Properties

Label 448.2.j.c.111.1
Level $448$
Weight $2$
Character 448.111
Analytic conductor $3.577$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,2,Mod(111,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.111");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 448.j (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.57729801055\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 111.1
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 448.111
Dual form 448.2.j.c.335.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.73205 - 1.73205i) q^{3} +(-1.73205 - 1.73205i) q^{5} +(2.00000 - 1.73205i) q^{7} +3.00000i q^{9} +(-3.00000 - 3.00000i) q^{11} +(-1.73205 + 1.73205i) q^{13} +6.00000i q^{15} +(5.19615 + 5.19615i) q^{19} +(-6.46410 - 0.464102i) q^{21} -4.00000 q^{23} +1.00000i q^{25} +(-1.00000 - 1.00000i) q^{29} -6.92820 q^{31} +10.3923i q^{33} +(-6.46410 - 0.464102i) q^{35} +(-5.00000 + 5.00000i) q^{37} +6.00000 q^{39} +3.46410 q^{41} +(1.00000 + 1.00000i) q^{43} +(5.19615 - 5.19615i) q^{45} -6.92820 q^{47} +(1.00000 - 6.92820i) q^{49} +(3.00000 - 3.00000i) q^{53} +10.3923i q^{55} -18.0000i q^{57} +(8.66025 - 8.66025i) q^{59} +(5.19615 - 5.19615i) q^{61} +(5.19615 + 6.00000i) q^{63} +6.00000 q^{65} +(7.00000 - 7.00000i) q^{67} +(6.92820 + 6.92820i) q^{69} -4.00000 q^{71} -10.3923 q^{73} +(1.73205 - 1.73205i) q^{75} +(-11.1962 - 0.803848i) q^{77} +2.00000i q^{79} +9.00000 q^{81} +(-1.73205 - 1.73205i) q^{83} +3.46410i q^{87} +3.46410 q^{89} +(-0.464102 + 6.46410i) q^{91} +(12.0000 + 12.0000i) q^{93} -18.0000i q^{95} +(9.00000 - 9.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{7} - 12 q^{11} - 12 q^{21} - 16 q^{23} - 4 q^{29} - 12 q^{35} - 20 q^{37} + 24 q^{39} + 4 q^{43} + 4 q^{49} + 12 q^{53} + 24 q^{65} + 28 q^{67} - 16 q^{71} - 24 q^{77} + 36 q^{81} + 12 q^{91}+ \cdots + 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.73205 1.73205i −1.00000 1.00000i 1.00000i \(-0.5\pi\)
−1.00000 \(\pi\)
\(4\) 0 0
\(5\) −1.73205 1.73205i −0.774597 0.774597i 0.204310 0.978906i \(-0.434505\pi\)
−0.978906 + 0.204310i \(0.934505\pi\)
\(6\) 0 0
\(7\) 2.00000 1.73205i 0.755929 0.654654i
\(8\) 0 0
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) −3.00000 3.00000i −0.904534 0.904534i 0.0912903 0.995824i \(-0.470901\pi\)
−0.995824 + 0.0912903i \(0.970901\pi\)
\(12\) 0 0
\(13\) −1.73205 + 1.73205i −0.480384 + 0.480384i −0.905254 0.424870i \(-0.860320\pi\)
0.424870 + 0.905254i \(0.360320\pi\)
\(14\) 0 0
\(15\) 6.00000i 1.54919i
\(16\) 0 0
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 5.19615 + 5.19615i 1.19208 + 1.19208i 0.976483 + 0.215597i \(0.0691696\pi\)
0.215597 + 0.976483i \(0.430830\pi\)
\(20\) 0 0
\(21\) −6.46410 0.464102i −1.41058 0.101275i
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 1.00000i −0.185695 0.185695i 0.608137 0.793832i \(-0.291917\pi\)
−0.793832 + 0.608137i \(0.791917\pi\)
\(30\) 0 0
\(31\) −6.92820 −1.24434 −0.622171 0.782881i \(-0.713749\pi\)
−0.622171 + 0.782881i \(0.713749\pi\)
\(32\) 0 0
\(33\) 10.3923i 1.80907i
\(34\) 0 0
\(35\) −6.46410 0.464102i −1.09263 0.0784475i
\(36\) 0 0
\(37\) −5.00000 + 5.00000i −0.821995 + 0.821995i −0.986394 0.164399i \(-0.947432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 6.00000 0.960769
\(40\) 0 0
\(41\) 3.46410 0.541002 0.270501 0.962720i \(-0.412811\pi\)
0.270501 + 0.962720i \(0.412811\pi\)
\(42\) 0 0
\(43\) 1.00000 + 1.00000i 0.152499 + 0.152499i 0.779233 0.626734i \(-0.215609\pi\)
−0.626734 + 0.779233i \(0.715609\pi\)
\(44\) 0 0
\(45\) 5.19615 5.19615i 0.774597 0.774597i
\(46\) 0 0
\(47\) −6.92820 −1.01058 −0.505291 0.862949i \(-0.668615\pi\)
−0.505291 + 0.862949i \(0.668615\pi\)
\(48\) 0 0
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.00000 3.00000i 0.412082 0.412082i −0.470381 0.882463i \(-0.655884\pi\)
0.882463 + 0.470381i \(0.155884\pi\)
\(54\) 0 0
\(55\) 10.3923i 1.40130i
\(56\) 0 0
\(57\) 18.0000i 2.38416i
\(58\) 0 0
\(59\) 8.66025 8.66025i 1.12747 1.12747i 0.136882 0.990587i \(-0.456292\pi\)
0.990587 0.136882i \(-0.0437080\pi\)
\(60\) 0 0
\(61\) 5.19615 5.19615i 0.665299 0.665299i −0.291325 0.956624i \(-0.594096\pi\)
0.956624 + 0.291325i \(0.0940961\pi\)
\(62\) 0 0
\(63\) 5.19615 + 6.00000i 0.654654 + 0.755929i
\(64\) 0 0
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) 7.00000 7.00000i 0.855186 0.855186i −0.135580 0.990766i \(-0.543290\pi\)
0.990766 + 0.135580i \(0.0432899\pi\)
\(68\) 0 0
\(69\) 6.92820 + 6.92820i 0.834058 + 0.834058i
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) −10.3923 −1.21633 −0.608164 0.793812i \(-0.708094\pi\)
−0.608164 + 0.793812i \(0.708094\pi\)
\(74\) 0 0
\(75\) 1.73205 1.73205i 0.200000 0.200000i
\(76\) 0 0
\(77\) −11.1962 0.803848i −1.27592 0.0916069i
\(78\) 0 0
\(79\) 2.00000i 0.225018i 0.993651 + 0.112509i \(0.0358886\pi\)
−0.993651 + 0.112509i \(0.964111\pi\)
\(80\) 0 0
\(81\) 9.00000 1.00000
\(82\) 0 0
\(83\) −1.73205 1.73205i −0.190117 0.190117i 0.605629 0.795747i \(-0.292921\pi\)
−0.795747 + 0.605629i \(0.792921\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 3.46410i 0.371391i
\(88\) 0 0
\(89\) 3.46410 0.367194 0.183597 0.983002i \(-0.441226\pi\)
0.183597 + 0.983002i \(0.441226\pi\)
\(90\) 0 0
\(91\) −0.464102 + 6.46410i −0.0486511 + 0.677622i
\(92\) 0 0
\(93\) 12.0000 + 12.0000i 1.24434 + 1.24434i
\(94\) 0 0
\(95\) 18.0000i 1.84676i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 9.00000 9.00000i 0.904534 0.904534i
\(100\) 0 0
\(101\) −1.73205 1.73205i −0.172345 0.172345i 0.615664 0.788009i \(-0.288888\pi\)
−0.788009 + 0.615664i \(0.788888\pi\)
\(102\) 0 0
\(103\) 10.3923i 1.02398i −0.858990 0.511992i \(-0.828908\pi\)
0.858990 0.511992i \(-0.171092\pi\)
\(104\) 0 0
\(105\) 10.3923 + 12.0000i 1.01419 + 1.17108i
\(106\) 0 0
\(107\) −7.00000 7.00000i −0.676716 0.676716i 0.282540 0.959256i \(-0.408823\pi\)
−0.959256 + 0.282540i \(0.908823\pi\)
\(108\) 0 0
\(109\) −13.0000 13.0000i −1.24517 1.24517i −0.957826 0.287348i \(-0.907226\pi\)
−0.287348 0.957826i \(-0.592774\pi\)
\(110\) 0 0
\(111\) 17.3205 1.64399
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) 6.92820 + 6.92820i 0.646058 + 0.646058i
\(116\) 0 0
\(117\) −5.19615 5.19615i −0.480384 0.480384i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 7.00000i 0.636364i
\(122\) 0 0
\(123\) −6.00000 6.00000i −0.541002 0.541002i
\(124\) 0 0
\(125\) −6.92820 + 6.92820i −0.619677 + 0.619677i
\(126\) 0 0
\(127\) 6.00000i 0.532414i −0.963916 0.266207i \(-0.914230\pi\)
0.963916 0.266207i \(-0.0857705\pi\)
\(128\) 0 0
\(129\) 3.46410i 0.304997i
\(130\) 0 0
\(131\) 5.19615 + 5.19615i 0.453990 + 0.453990i 0.896676 0.442687i \(-0.145975\pi\)
−0.442687 + 0.896676i \(0.645975\pi\)
\(132\) 0 0
\(133\) 19.3923 + 1.39230i 1.68153 + 0.120728i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000i 0.683486i −0.939793 0.341743i \(-0.888983\pi\)
0.939793 0.341743i \(-0.111017\pi\)
\(138\) 0 0
\(139\) −5.19615 + 5.19615i −0.440732 + 0.440732i −0.892258 0.451526i \(-0.850880\pi\)
0.451526 + 0.892258i \(0.350880\pi\)
\(140\) 0 0
\(141\) 12.0000 + 12.0000i 1.01058 + 1.01058i
\(142\) 0 0
\(143\) 10.3923 0.869048
\(144\) 0 0
\(145\) 3.46410i 0.287678i
\(146\) 0 0
\(147\) −13.7321 + 10.2679i −1.13260 + 0.846886i
\(148\) 0 0
\(149\) −5.00000 + 5.00000i −0.409616 + 0.409616i −0.881605 0.471989i \(-0.843536\pi\)
0.471989 + 0.881605i \(0.343536\pi\)
\(150\) 0 0
\(151\) 12.0000 0.976546 0.488273 0.872691i \(-0.337627\pi\)
0.488273 + 0.872691i \(0.337627\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 12.0000 + 12.0000i 0.963863 + 0.963863i
\(156\) 0 0
\(157\) −8.66025 + 8.66025i −0.691164 + 0.691164i −0.962488 0.271324i \(-0.912538\pi\)
0.271324 + 0.962488i \(0.412538\pi\)
\(158\) 0 0
\(159\) −10.3923 −0.824163
\(160\) 0 0
\(161\) −8.00000 + 6.92820i −0.630488 + 0.546019i
\(162\) 0 0
\(163\) −5.00000 + 5.00000i −0.391630 + 0.391630i −0.875268 0.483638i \(-0.839315\pi\)
0.483638 + 0.875268i \(0.339315\pi\)
\(164\) 0 0
\(165\) 18.0000 18.0000i 1.40130 1.40130i
\(166\) 0 0
\(167\) 10.3923i 0.804181i −0.915600 0.402090i \(-0.868284\pi\)
0.915600 0.402090i \(-0.131716\pi\)
\(168\) 0 0
\(169\) 7.00000i 0.538462i
\(170\) 0 0
\(171\) −15.5885 + 15.5885i −1.19208 + 1.19208i
\(172\) 0 0
\(173\) 12.1244 12.1244i 0.921798 0.921798i −0.0753588 0.997156i \(-0.524010\pi\)
0.997156 + 0.0753588i \(0.0240102\pi\)
\(174\) 0 0
\(175\) 1.73205 + 2.00000i 0.130931 + 0.151186i
\(176\) 0 0
\(177\) −30.0000 −2.25494
\(178\) 0 0
\(179\) −17.0000 + 17.0000i −1.27064 + 1.27064i −0.324887 + 0.945753i \(0.605326\pi\)
−0.945753 + 0.324887i \(0.894674\pi\)
\(180\) 0 0
\(181\) −8.66025 8.66025i −0.643712 0.643712i 0.307754 0.951466i \(-0.400423\pi\)
−0.951466 + 0.307754i \(0.900423\pi\)
\(182\) 0 0
\(183\) −18.0000 −1.33060
\(184\) 0 0
\(185\) 17.3205 1.27343
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 10.0000i 0.723575i 0.932261 + 0.361787i \(0.117833\pi\)
−0.932261 + 0.361787i \(0.882167\pi\)
\(192\) 0 0
\(193\) 10.0000 0.719816 0.359908 0.932988i \(-0.382808\pi\)
0.359908 + 0.932988i \(0.382808\pi\)
\(194\) 0 0
\(195\) −10.3923 10.3923i −0.744208 0.744208i
\(196\) 0 0
\(197\) −1.00000 + 1.00000i −0.0712470 + 0.0712470i −0.741832 0.670585i \(-0.766043\pi\)
0.670585 + 0.741832i \(0.266043\pi\)
\(198\) 0 0
\(199\) 10.3923i 0.736691i −0.929689 0.368345i \(-0.879924\pi\)
0.929689 0.368345i \(-0.120076\pi\)
\(200\) 0 0
\(201\) −24.2487 −1.71037
\(202\) 0 0
\(203\) −3.73205 0.267949i −0.261939 0.0188063i
\(204\) 0 0
\(205\) −6.00000 6.00000i −0.419058 0.419058i
\(206\) 0 0
\(207\) 12.0000i 0.834058i
\(208\) 0 0
\(209\) 31.1769i 2.15655i
\(210\) 0 0
\(211\) 19.0000 19.0000i 1.30801 1.30801i 0.385167 0.922847i \(-0.374144\pi\)
0.922847 0.385167i \(-0.125856\pi\)
\(212\) 0 0
\(213\) 6.92820 + 6.92820i 0.474713 + 0.474713i
\(214\) 0 0
\(215\) 3.46410i 0.236250i
\(216\) 0 0
\(217\) −13.8564 + 12.0000i −0.940634 + 0.814613i
\(218\) 0 0
\(219\) 18.0000 + 18.0000i 1.21633 + 1.21633i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −13.8564 −0.927894 −0.463947 0.885863i \(-0.653567\pi\)
−0.463947 + 0.885863i \(0.653567\pi\)
\(224\) 0 0
\(225\) −3.00000 −0.200000
\(226\) 0 0
\(227\) −8.66025 8.66025i −0.574801 0.574801i 0.358665 0.933466i \(-0.383232\pi\)
−0.933466 + 0.358665i \(0.883232\pi\)
\(228\) 0 0
\(229\) 5.19615 + 5.19615i 0.343371 + 0.343371i 0.857633 0.514262i \(-0.171934\pi\)
−0.514262 + 0.857633i \(0.671934\pi\)
\(230\) 0 0
\(231\) 18.0000 + 20.7846i 1.18431 + 1.36753i
\(232\) 0 0
\(233\) 4.00000i 0.262049i 0.991379 + 0.131024i \(0.0418266\pi\)
−0.991379 + 0.131024i \(0.958173\pi\)
\(234\) 0 0
\(235\) 12.0000 + 12.0000i 0.782794 + 0.782794i
\(236\) 0 0
\(237\) 3.46410 3.46410i 0.225018 0.225018i
\(238\) 0 0
\(239\) 2.00000i 0.129369i 0.997906 + 0.0646846i \(0.0206041\pi\)
−0.997906 + 0.0646846i \(0.979396\pi\)
\(240\) 0 0
\(241\) 13.8564i 0.892570i 0.894891 + 0.446285i \(0.147253\pi\)
−0.894891 + 0.446285i \(0.852747\pi\)
\(242\) 0 0
\(243\) −15.5885 15.5885i −1.00000 1.00000i
\(244\) 0 0
\(245\) −13.7321 + 10.2679i −0.877309 + 0.655995i
\(246\) 0 0
\(247\) −18.0000 −1.14531
\(248\) 0 0
\(249\) 6.00000i 0.380235i
\(250\) 0 0
\(251\) 1.73205 1.73205i 0.109326 0.109326i −0.650328 0.759654i \(-0.725368\pi\)
0.759654 + 0.650328i \(0.225368\pi\)
\(252\) 0 0
\(253\) 12.0000 + 12.0000i 0.754434 + 0.754434i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 27.7128i 1.72868i −0.502910 0.864339i \(-0.667737\pi\)
0.502910 0.864339i \(-0.332263\pi\)
\(258\) 0 0
\(259\) −1.33975 + 18.6603i −0.0832478 + 1.15949i
\(260\) 0 0
\(261\) 3.00000 3.00000i 0.185695 0.185695i
\(262\) 0 0
\(263\) 4.00000 0.246651 0.123325 0.992366i \(-0.460644\pi\)
0.123325 + 0.992366i \(0.460644\pi\)
\(264\) 0 0
\(265\) −10.3923 −0.638394
\(266\) 0 0
\(267\) −6.00000 6.00000i −0.367194 0.367194i
\(268\) 0 0
\(269\) 5.19615 5.19615i 0.316815 0.316815i −0.530728 0.847543i \(-0.678081\pi\)
0.847543 + 0.530728i \(0.178081\pi\)
\(270\) 0 0
\(271\) 13.8564 0.841717 0.420858 0.907126i \(-0.361729\pi\)
0.420858 + 0.907126i \(0.361729\pi\)
\(272\) 0 0
\(273\) 12.0000 10.3923i 0.726273 0.628971i
\(274\) 0 0
\(275\) 3.00000 3.00000i 0.180907 0.180907i
\(276\) 0 0
\(277\) −1.00000 + 1.00000i −0.0600842 + 0.0600842i −0.736510 0.676426i \(-0.763528\pi\)
0.676426 + 0.736510i \(0.263528\pi\)
\(278\) 0 0
\(279\) 20.7846i 1.24434i
\(280\) 0 0
\(281\) 28.0000i 1.67034i −0.549992 0.835170i \(-0.685369\pi\)
0.549992 0.835170i \(-0.314631\pi\)
\(282\) 0 0
\(283\) −5.19615 + 5.19615i −0.308879 + 0.308879i −0.844475 0.535595i \(-0.820087\pi\)
0.535595 + 0.844475i \(0.320087\pi\)
\(284\) 0 0
\(285\) −31.1769 + 31.1769i −1.84676 + 1.84676i
\(286\) 0 0
\(287\) 6.92820 6.00000i 0.408959 0.354169i
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.73205 1.73205i −0.101187 0.101187i 0.654701 0.755888i \(-0.272795\pi\)
−0.755888 + 0.654701i \(0.772795\pi\)
\(294\) 0 0
\(295\) −30.0000 −1.74667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.92820 6.92820i 0.400668 0.400668i
\(300\) 0 0
\(301\) 3.73205 + 0.267949i 0.215112 + 0.0154443i
\(302\) 0 0
\(303\) 6.00000i 0.344691i
\(304\) 0 0
\(305\) −18.0000 −1.03068
\(306\) 0 0
\(307\) −1.73205 1.73205i −0.0988534 0.0988534i 0.655951 0.754804i \(-0.272268\pi\)
−0.754804 + 0.655951i \(0.772268\pi\)
\(308\) 0 0
\(309\) −18.0000 + 18.0000i −1.02398 + 1.02398i
\(310\) 0 0
\(311\) 10.3923i 0.589294i 0.955606 + 0.294647i \(0.0952020\pi\)
−0.955606 + 0.294647i \(0.904798\pi\)
\(312\) 0 0
\(313\) 17.3205 0.979013 0.489506 0.872000i \(-0.337177\pi\)
0.489506 + 0.872000i \(0.337177\pi\)
\(314\) 0 0
\(315\) 1.39230 19.3923i 0.0784475 1.09263i
\(316\) 0 0
\(317\) 3.00000 + 3.00000i 0.168497 + 0.168497i 0.786318 0.617822i \(-0.211985\pi\)
−0.617822 + 0.786318i \(0.711985\pi\)
\(318\) 0 0
\(319\) 6.00000i 0.335936i
\(320\) 0 0
\(321\) 24.2487i 1.35343i
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −1.73205 1.73205i −0.0960769 0.0960769i
\(326\) 0 0
\(327\) 45.0333i 2.49035i
\(328\) 0 0
\(329\) −13.8564 + 12.0000i −0.763928 + 0.661581i
\(330\) 0 0
\(331\) 17.0000 + 17.0000i 0.934405 + 0.934405i 0.997977 0.0635727i \(-0.0202495\pi\)
−0.0635727 + 0.997977i \(0.520249\pi\)
\(332\) 0 0
\(333\) −15.0000 15.0000i −0.821995 0.821995i
\(334\) 0 0
\(335\) −24.2487 −1.32485
\(336\) 0 0
\(337\) −10.0000 −0.544735 −0.272367 0.962193i \(-0.587807\pi\)
−0.272367 + 0.962193i \(0.587807\pi\)
\(338\) 0 0
\(339\) 17.3205 + 17.3205i 0.940721 + 0.940721i
\(340\) 0 0
\(341\) 20.7846 + 20.7846i 1.12555 + 1.12555i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 24.0000i 1.29212i
\(346\) 0 0
\(347\) −23.0000 23.0000i −1.23470 1.23470i −0.962136 0.272568i \(-0.912127\pi\)
−0.272568 0.962136i \(-0.587873\pi\)
\(348\) 0 0
\(349\) 19.0526 19.0526i 1.01986 1.01986i 0.0200613 0.999799i \(-0.493614\pi\)
0.999799 0.0200613i \(-0.00638615\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13.8564i 0.737502i 0.929528 + 0.368751i \(0.120215\pi\)
−0.929528 + 0.368751i \(0.879785\pi\)
\(354\) 0 0
\(355\) 6.92820 + 6.92820i 0.367711 + 0.367711i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 0 0
\(361\) 35.0000i 1.84211i
\(362\) 0 0
\(363\) 12.1244 12.1244i 0.636364 0.636364i
\(364\) 0 0
\(365\) 18.0000 + 18.0000i 0.942163 + 0.942163i
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 10.3923i 0.541002i
\(370\) 0 0
\(371\) 0.803848 11.1962i 0.0417337 0.581275i
\(372\) 0 0
\(373\) 7.00000 7.00000i 0.362446 0.362446i −0.502267 0.864713i \(-0.667500\pi\)
0.864713 + 0.502267i \(0.167500\pi\)
\(374\) 0 0
\(375\) 24.0000 1.23935
\(376\) 0 0
\(377\) 3.46410 0.178410
\(378\) 0 0
\(379\) −11.0000 11.0000i −0.565032 0.565032i 0.365701 0.930733i \(-0.380829\pi\)
−0.930733 + 0.365701i \(0.880829\pi\)
\(380\) 0 0
\(381\) −10.3923 + 10.3923i −0.532414 + 0.532414i
\(382\) 0 0
\(383\) 34.6410 1.77007 0.885037 0.465521i \(-0.154133\pi\)
0.885037 + 0.465521i \(0.154133\pi\)
\(384\) 0 0
\(385\) 18.0000 + 20.7846i 0.917365 + 1.05928i
\(386\) 0 0
\(387\) −3.00000 + 3.00000i −0.152499 + 0.152499i
\(388\) 0 0
\(389\) 3.00000 3.00000i 0.152106 0.152106i −0.626952 0.779058i \(-0.715698\pi\)
0.779058 + 0.626952i \(0.215698\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 18.0000i 0.907980i
\(394\) 0 0
\(395\) 3.46410 3.46410i 0.174298 0.174298i
\(396\) 0 0
\(397\) 19.0526 19.0526i 0.956221 0.956221i −0.0428605 0.999081i \(-0.513647\pi\)
0.999081 + 0.0428605i \(0.0136471\pi\)
\(398\) 0 0
\(399\) −31.1769 36.0000i −1.56080 1.80225i
\(400\) 0 0
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 0 0
\(403\) 12.0000 12.0000i 0.597763 0.597763i
\(404\) 0 0
\(405\) −15.5885 15.5885i −0.774597 0.774597i
\(406\) 0 0
\(407\) 30.0000 1.48704
\(408\) 0 0
\(409\) 17.3205 0.856444 0.428222 0.903674i \(-0.359140\pi\)
0.428222 + 0.903674i \(0.359140\pi\)
\(410\) 0 0
\(411\) −13.8564 + 13.8564i −0.683486 + 0.683486i
\(412\) 0 0
\(413\) 2.32051 32.3205i 0.114185 1.59039i
\(414\) 0 0
\(415\) 6.00000i 0.294528i
\(416\) 0 0
\(417\) 18.0000 0.881464
\(418\) 0 0
\(419\) 25.9808 + 25.9808i 1.26924 + 1.26924i 0.946480 + 0.322764i \(0.104612\pi\)
0.322764 + 0.946480i \(0.395388\pi\)
\(420\) 0 0
\(421\) 11.0000 11.0000i 0.536107 0.536107i −0.386276 0.922383i \(-0.626239\pi\)
0.922383 + 0.386276i \(0.126239\pi\)
\(422\) 0 0
\(423\) 20.7846i 1.01058i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.39230 19.3923i 0.0673784 0.938459i
\(428\) 0 0
\(429\) −18.0000 18.0000i −0.869048 0.869048i
\(430\) 0 0
\(431\) 10.0000i 0.481683i 0.970564 + 0.240842i \(0.0774234\pi\)
−0.970564 + 0.240842i \(0.922577\pi\)
\(432\) 0 0
\(433\) 27.7128i 1.33179i 0.746044 + 0.665896i \(0.231951\pi\)
−0.746044 + 0.665896i \(0.768049\pi\)
\(434\) 0 0
\(435\) 6.00000 6.00000i 0.287678 0.287678i
\(436\) 0 0
\(437\) −20.7846 20.7846i −0.994263 0.994263i
\(438\) 0 0
\(439\) 17.3205i 0.826663i −0.910581 0.413331i \(-0.864365\pi\)
0.910581 0.413331i \(-0.135635\pi\)
\(440\) 0 0
\(441\) 20.7846 + 3.00000i 0.989743 + 0.142857i
\(442\) 0 0
\(443\) −15.0000 15.0000i −0.712672 0.712672i 0.254422 0.967093i \(-0.418115\pi\)
−0.967093 + 0.254422i \(0.918115\pi\)
\(444\) 0 0
\(445\) −6.00000 6.00000i −0.284427 0.284427i
\(446\) 0 0
\(447\) 17.3205 0.819232
\(448\) 0 0
\(449\) 22.0000 1.03824 0.519122 0.854700i \(-0.326259\pi\)
0.519122 + 0.854700i \(0.326259\pi\)
\(450\) 0 0
\(451\) −10.3923 10.3923i −0.489355 0.489355i
\(452\) 0 0
\(453\) −20.7846 20.7846i −0.976546 0.976546i
\(454\) 0 0
\(455\) 12.0000 10.3923i 0.562569 0.487199i
\(456\) 0 0
\(457\) 36.0000i 1.68401i −0.539471 0.842004i \(-0.681376\pi\)
0.539471 0.842004i \(-0.318624\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8.66025 + 8.66025i −0.403348 + 0.403348i −0.879411 0.476063i \(-0.842063\pi\)
0.476063 + 0.879411i \(0.342063\pi\)
\(462\) 0 0
\(463\) 34.0000i 1.58011i 0.613033 + 0.790057i \(0.289949\pi\)
−0.613033 + 0.790057i \(0.710051\pi\)
\(464\) 0 0
\(465\) 41.5692i 1.92773i
\(466\) 0 0
\(467\) −15.5885 15.5885i −0.721348 0.721348i 0.247532 0.968880i \(-0.420380\pi\)
−0.968880 + 0.247532i \(0.920380\pi\)
\(468\) 0 0
\(469\) 1.87564 26.1244i 0.0866092 1.20631i
\(470\) 0 0
\(471\) 30.0000 1.38233
\(472\) 0 0
\(473\) 6.00000i 0.275880i
\(474\) 0 0
\(475\) −5.19615 + 5.19615i −0.238416 + 0.238416i
\(476\) 0 0
\(477\) 9.00000 + 9.00000i 0.412082 + 0.412082i
\(478\) 0 0
\(479\) 6.92820 0.316558 0.158279 0.987394i \(-0.449406\pi\)
0.158279 + 0.987394i \(0.449406\pi\)
\(480\) 0 0
\(481\) 17.3205i 0.789747i
\(482\) 0 0
\(483\) 25.8564 + 1.85641i 1.17651 + 0.0844694i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 12.0000 0.543772 0.271886 0.962329i \(-0.412353\pi\)
0.271886 + 0.962329i \(0.412353\pi\)
\(488\) 0 0
\(489\) 17.3205 0.783260
\(490\) 0 0
\(491\) 9.00000 + 9.00000i 0.406164 + 0.406164i 0.880399 0.474234i \(-0.157275\pi\)
−0.474234 + 0.880399i \(0.657275\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −31.1769 −1.40130
\(496\) 0 0
\(497\) −8.00000 + 6.92820i −0.358849 + 0.310772i
\(498\) 0 0
\(499\) 11.0000 11.0000i 0.492428 0.492428i −0.416643 0.909070i \(-0.636793\pi\)
0.909070 + 0.416643i \(0.136793\pi\)
\(500\) 0 0
\(501\) −18.0000 + 18.0000i −0.804181 + 0.804181i
\(502\) 0 0
\(503\) 38.1051i 1.69902i 0.527570 + 0.849512i \(0.323103\pi\)
−0.527570 + 0.849512i \(0.676897\pi\)
\(504\) 0 0
\(505\) 6.00000i 0.266996i
\(506\) 0 0
\(507\) 12.1244 12.1244i 0.538462 0.538462i
\(508\) 0 0
\(509\) −29.4449 + 29.4449i −1.30512 + 1.30512i −0.380228 + 0.924893i \(0.624154\pi\)
−0.924893 + 0.380228i \(0.875846\pi\)
\(510\) 0 0
\(511\) −20.7846 + 18.0000i −0.919457 + 0.796273i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −18.0000 + 18.0000i −0.793175 + 0.793175i
\(516\) 0 0
\(517\) 20.7846 + 20.7846i 0.914106 + 0.914106i
\(518\) 0 0
\(519\) −42.0000 −1.84360
\(520\) 0 0
\(521\) −10.3923 −0.455295 −0.227648 0.973744i \(-0.573103\pi\)
−0.227648 + 0.973744i \(0.573103\pi\)
\(522\) 0 0
\(523\) 1.73205 1.73205i 0.0757373 0.0757373i −0.668223 0.743961i \(-0.732945\pi\)
0.743961 + 0.668223i \(0.232945\pi\)
\(524\) 0 0
\(525\) 0.464102 6.46410i 0.0202551 0.282117i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 25.9808 + 25.9808i 1.12747 + 1.12747i
\(532\) 0 0
\(533\) −6.00000 + 6.00000i −0.259889 + 0.259889i
\(534\) 0 0
\(535\) 24.2487i 1.04836i
\(536\) 0 0
\(537\) 58.8897 2.54128
\(538\) 0 0
\(539\) −23.7846 + 17.7846i −1.02448 + 0.766037i
\(540\) 0 0
\(541\) −5.00000 5.00000i −0.214967 0.214967i 0.591407 0.806373i \(-0.298573\pi\)
−0.806373 + 0.591407i \(0.798573\pi\)
\(542\) 0 0
\(543\) 30.0000i 1.28742i
\(544\) 0 0
\(545\) 45.0333i 1.92902i
\(546\) 0 0
\(547\) −1.00000 + 1.00000i −0.0427569 + 0.0427569i −0.728162 0.685405i \(-0.759625\pi\)
0.685405 + 0.728162i \(0.259625\pi\)
\(548\) 0 0
\(549\) 15.5885 + 15.5885i 0.665299 + 0.665299i
\(550\) 0 0
\(551\) 10.3923i 0.442727i
\(552\) 0 0
\(553\) 3.46410 + 4.00000i 0.147309 + 0.170097i
\(554\) 0 0
\(555\) −30.0000 30.0000i −1.27343 1.27343i
\(556\) 0 0
\(557\) 7.00000 + 7.00000i 0.296600 + 0.296600i 0.839680 0.543081i \(-0.182742\pi\)
−0.543081 + 0.839680i \(0.682742\pi\)
\(558\) 0 0
\(559\) −3.46410 −0.146516
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −22.5167 22.5167i −0.948964 0.948964i 0.0497953 0.998759i \(-0.484143\pi\)
−0.998759 + 0.0497953i \(0.984143\pi\)
\(564\) 0 0
\(565\) 17.3205 + 17.3205i 0.728679 + 0.728679i
\(566\) 0 0
\(567\) 18.0000 15.5885i 0.755929 0.654654i
\(568\) 0 0
\(569\) 4.00000i 0.167689i −0.996479 0.0838444i \(-0.973280\pi\)
0.996479 0.0838444i \(-0.0267199\pi\)
\(570\) 0 0
\(571\) 5.00000 + 5.00000i 0.209243 + 0.209243i 0.803946 0.594702i \(-0.202730\pi\)
−0.594702 + 0.803946i \(0.702730\pi\)
\(572\) 0 0
\(573\) 17.3205 17.3205i 0.723575 0.723575i
\(574\) 0 0
\(575\) 4.00000i 0.166812i
\(576\) 0 0
\(577\) 13.8564i 0.576850i −0.957503 0.288425i \(-0.906868\pi\)
0.957503 0.288425i \(-0.0931316\pi\)
\(578\) 0 0
\(579\) −17.3205 17.3205i −0.719816 0.719816i
\(580\) 0 0
\(581\) −6.46410 0.464102i −0.268176 0.0192542i
\(582\) 0 0
\(583\) −18.0000 −0.745484
\(584\) 0 0
\(585\) 18.0000i 0.744208i
\(586\) 0 0
\(587\) 1.73205 1.73205i 0.0714894 0.0714894i −0.670458 0.741947i \(-0.733902\pi\)
0.741947 + 0.670458i \(0.233902\pi\)
\(588\) 0 0
\(589\) −36.0000 36.0000i −1.48335 1.48335i
\(590\) 0 0
\(591\) 3.46410 0.142494
\(592\) 0 0
\(593\) 13.8564i 0.569014i 0.958674 + 0.284507i \(0.0918300\pi\)
−0.958674 + 0.284507i \(0.908170\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −18.0000 + 18.0000i −0.736691 + 0.736691i
\(598\) 0 0
\(599\) −44.0000 −1.79779 −0.898896 0.438163i \(-0.855629\pi\)
−0.898896 + 0.438163i \(0.855629\pi\)
\(600\) 0 0
\(601\) −38.1051 −1.55434 −0.777170 0.629291i \(-0.783346\pi\)
−0.777170 + 0.629291i \(0.783346\pi\)
\(602\) 0 0
\(603\) 21.0000 + 21.0000i 0.855186 + 0.855186i
\(604\) 0 0
\(605\) 12.1244 12.1244i 0.492925 0.492925i
\(606\) 0 0
\(607\) 27.7128 1.12483 0.562414 0.826856i \(-0.309873\pi\)
0.562414 + 0.826856i \(0.309873\pi\)
\(608\) 0 0
\(609\) 6.00000 + 6.92820i 0.243132 + 0.280745i
\(610\) 0 0
\(611\) 12.0000 12.0000i 0.485468 0.485468i
\(612\) 0 0
\(613\) −29.0000 + 29.0000i −1.17130 + 1.17130i −0.189399 + 0.981900i \(0.560654\pi\)
−0.981900 + 0.189399i \(0.939346\pi\)
\(614\) 0 0
\(615\) 20.7846i 0.838116i
\(616\) 0 0
\(617\) 16.0000i 0.644136i 0.946717 + 0.322068i \(0.104378\pi\)
−0.946717 + 0.322068i \(0.895622\pi\)
\(618\) 0 0
\(619\) 22.5167 22.5167i 0.905021 0.905021i −0.0908441 0.995865i \(-0.528957\pi\)
0.995865 + 0.0908441i \(0.0289565\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.92820 6.00000i 0.277573 0.240385i
\(624\) 0 0
\(625\) 29.0000 1.16000
\(626\) 0 0
\(627\) −54.0000 + 54.0000i −2.15655 + 2.15655i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −12.0000 −0.477712 −0.238856 0.971055i \(-0.576772\pi\)
−0.238856 + 0.971055i \(0.576772\pi\)
\(632\) 0 0
\(633\) −65.8179 −2.61603
\(634\) 0 0
\(635\) −10.3923 + 10.3923i −0.412406 + 0.412406i
\(636\) 0 0
\(637\) 10.2679 + 13.7321i 0.406831 + 0.544084i
\(638\) 0 0
\(639\) 12.0000i 0.474713i
\(640\) 0 0
\(641\) 10.0000 0.394976 0.197488 0.980305i \(-0.436722\pi\)
0.197488 + 0.980305i \(0.436722\pi\)
\(642\) 0 0
\(643\) −1.73205 1.73205i −0.0683054 0.0683054i 0.672129 0.740434i \(-0.265380\pi\)
−0.740434 + 0.672129i \(0.765380\pi\)
\(644\) 0 0
\(645\) −6.00000 + 6.00000i −0.236250 + 0.236250i
\(646\) 0 0
\(647\) 17.3205i 0.680939i 0.940255 + 0.340470i \(0.110586\pi\)
−0.940255 + 0.340470i \(0.889414\pi\)
\(648\) 0 0
\(649\) −51.9615 −2.03967
\(650\) 0 0
\(651\) 44.7846 + 3.21539i 1.75525 + 0.126021i
\(652\) 0 0
\(653\) 31.0000 + 31.0000i 1.21312 + 1.21312i 0.969994 + 0.243130i \(0.0781742\pi\)
0.243130 + 0.969994i \(0.421826\pi\)
\(654\) 0 0
\(655\) 18.0000i 0.703318i
\(656\) 0 0
\(657\) 31.1769i 1.21633i
\(658\) 0 0
\(659\) 23.0000 23.0000i 0.895953 0.895953i −0.0991224 0.995075i \(-0.531604\pi\)
0.995075 + 0.0991224i \(0.0316036\pi\)
\(660\) 0 0
\(661\) −8.66025 8.66025i −0.336845 0.336845i 0.518334 0.855178i \(-0.326553\pi\)
−0.855178 + 0.518334i \(0.826553\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −31.1769 36.0000i −1.20899 1.39602i
\(666\) 0 0
\(667\) 4.00000 + 4.00000i 0.154881 + 0.154881i
\(668\) 0 0
\(669\) 24.0000 + 24.0000i 0.927894 + 0.927894i
\(670\) 0 0
\(671\) −31.1769 −1.20357
\(672\) 0 0
\(673\) −42.0000 −1.61898 −0.809491 0.587133i \(-0.800257\pi\)
−0.809491 + 0.587133i \(0.800257\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −22.5167 22.5167i −0.865386 0.865386i 0.126572 0.991957i \(-0.459603\pi\)
−0.991957 + 0.126572i \(0.959603\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 30.0000i 1.14960i
\(682\) 0 0
\(683\) 21.0000 + 21.0000i 0.803543 + 0.803543i 0.983647 0.180105i \(-0.0576437\pi\)
−0.180105 + 0.983647i \(0.557644\pi\)
\(684\) 0 0
\(685\) −13.8564 + 13.8564i −0.529426 + 0.529426i
\(686\) 0 0
\(687\) 18.0000i 0.686743i
\(688\) 0 0
\(689\) 10.3923i 0.395915i
\(690\) 0 0
\(691\) −1.73205 1.73205i −0.0658903 0.0658903i 0.673394 0.739284i \(-0.264836\pi\)
−0.739284 + 0.673394i \(0.764836\pi\)
\(692\) 0 0
\(693\) 2.41154 33.5885i 0.0916069 1.27592i
\(694\) 0 0
\(695\) 18.0000 0.682779
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 6.92820 6.92820i 0.262049 0.262049i
\(700\) 0 0
\(701\) 27.0000 + 27.0000i 1.01978 + 1.01978i 0.999800 + 0.0199755i \(0.00635881\pi\)
0.0199755 + 0.999800i \(0.493641\pi\)
\(702\) 0 0
\(703\) −51.9615 −1.95977
\(704\) 0 0
\(705\) 41.5692i 1.56559i
\(706\) 0 0
\(707\) −6.46410 0.464102i −0.243108 0.0174543i
\(708\) 0 0
\(709\) 19.0000 19.0000i 0.713560 0.713560i −0.253718 0.967278i \(-0.581654\pi\)
0.967278 + 0.253718i \(0.0816536\pi\)
\(710\) 0 0
\(711\) −6.00000 −0.225018
\(712\) 0 0
\(713\) 27.7128 1.03785
\(714\) 0 0
\(715\) −18.0000 18.0000i −0.673162 0.673162i
\(716\) 0 0
\(717\) 3.46410 3.46410i 0.129369 0.129369i
\(718\) 0 0
\(719\) 6.92820 0.258378 0.129189 0.991620i \(-0.458763\pi\)
0.129189 + 0.991620i \(0.458763\pi\)
\(720\) 0 0
\(721\) −18.0000 20.7846i −0.670355 0.774059i
\(722\) 0 0
\(723\) 24.0000 24.0000i 0.892570 0.892570i
\(724\) 0 0
\(725\) 1.00000 1.00000i 0.0371391 0.0371391i
\(726\) 0 0
\(727\) 38.1051i 1.41324i −0.707593 0.706620i \(-0.750219\pi\)
0.707593 0.706620i \(-0.249781\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −1.73205 + 1.73205i −0.0639748 + 0.0639748i −0.738370 0.674396i \(-0.764404\pi\)
0.674396 + 0.738370i \(0.264404\pi\)
\(734\) 0 0
\(735\) 41.5692 + 6.00000i 1.53330 + 0.221313i
\(736\) 0 0
\(737\) −42.0000 −1.54709
\(738\) 0 0
\(739\) 11.0000 11.0000i 0.404642 0.404642i −0.475224 0.879865i \(-0.657633\pi\)
0.879865 + 0.475224i \(0.157633\pi\)
\(740\) 0 0
\(741\) 31.1769 + 31.1769i 1.14531 + 1.14531i
\(742\) 0 0
\(743\) 20.0000 0.733729 0.366864 0.930274i \(-0.380431\pi\)
0.366864 + 0.930274i \(0.380431\pi\)
\(744\) 0 0
\(745\) 17.3205 0.634574
\(746\) 0 0
\(747\) 5.19615 5.19615i 0.190117 0.190117i
\(748\) 0 0
\(749\) −26.1244 1.87564i −0.954563 0.0685346i
\(750\) 0 0
\(751\) 46.0000i 1.67856i −0.543696 0.839282i \(-0.682976\pi\)
0.543696 0.839282i \(-0.317024\pi\)
\(752\) 0 0
\(753\) −6.00000 −0.218652
\(754\) 0 0
\(755\) −20.7846 20.7846i −0.756429 0.756429i
\(756\) 0 0
\(757\) −13.0000 + 13.0000i −0.472493 + 0.472493i −0.902721 0.430227i \(-0.858433\pi\)
0.430227 + 0.902721i \(0.358433\pi\)
\(758\) 0 0
\(759\) 41.5692i 1.50887i
\(760\) 0 0
\(761\) 3.46410 0.125574 0.0627868 0.998027i \(-0.480001\pi\)
0.0627868 + 0.998027i \(0.480001\pi\)
\(762\) 0 0
\(763\) −48.5167 3.48334i −1.75642 0.126105i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 30.0000i 1.08324i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) −48.0000 + 48.0000i −1.72868 + 1.72868i
\(772\) 0 0
\(773\) 12.1244 + 12.1244i 0.436083 + 0.436083i 0.890691 0.454609i \(-0.150221\pi\)
−0.454609 + 0.890691i \(0.650221\pi\)
\(774\) 0 0
\(775\) 6.92820i 0.248868i
\(776\) 0 0
\(777\) 34.6410 30.0000i 1.24274 1.07624i
\(778\) 0 0
\(779\) 18.0000 + 18.0000i 0.644917 + 0.644917i
\(780\) 0 0
\(781\) 12.0000 + 12.0000i 0.429394 + 0.429394i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 30.0000 1.07075
\(786\) 0 0
\(787\) −1.73205 1.73205i −0.0617409 0.0617409i 0.675562 0.737303i \(-0.263901\pi\)
−0.737303 + 0.675562i \(0.763901\pi\)
\(788\) 0 0
\(789\) −6.92820 6.92820i −0.246651 0.246651i
\(790\) 0 0
\(791\) −20.0000 + 17.3205i −0.711118 + 0.615846i
\(792\) 0 0
\(793\) 18.0000i 0.639199i
\(794\) 0 0
\(795\) 18.0000 + 18.0000i 0.638394 + 0.638394i
\(796\) 0 0
\(797\) −15.5885 + 15.5885i −0.552171 + 0.552171i −0.927067 0.374896i \(-0.877679\pi\)
0.374896 + 0.927067i \(0.377679\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 10.3923i 0.367194i
\(802\) 0 0
\(803\) 31.1769 + 31.1769i 1.10021 + 1.10021i
\(804\) 0 0
\(805\) 25.8564 + 1.85641i 0.911319 + 0.0654297i
\(806\) 0 0
\(807\) −18.0000 −0.633630
\(808\) 0 0
\(809\) 20.0000i 0.703163i 0.936157 + 0.351581i \(0.114356\pi\)
−0.936157 + 0.351581i \(0.885644\pi\)
\(810\) 0 0
\(811\) −19.0526 + 19.0526i −0.669026 + 0.669026i −0.957491 0.288465i \(-0.906855\pi\)
0.288465 + 0.957491i \(0.406855\pi\)
\(812\) 0 0
\(813\) −24.0000 24.0000i −0.841717 0.841717i
\(814\) 0 0
\(815\) 17.3205 0.606711
\(816\) 0 0
\(817\) 10.3923i 0.363581i
\(818\) 0 0
\(819\) −19.3923 1.39230i −0.677622 0.0486511i
\(820\) 0 0
\(821\) 39.0000 39.0000i 1.36111 1.36111i 0.488603 0.872506i \(-0.337507\pi\)
0.872506 0.488603i \(-0.162493\pi\)
\(822\) 0 0
\(823\) −12.0000 −0.418294 −0.209147 0.977884i \(-0.567069\pi\)
−0.209147 + 0.977884i \(0.567069\pi\)
\(824\) 0 0
\(825\) −10.3923 −0.361814
\(826\) 0 0
\(827\) 29.0000 + 29.0000i 1.00843 + 1.00843i 0.999964 + 0.00846463i \(0.00269441\pi\)
0.00846463 + 0.999964i \(0.497306\pi\)
\(828\) 0 0
\(829\) 12.1244 12.1244i 0.421096 0.421096i −0.464485 0.885581i \(-0.653760\pi\)
0.885581 + 0.464485i \(0.153760\pi\)
\(830\) 0 0
\(831\) 3.46410 0.120168
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −18.0000 + 18.0000i −0.622916 + 0.622916i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 10.3923i 0.358782i −0.983778 0.179391i \(-0.942587\pi\)
0.983778 0.179391i \(-0.0574128\pi\)
\(840\) 0 0
\(841\) 27.0000i 0.931034i
\(842\) 0 0
\(843\) −48.4974 + 48.4974i −1.67034 + 1.67034i
\(844\) 0 0
\(845\) 12.1244 12.1244i 0.417091 0.417091i
\(846\) 0 0
\(847\) 12.1244 + 14.0000i 0.416598 + 0.481046i
\(848\) 0 0
\(849\) 18.0000 0.617758
\(850\) 0 0
\(851\) 20.0000 20.0000i 0.685591 0.685591i
\(852\) 0 0
\(853\) −29.4449 29.4449i −1.00817 1.00817i −0.999966 0.00820661i \(-0.997388\pi\)
−0.00820661 0.999966i \(-0.502612\pi\)
\(854\) 0 0
\(855\) 54.0000 1.84676
\(856\) 0 0
\(857\) 45.0333 1.53831 0.769154 0.639063i \(-0.220678\pi\)
0.769154 + 0.639063i \(0.220678\pi\)
\(858\) 0 0
\(859\) −19.0526 + 19.0526i −0.650065 + 0.650065i −0.953008 0.302944i \(-0.902031\pi\)
0.302944 + 0.953008i \(0.402031\pi\)
\(860\) 0 0
\(861\) −22.3923 1.60770i −0.763128 0.0547901i
\(862\) 0 0
\(863\) 38.0000i 1.29354i −0.762687 0.646768i \(-0.776120\pi\)
0.762687 0.646768i \(-0.223880\pi\)
\(864\) 0 0
\(865\) −42.0000 −1.42804
\(866\) 0 0
\(867\) −29.4449 29.4449i −1.00000 1.00000i
\(868\) 0 0
\(869\) 6.00000 6.00000i 0.203536 0.203536i
\(870\) 0 0
\(871\) 24.2487i 0.821636i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.85641 + 25.8564i −0.0627580 + 0.874106i
\(876\) 0 0
\(877\) −5.00000 5.00000i −0.168838 0.168838i 0.617630 0.786468i \(-0.288093\pi\)
−0.786468 + 0.617630i \(0.788093\pi\)
\(878\) 0 0
\(879\) 6.00000i 0.202375i
\(880\) 0 0
\(881\) 55.4256i 1.86734i −0.358139 0.933668i \(-0.616589\pi\)
0.358139 0.933668i \(-0.383411\pi\)
\(882\) 0 0
\(883\) −13.0000 + 13.0000i −0.437485 + 0.437485i −0.891165 0.453680i \(-0.850111\pi\)
0.453680 + 0.891165i \(0.350111\pi\)
\(884\) 0 0
\(885\) 51.9615 + 51.9615i 1.74667 + 1.74667i
\(886\) 0 0
\(887\) 10.3923i 0.348939i −0.984663 0.174470i \(-0.944179\pi\)
0.984663 0.174470i \(-0.0558211\pi\)
\(888\) 0 0
\(889\) −10.3923 12.0000i −0.348547 0.402467i
\(890\) 0 0
\(891\) −27.0000 27.0000i −0.904534 0.904534i
\(892\) 0 0
\(893\) −36.0000 36.0000i −1.20469 1.20469i
\(894\) 0 0
\(895\) 58.8897 1.96847
\(896\) 0 0
\(897\) −24.0000 −0.801337
\(898\) 0 0
\(899\) 6.92820 + 6.92820i 0.231069 + 0.231069i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −6.00000 6.92820i −0.199667 0.230556i
\(904\) 0 0
\(905\) 30.0000i 0.997234i
\(906\) 0 0
\(907\) 5.00000 + 5.00000i 0.166022 + 0.166022i 0.785228 0.619206i \(-0.212545\pi\)
−0.619206 + 0.785228i \(0.712545\pi\)
\(908\) 0 0
\(909\) 5.19615 5.19615i 0.172345 0.172345i
\(910\) 0 0
\(911\) 34.0000i 1.12647i 0.826297 + 0.563235i \(0.190443\pi\)
−0.826297 + 0.563235i \(0.809557\pi\)
\(912\) 0 0
\(913\) 10.3923i 0.343935i
\(914\) 0 0
\(915\) 31.1769 + 31.1769i 1.03068 + 1.03068i
\(916\) 0 0
\(917\) 19.3923 + 1.39230i 0.640390 + 0.0459780i
\(918\) 0 0
\(919\) −28.0000 −0.923635 −0.461817 0.886975i \(-0.652802\pi\)
−0.461817 + 0.886975i \(0.652802\pi\)
\(920\) 0 0
\(921\) 6.00000i 0.197707i
\(922\) 0 0
\(923\) 6.92820 6.92820i 0.228045 0.228045i
\(924\) 0 0
\(925\) −5.00000 5.00000i −0.164399 0.164399i
\(926\) 0 0
\(927\) 31.1769 1.02398
\(928\) 0 0
\(929\) 41.5692i 1.36384i 0.731426 + 0.681921i \(0.238855\pi\)
−0.731426 + 0.681921i \(0.761145\pi\)
\(930\) 0 0
\(931\) 41.1962 30.8038i 1.35015 1.00956i
\(932\) 0 0
\(933\) 18.0000 18.0000i 0.589294 0.589294i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 17.3205 0.565836 0.282918 0.959144i \(-0.408698\pi\)
0.282918 + 0.959144i \(0.408698\pi\)
\(938\) 0 0
\(939\) −30.0000 30.0000i −0.979013 0.979013i
\(940\) 0 0
\(941\) −22.5167 + 22.5167i −0.734022 + 0.734022i −0.971414 0.237392i \(-0.923707\pi\)
0.237392 + 0.971414i \(0.423707\pi\)
\(942\) 0 0
\(943\) −13.8564 −0.451227
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −5.00000 + 5.00000i −0.162478 + 0.162478i −0.783664 0.621185i \(-0.786651\pi\)
0.621185 + 0.783664i \(0.286651\pi\)
\(948\) 0 0
\(949\) 18.0000 18.0000i 0.584305 0.584305i
\(950\) 0 0
\(951\) 10.3923i 0.336994i
\(952\) 0 0
\(953\) 32.0000i 1.03658i 0.855204 + 0.518291i \(0.173432\pi\)
−0.855204 + 0.518291i \(0.826568\pi\)
\(954\) 0 0
\(955\) 17.3205 17.3205i 0.560478 0.560478i
\(956\) 0 0
\(957\) 10.3923 10.3923i 0.335936 0.335936i
\(958\) 0 0
\(959\) −13.8564 16.0000i −0.447447 0.516667i
\(960\) 0 0
\(961\) 17.0000 0.548387
\(962\) 0 0
\(963\) 21.0000 21.0000i 0.676716 0.676716i
\(964\) 0 0
\(965\) −17.3205 17.3205i −0.557567 0.557567i
\(966\) 0 0
\(967\) 44.0000 1.41494 0.707472 0.706741i \(-0.249835\pi\)
0.707472 + 0.706741i \(0.249835\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1.73205 1.73205i 0.0555842 0.0555842i −0.678768 0.734352i \(-0.737486\pi\)
0.734352 + 0.678768i \(0.237486\pi\)
\(972\) 0 0
\(973\) −1.39230 + 19.3923i −0.0446352 + 0.621689i
\(974\) 0 0
\(975\) 6.00000i 0.192154i
\(976\) 0 0
\(977\) −10.0000 −0.319928 −0.159964 0.987123i \(-0.551138\pi\)
−0.159964 + 0.987123i \(0.551138\pi\)
\(978\) 0 0
\(979\) −10.3923 10.3923i −0.332140 0.332140i
\(980\) 0 0
\(981\) 39.0000 39.0000i 1.24517 1.24517i
\(982\) 0 0
\(983\) 45.0333i 1.43634i 0.695868 + 0.718170i \(0.255020\pi\)
−0.695868 + 0.718170i \(0.744980\pi\)
\(984\) 0 0
\(985\) 3.46410 0.110375
\(986\) 0 0
\(987\) 44.7846 + 3.21539i 1.42551 + 0.102347i
\(988\) 0 0
\(989\) −4.00000 4.00000i −0.127193 0.127193i
\(990\) 0 0
\(991\) 6.00000i 0.190596i −0.995449 0.0952981i \(-0.969620\pi\)
0.995449 0.0952981i \(-0.0303804\pi\)
\(992\) 0 0
\(993\) 58.8897i 1.86881i
\(994\) 0 0
\(995\) −18.0000 + 18.0000i −0.570638 + 0.570638i
\(996\) 0 0
\(997\) −22.5167 22.5167i −0.713110 0.713110i 0.254075 0.967185i \(-0.418229\pi\)
−0.967185 + 0.254075i \(0.918229\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.2.j.c.111.1 4
4.3 odd 2 112.2.j.c.83.2 yes 4
7.6 odd 2 inner 448.2.j.c.111.2 4
8.3 odd 2 896.2.j.a.223.1 4
8.5 even 2 896.2.j.f.223.2 4
16.3 odd 4 896.2.j.f.671.1 4
16.5 even 4 112.2.j.c.27.1 4
16.11 odd 4 inner 448.2.j.c.335.2 4
16.13 even 4 896.2.j.a.671.2 4
28.3 even 6 784.2.w.a.19.1 4
28.11 odd 6 784.2.w.b.19.1 4
28.19 even 6 784.2.w.b.227.1 4
28.23 odd 6 784.2.w.a.227.1 4
28.27 even 2 112.2.j.c.83.1 yes 4
56.13 odd 2 896.2.j.f.223.1 4
56.27 even 2 896.2.j.a.223.2 4
112.5 odd 12 784.2.w.b.619.1 4
112.13 odd 4 896.2.j.a.671.1 4
112.27 even 4 inner 448.2.j.c.335.1 4
112.37 even 12 784.2.w.a.619.1 4
112.53 even 12 784.2.w.b.411.1 4
112.69 odd 4 112.2.j.c.27.2 yes 4
112.83 even 4 896.2.j.f.671.2 4
112.101 odd 12 784.2.w.a.411.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.j.c.27.1 4 16.5 even 4
112.2.j.c.27.2 yes 4 112.69 odd 4
112.2.j.c.83.1 yes 4 28.27 even 2
112.2.j.c.83.2 yes 4 4.3 odd 2
448.2.j.c.111.1 4 1.1 even 1 trivial
448.2.j.c.111.2 4 7.6 odd 2 inner
448.2.j.c.335.1 4 112.27 even 4 inner
448.2.j.c.335.2 4 16.11 odd 4 inner
784.2.w.a.19.1 4 28.3 even 6
784.2.w.a.227.1 4 28.23 odd 6
784.2.w.a.411.1 4 112.101 odd 12
784.2.w.a.619.1 4 112.37 even 12
784.2.w.b.19.1 4 28.11 odd 6
784.2.w.b.227.1 4 28.19 even 6
784.2.w.b.411.1 4 112.53 even 12
784.2.w.b.619.1 4 112.5 odd 12
896.2.j.a.223.1 4 8.3 odd 2
896.2.j.a.223.2 4 56.27 even 2
896.2.j.a.671.1 4 112.13 odd 4
896.2.j.a.671.2 4 16.13 even 4
896.2.j.f.223.1 4 56.13 odd 2
896.2.j.f.223.2 4 8.5 even 2
896.2.j.f.671.1 4 16.3 odd 4
896.2.j.f.671.2 4 112.83 even 4