L(s) = 1 | − 9.66i·3-s + 11.8i·5-s − 7·7-s − 66.3·9-s + 36.1i·11-s − 59.5i·13-s + 114.·15-s − 28.4·17-s + 128. i·19-s + 67.6i·21-s + 168.·23-s − 14.3·25-s + 379. i·27-s + 24.8i·29-s + 98.4·31-s + ⋯ |
L(s) = 1 | − 1.85i·3-s + 1.05i·5-s − 0.377·7-s − 2.45·9-s + 0.989i·11-s − 1.26i·13-s + 1.96·15-s − 0.405·17-s + 1.54i·19-s + 0.702i·21-s + 1.52·23-s − 0.114·25-s + 2.70i·27-s + 0.159i·29-s + 0.570·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.310021325\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.310021325\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + 7T \) |
good | 3 | \( 1 + 9.66iT - 27T^{2} \) |
| 5 | \( 1 - 11.8iT - 125T^{2} \) |
| 11 | \( 1 - 36.1iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 59.5iT - 2.19e3T^{2} \) |
| 17 | \( 1 + 28.4T + 4.91e3T^{2} \) |
| 19 | \( 1 - 128. iT - 6.85e3T^{2} \) |
| 23 | \( 1 - 168.T + 1.21e4T^{2} \) |
| 29 | \( 1 - 24.8iT - 2.43e4T^{2} \) |
| 31 | \( 1 - 98.4T + 2.97e4T^{2} \) |
| 37 | \( 1 - 411. iT - 5.06e4T^{2} \) |
| 41 | \( 1 + 302.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 61.8iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 493.T + 1.03e5T^{2} \) |
| 53 | \( 1 + 66.6iT - 1.48e5T^{2} \) |
| 59 | \( 1 + 467. iT - 2.05e5T^{2} \) |
| 61 | \( 1 - 315. iT - 2.26e5T^{2} \) |
| 67 | \( 1 - 765. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 241.T + 3.57e5T^{2} \) |
| 73 | \( 1 - 413.T + 3.89e5T^{2} \) |
| 79 | \( 1 - 711.T + 4.93e5T^{2} \) |
| 83 | \( 1 + 147. iT - 5.71e5T^{2} \) |
| 89 | \( 1 + 425.T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.13e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79462735586476107754906849814, −9.998967726309375730302891819541, −8.542251614489064108934395022037, −7.72957646232937544055915110895, −6.95570892124293237947612448222, −6.43445186697888168894355703773, −5.33888251068189840874242508825, −3.26882376490822634159865755793, −2.44200337852162393570086843706, −1.14253313550994790905638192966,
0.47808367271363901489468562474, 2.79549638213313871063582555833, 3.97941457016640019111177580940, 4.74793187066454165833480389282, 5.48161204123068506809442082323, 6.74859142880018561343366325730, 8.505579671419432453734860205829, 9.179505070820597702729529166442, 9.332233631117183444233425624763, 10.79634026873518485732861044020