L(s) = 1 | − 9.66i·3-s + 11.8i·5-s − 7·7-s − 66.3·9-s + 36.1i·11-s − 59.5i·13-s + 114.·15-s − 28.4·17-s + 128. i·19-s + 67.6i·21-s + 168.·23-s − 14.3·25-s + 379. i·27-s + 24.8i·29-s + 98.4·31-s + ⋯ |
L(s) = 1 | − 1.85i·3-s + 1.05i·5-s − 0.377·7-s − 2.45·9-s + 0.989i·11-s − 1.26i·13-s + 1.96·15-s − 0.405·17-s + 1.54i·19-s + 0.702i·21-s + 1.52·23-s − 0.114·25-s + 2.70i·27-s + 0.159i·29-s + 0.570·31-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)(0.965−0.258i)Λ(4−s)
Λ(s)=(=(448s/2ΓC(s+3/2)L(s)(0.965−0.258i)Λ(1−s)
Degree: |
2 |
Conductor: |
448
= 26⋅7
|
Sign: |
0.965−0.258i
|
Analytic conductor: |
26.4328 |
Root analytic conductor: |
5.14128 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(225,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 448, ( :3/2), 0.965−0.258i)
|
Particular Values
L(2) |
≈ |
1.310021325 |
L(21) |
≈ |
1.310021325 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+7T |
good | 3 | 1+9.66iT−27T2 |
| 5 | 1−11.8iT−125T2 |
| 11 | 1−36.1iT−1.33e3T2 |
| 13 | 1+59.5iT−2.19e3T2 |
| 17 | 1+28.4T+4.91e3T2 |
| 19 | 1−128.iT−6.85e3T2 |
| 23 | 1−168.T+1.21e4T2 |
| 29 | 1−24.8iT−2.43e4T2 |
| 31 | 1−98.4T+2.97e4T2 |
| 37 | 1−411.iT−5.06e4T2 |
| 41 | 1+302.T+6.89e4T2 |
| 43 | 1+61.8iT−7.95e4T2 |
| 47 | 1−493.T+1.03e5T2 |
| 53 | 1+66.6iT−1.48e5T2 |
| 59 | 1+467.iT−2.05e5T2 |
| 61 | 1−315.iT−2.26e5T2 |
| 67 | 1−765.iT−3.00e5T2 |
| 71 | 1−241.T+3.57e5T2 |
| 73 | 1−413.T+3.89e5T2 |
| 79 | 1−711.T+4.93e5T2 |
| 83 | 1+147.iT−5.71e5T2 |
| 89 | 1+425.T+7.04e5T2 |
| 97 | 1+1.13e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.79462735586476107754906849814, −9.998967726309375730302891819541, −8.542251614489064108934395022037, −7.72957646232937544055915110895, −6.95570892124293237947612448222, −6.43445186697888168894355703773, −5.33888251068189840874242508825, −3.26882376490822634159865755793, −2.44200337852162393570086843706, −1.14253313550994790905638192966,
0.47808367271363901489468562474, 2.79549638213313871063582555833, 3.97941457016640019111177580940, 4.74793187066454165833480389282, 5.48161204123068506809442082323, 6.74859142880018561343366325730, 8.505579671419432453734860205829, 9.179505070820597702729529166442, 9.332233631117183444233425624763, 10.79634026873518485732861044020