i
\(804\) 0 0
\(805\) −1.85641 + 25.8564i −0.0654297 + 0.911319i
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) 0 0
\(809\) 20.0000i 0.703163i −0.936157 0.351581i \(-0.885644\pi\)
0.936157 0.351581i \(-0.114356\pi\)
\(810\) 0 0
\(811\) 19.0526 + 19.0526i 0.669026 + 0.669026i 0.957491 0.288465i \(-0.0931448\pi\)
−0.288465 + 0.957491i \(0.593145\pi\)
\(812\) 0 0
\(813\) −24.0000 + 24.0000i −0.841717 + 0.841717i
\(814\) 0 0
\(815\) −17.3205 −0.606711
\(816\) 0 0
\(817\) 10.3923i 0.363581i
\(818\) 0 0
\(819\) 1.39230 19.3923i 0.0486511 0.677622i
\(820\) 0 0
\(821\) 39.0000 + 39.0000i 1.36111 + 1.36111i 0.872506 + 0.488603i \(0.162493\pi\)
0.488603 + 0.872506i \(0.337507\pi\)
\(822\) 0 0
\(823\) −12.0000 −0.418294 −0.209147 0.977884i \(-0.567069\pi\)
−0.209147 + 0.977884i \(0.567069\pi\)
\(824\) 0 0
\(825\) 10.3923 0.361814
\(826\) 0 0
\(827\) 29.0000 29.0000i 1.00843 1.00843i 0.00846463 0.999964i \(-0.497306\pi\)
0.999964 0.00846463i \(-0.00269441\pi\)
\(828\) 0 0
\(829\) −12.1244 12.1244i −0.421096 0.421096i 0.464485 0.885581i \(-0.346240\pi\)
−0.885581 + 0.464485i \(0.846240\pi\)
\(830\) 0 0
\(831\) −3.46410 −0.120168
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −18.0000 18.0000i −0.622916 0.622916i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.3923i 0.358782i −0.983778 0.179391i \(-0.942587\pi\)
0.983778 0.179391i \(-0.0574128\pi\)
\(840\) 0 0
\(841\) 27.0000i 0.931034i
\(842\) 0 0
\(843\) 48.4974 + 48.4974i 1.67034 + 1.67034i
\(844\) 0 0
\(845\) −12.1244 12.1244i −0.417091 0.417091i
\(846\) 0 0
\(847\) −12.1244 14.0000i −0.416598 0.481046i
\(848\) 0 0
\(849\) 18.0000 0.617758
\(850\) 0 0
\(851\) 20.0000 + 20.0000i 0.685591 + 0.685591i
\(852\) 0 0
\(853\) 29.4449 29.4449i 1.00817 1.00817i 0.00820661 0.999966i \(-0.497388\pi\)
0.999966 0.00820661i \(-0.00261227\pi\)
\(854\) 0 0
\(855\) 54.0000 1.84676
\(856\) 0 0
\(857\) −45.0333 −1.53831 −0.769154 0.639063i \(-0.779322\pi\)
−0.769154 + 0.639063i \(0.779322\pi\)
\(858\) 0 0
\(859\) 19.0526 + 19.0526i 0.650065 + 0.650065i 0.953008 0.302944i \(-0.0979694\pi\)
−0.302944 + 0.953008i \(0.597969\pi\)
\(860\) 0 0
\(861\) −1.60770 + 22.3923i −0.0547901 + 0.763128i
\(862\) 0 0
\(863\) 38.0000i 1.29354i 0.762687 + 0.646768i \(0.223880\pi\)
−0.762687 + 0.646768i \(0.776120\pi\)
\(864\) 0 0
\(865\) −42.0000 −1.42804
\(866\) 0 0
\(867\) 29.4449 29.4449i 1.00000 1.00000i
\(868\) 0 0
\(869\) 6.00000 + 6.00000i 0.203536 + 0.203536i
\(870\) 0 0
\(871\) 24.2487i 0.821636i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 25.8564 + 1.85641i 0.874106 + 0.0627580i
\(876\) 0 0
\(877\) −5.00000 + 5.00000i −0.168838 + 0.168838i −0.786468 0.617630i \(-0.788093\pi\)
0.617630 + 0.786468i \(0.288093\pi\)
\(878\) 0 0
\(879\) 6.00000i 0.202375i
\(880\) 0 0
\(881\) 55.4256i 1.86734i −0.358139 0.933668i \(-0.616589\pi\)
0.358139 0.933668i \(-0.383411\pi\)
\(882\) 0 0
\(883\) −13.0000 13.0000i −0.437485 0.437485i 0.453680 0.891165i \(-0.350111\pi\)
−0.891165 + 0.453680i \(0.850111\pi\)
\(884\) 0 0
\(885\) −51.9615 + 51.9615i −1.74667 + 1.74667i
\(886\) 0 0
\(887\) 10.3923i 0.348939i −0.984663 0.174470i \(-0.944179\pi\)
0.984663 0.174470i \(-0.0558211\pi\)
\(888\) 0 0
\(889\) 10.3923 + 12.0000i 0.348547 + 0.402467i
\(890\) 0 0
\(891\) −27.0000 + 27.0000i −0.904534 + 0.904534i
\(892\) 0 0
\(893\) −36.0000 + 36.0000i −1.20469 + 1.20469i
\(894\) 0 0
\(895\) −58.8897 −1.96847
\(896\) 0 0
\(897\) −24.0000 −0.801337
\(898\) 0 0
\(899\) −6.92820 + 6.92820i −0.231069 + 0.231069i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −6.00000 6.92820i −0.199667 0.230556i
\(904\) 0 0
\(905\) 30.0000i 0.997234i
\(906\) 0 0
\(907\) 5.00000 5.00000i 0.166022 0.166022i −0.619206 0.785228i \(-0.712545\pi\)
0.785228 + 0.619206i \(0.212545\pi\)
\(908\) 0 0
\(909\) −5.19615 5.19615i −0.172345 0.172345i
\(910\) 0 0
\(911\) 34.0000i 1.12647i −0.826297 0.563235i \(-0.809557\pi\)
0.826297 0.563235i \(-0.190443\pi\)
\(912\) 0 0
\(913\) 10.3923i 0.343935i
\(914\) 0 0
\(915\) −31.1769 + 31.1769i −1.03068 + 1.03068i
\(916\) 0 0
\(917\) −1.39230 + 19.3923i −0.0459780 + 0.640390i
\(918\) 0 0
\(919\) −28.0000 −0.923635 −0.461817 0.886975i \(-0.652802\pi\)
−0.461817 + 0.886975i \(0.652802\pi\)
\(920\) 0 0
\(921\) 6.00000i 0.197707i
\(922\) 0 0
\(923\) −6.92820 6.92820i −0.228045 0.228045i
\(924\) 0 0
\(925\) −5.00000 + 5.00000i −0.164399 + 0.164399i
\(926\) 0 0
\(927\) −31.1769 −1.02398
\(928\) 0 0
\(929\) 41.5692i 1.36384i 0.731426 + 0.681921i \(0.238855\pi\)
−0.731426 + 0.681921i \(0.761145\pi\)
\(930\) 0 0
\(931\) 30.8038 + 41.1962i 1.00956 + 1.35015i
\(932\) 0 0
\(933\) 18.0000 + 18.0000i 0.589294 + 0.589294i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −17.3205 −0.565836 −0.282918 0.959144i \(-0.591302\pi\)
−0.282918 + 0.959144i \(0.591302\pi\)
\(938\) 0 0
\(939\) −30.0000 + 30.0000i −0.979013 + 0.979013i
\(940\) 0 0
\(941\) 22.5167 + 22.5167i 0.734022 + 0.734022i 0.971414 0.237392i \(-0.0762925\pi\)
−0.237392 + 0.971414i \(0.576293\pi\)
\(942\) 0 0
\(943\) 13.8564 0.451227
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.00000 5.00000i −0.162478 0.162478i 0.621185 0.783664i \(-0.286651\pi\)
−0.783664 + 0.621185i \(0.786651\pi\)
\(948\) 0 0
\(949\) 18.0000 + 18.0000i 0.584305 + 0.584305i
\(950\) 0 0
\(951\) 10.3923i 0.336994i
\(952\) 0 0
\(953\) 32.0000i 1.03658i −0.855204 0.518291i \(-0.826568\pi\)
0.855204 0.518291i \(-0.173432\pi\)
\(954\) 0 0
\(955\) −17.3205 17.3205i −0.560478 0.560478i
\(956\) 0 0
\(957\) −10.3923 10.3923i −0.335936 0.335936i
\(958\) 0 0
\(959\) 13.8564 + 16.0000i 0.447447 + 0.516667i
\(960\) 0 0
\(961\) 17.0000 0.548387
\(962\) 0 0
\(963\) 21.0000 + 21.0000i 0.676716 + 0.676716i
\(964\) 0 0
\(965\) 17.3205 17.3205i 0.557567 0.557567i
\(966\) 0 0
\(967\) 44.0000 1.41494 0.707472 0.706741i \(-0.249835\pi\)
0.707472 + 0.706741i \(0.249835\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −1.73205 1.73205i −0.0555842 0.0555842i 0.678768 0.734352i \(-0.262514\pi\)
−0.734352 + 0.678768i \(0.762514\pi\)
\(972\) 0 0
\(973\) 19.3923 + 1.39230i 0.621689 + 0.0446352i
\(974\) 0 0
\(975\) 6.00000i 0.192154i
\(976\) 0 0
\(977\) −10.0000 −0.319928 −0.159964 0.987123i \(-0.551138\pi\)
−0.159964 + 0.987123i \(0.551138\pi\)
\(978\) 0 0
\(979\) 10.3923 10.3923i 0.332140 0.332140i
\(980\) 0 0
\(981\) 39.0000 + 39.0000i 1.24517 + 1.24517i
\(982\) 0 0
\(983\) 45.0333i 1.43634i 0.695868 + 0.718170i \(0.255020\pi\)
−0.695868 + 0.718170i \(0.744980\pi\)
\(984\) 0 0
\(985\) −3.46410 −0.110375
\(986\) 0 0
\(987\) 3.21539 44.7846i 0.102347 1.42551i
\(988\) 0 0
\(989\) −4.00000 + 4.00000i −0.127193 + 0.127193i
\(990\) 0 0
\(991\) 6.00000i 0.190596i 0.995449 + 0.0952981i \(0.0303804\pi\)
−0.995449 + 0.0952981i \(0.969620\pi\)
\(992\) 0 0
\(993\) 58.8897i 1.86881i
\(994\) 0 0
\(995\) −18.0000 18.0000i −0.570638 0.570638i
\(996\) 0 0
\(997\) 22.5167 22.5167i 0.713110 0.713110i −0.254075 0.967185i \(-0.581771\pi\)
0.967185 + 0.254075i \(0.0817709\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.j.c.335.2 4
4.3 odd 2 112.2.j.c.27.1 4
7.6 odd 2 inner 448.2.j.c.335.1 4
8.3 odd 2 896.2.j.a.671.2 4
8.5 even 2 896.2.j.f.671.1 4
16.3 odd 4 inner 448.2.j.c.111.1 4
16.5 even 4 896.2.j.a.223.1 4
16.11 odd 4 896.2.j.f.223.2 4
16.13 even 4 112.2.j.c.83.2 yes 4
28.3 even 6 784.2.w.a.411.1 4
28.11 odd 6 784.2.w.b.411.1 4
28.19 even 6 784.2.w.b.619.1 4
28.23 odd 6 784.2.w.a.619.1 4
28.27 even 2 112.2.j.c.27.2 yes 4
56.13 odd 2 896.2.j.f.671.2 4
56.27 even 2 896.2.j.a.671.1 4
112.13 odd 4 112.2.j.c.83.1 yes 4
112.27 even 4 896.2.j.f.223.1 4
112.45 odd 12 784.2.w.a.19.1 4
112.61 odd 12 784.2.w.b.227.1 4
112.69 odd 4 896.2.j.a.223.2 4
112.83 even 4 inner 448.2.j.c.111.2 4
112.93 even 12 784.2.w.a.227.1 4
112.109 even 12 784.2.w.b.19.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.j.c.27.1 4 4.3 odd 2
112.2.j.c.27.2 yes 4 28.27 even 2
112.2.j.c.83.1 yes 4 112.13 odd 4
112.2.j.c.83.2 yes 4 16.13 even 4
448.2.j.c.111.1 4 16.3 odd 4 inner
448.2.j.c.111.2 4 112.83 even 4 inner
448.2.j.c.335.1 4 7.6 odd 2 inner
448.2.j.c.335.2 4 1.1 even 1 trivial
784.2.w.a.19.1 4 112.45 odd 12
784.2.w.a.227.1 4 112.93 even 12
784.2.w.a.411.1 4 28.3 even 6
784.2.w.a.619.1 4 28.23 odd 6
784.2.w.b.19.1 4 112.109 even 12
784.2.w.b.227.1 4 112.61 odd 12
784.2.w.b.411.1 4 28.11 odd 6
784.2.w.b.619.1 4 28.19 even 6
896.2.j.a.223.1 4 16.5 even 4
896.2.j.a.223.2 4 112.69 odd 4
896.2.j.a.671.1 4 56.27 even 2
896.2.j.a.671.2 4 8.3 odd 2
896.2.j.f.223.1 4 112.27 even 4
896.2.j.f.223.2 4 16.11 odd 4
896.2.j.f.671.1 4 8.5 even 2
896.2.j.f.671.2 4 56.13 odd 2