Properties

Label 2-448-8.5-c3-0-4
Degree $2$
Conductor $448$
Sign $0.965 - 0.258i$
Analytic cond. $26.4328$
Root an. cond. $5.14128$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.66i·3-s + 11.8i·5-s − 7·7-s − 66.3·9-s + 36.1i·11-s − 59.5i·13-s + 114.·15-s − 28.4·17-s + 128. i·19-s + 67.6i·21-s + 168.·23-s − 14.3·25-s + 379. i·27-s + 24.8i·29-s + 98.4·31-s + ⋯
L(s)  = 1  − 1.85i·3-s + 1.05i·5-s − 0.377·7-s − 2.45·9-s + 0.989i·11-s − 1.26i·13-s + 1.96·15-s − 0.405·17-s + 1.54i·19-s + 0.702i·21-s + 1.52·23-s − 0.114·25-s + 2.70i·27-s + 0.159i·29-s + 0.570·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.965 - 0.258i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(448\)    =    \(2^{6} \cdot 7\)
Sign: $0.965 - 0.258i$
Analytic conductor: \(26.4328\)
Root analytic conductor: \(5.14128\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{448} (225, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 448,\ (\ :3/2),\ 0.965 - 0.258i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.310021325\)
\(L(\frac12)\) \(\approx\) \(1.310021325\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 7T \)
good3 \( 1 + 9.66iT - 27T^{2} \)
5 \( 1 - 11.8iT - 125T^{2} \)
11 \( 1 - 36.1iT - 1.33e3T^{2} \)
13 \( 1 + 59.5iT - 2.19e3T^{2} \)
17 \( 1 + 28.4T + 4.91e3T^{2} \)
19 \( 1 - 128. iT - 6.85e3T^{2} \)
23 \( 1 - 168.T + 1.21e4T^{2} \)
29 \( 1 - 24.8iT - 2.43e4T^{2} \)
31 \( 1 - 98.4T + 2.97e4T^{2} \)
37 \( 1 - 411. iT - 5.06e4T^{2} \)
41 \( 1 + 302.T + 6.89e4T^{2} \)
43 \( 1 + 61.8iT - 7.95e4T^{2} \)
47 \( 1 - 493.T + 1.03e5T^{2} \)
53 \( 1 + 66.6iT - 1.48e5T^{2} \)
59 \( 1 + 467. iT - 2.05e5T^{2} \)
61 \( 1 - 315. iT - 2.26e5T^{2} \)
67 \( 1 - 765. iT - 3.00e5T^{2} \)
71 \( 1 - 241.T + 3.57e5T^{2} \)
73 \( 1 - 413.T + 3.89e5T^{2} \)
79 \( 1 - 711.T + 4.93e5T^{2} \)
83 \( 1 + 147. iT - 5.71e5T^{2} \)
89 \( 1 + 425.T + 7.04e5T^{2} \)
97 \( 1 + 1.13e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79462735586476107754906849814, −9.998967726309375730302891819541, −8.542251614489064108934395022037, −7.72957646232937544055915110895, −6.95570892124293237947612448222, −6.43445186697888168894355703773, −5.33888251068189840874242508825, −3.26882376490822634159865755793, −2.44200337852162393570086843706, −1.14253313550994790905638192966, 0.47808367271363901489468562474, 2.79549638213313871063582555833, 3.97941457016640019111177580940, 4.74793187066454165833480389282, 5.48161204123068506809442082323, 6.74859142880018561343366325730, 8.505579671419432453734860205829, 9.179505070820597702729529166442, 9.332233631117183444233425624763, 10.79634026873518485732861044020

Graph of the $Z$-function along the critical line