Properties

Label 448.4.b.a
Level 448448
Weight 44
Character orbit 448.b
Analytic conductor 26.43326.433
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(225,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.225");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 448=267 448 = 2^{6} \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 448.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.432855682626.4328556826
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 25 2^{5}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β34β1)q3+(5β3+2β1)q57q7+(5β249)q9+(6β3+16β1)q11+(6β319β1)q13+(41β228)q15++(124β3934β1)q99+O(q100) q + ( - \beta_{3} - 4 \beta_1) q^{3} + ( - 5 \beta_{3} + 2 \beta_1) q^{5} - 7 q^{7} + (5 \beta_{2} - 49) q^{9} + (6 \beta_{3} + 16 \beta_1) q^{11} + (6 \beta_{3} - 19 \beta_1) q^{13} + ( - 41 \beta_{2} - 28) q^{15}+ \cdots + ( - 124 \beta_{3} - 934 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q28q7196q9112q15280q17+576q23764q25+560q31+1312q33928q39488q41+784q47+196q49+928q55+672q57+1372q63+2048q65+856q97+O(q100) 4 q - 28 q^{7} - 196 q^{9} - 112 q^{15} - 280 q^{17} + 576 q^{23} - 764 q^{25} + 560 q^{31} + 1312 q^{33} - 928 q^{39} - 488 q^{41} + 784 q^{47} + 196 q^{49} + 928 q^{55} + 672 q^{57} + 1372 q^{63} + 2048 q^{65}+ \cdots - 856 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ123+2ζ1221 -\zeta_{12}^{3} + 2\zeta_{12}^{2} - 1 Copy content Toggle raw display
β2\beta_{2}== 2ζ123+4ζ12 -2\zeta_{12}^{3} + 4\zeta_{12} Copy content Toggle raw display
β3\beta_{3}== 3ζ123+2ζ1221 3\zeta_{12}^{3} + 2\zeta_{12}^{2} - 1 Copy content Toggle raw display
ζ12\zeta_{12}== (β3+2β2β1)/8 ( \beta_{3} + 2\beta_{2} - \beta_1 ) / 8 Copy content Toggle raw display
ζ122\zeta_{12}^{2}== (β3+3β1+4)/8 ( \beta_{3} + 3\beta _1 + 4 ) / 8 Copy content Toggle raw display
ζ123\zeta_{12}^{3}== (β3β1)/4 ( \beta_{3} - \beta_1 ) / 4 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/448Z)×\left(\mathbb{Z}/448\mathbb{Z}\right)^\times.

nn 127127 129129 197197
χ(n)\chi(n) 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
225.1
−0.866025 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 9.66025i 0 11.8038i 0 −7.00000 0 −66.3205 0
225.2 0 7.66025i 0 22.1962i 0 −7.00000 0 −31.6795 0
225.3 0 7.66025i 0 22.1962i 0 −7.00000 0 −31.6795 0
225.4 0 9.66025i 0 11.8038i 0 −7.00000 0 −66.3205 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.4.b.a 4
4.b odd 2 1 448.4.b.b yes 4
8.b even 2 1 inner 448.4.b.a 4
8.d odd 2 1 448.4.b.b yes 4
16.e even 4 1 1792.4.a.a 2
16.e even 4 1 1792.4.a.d 2
16.f odd 4 1 1792.4.a.b 2
16.f odd 4 1 1792.4.a.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
448.4.b.a 4 1.a even 1 1 trivial
448.4.b.a 4 8.b even 2 1 inner
448.4.b.b yes 4 4.b odd 2 1
448.4.b.b yes 4 8.d odd 2 1
1792.4.a.a 2 16.e even 4 1
1792.4.a.b 2 16.f odd 4 1
1792.4.a.c 2 16.f odd 4 1
1792.4.a.d 2 16.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(448,[χ])S_{4}^{\mathrm{new}}(448, [\chi]):

T34+152T32+5476 T_{3}^{4} + 152T_{3}^{2} + 5476 Copy content Toggle raw display
T232288T23+20148 T_{23}^{2} - 288T_{23} + 20148 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4+152T2+5476 T^{4} + 152T^{2} + 5476 Copy content Toggle raw display
55 T4+632T2+68644 T^{4} + 632 T^{2} + 68644 Copy content Toggle raw display
77 (T+7)4 (T + 7)^{4} Copy content Toggle raw display
1111 T4+2912T2+2096704 T^{4} + 2912 T^{2} + 2096704 Copy content Toggle raw display
1313 T4+3752T2+743044 T^{4} + 3752 T^{2} + 743044 Copy content Toggle raw display
1717 (T2+140T+3172)2 (T^{2} + 140 T + 3172)^{2} Copy content Toggle raw display
1919 T4+30312T2+228070404 T^{4} + 30312 T^{2} + 228070404 Copy content Toggle raw display
2323 (T2288T+20148)2 (T^{2} - 288 T + 20148)^{2} Copy content Toggle raw display
2929 T4+9248T2+5345344 T^{4} + 9248 T^{2} + 5345344 Copy content Toggle raw display
3131 (T2280T+17872)2 (T^{2} - 280 T + 17872)^{2} Copy content Toggle raw display
3737 T4++10317683776 T^{4} + \cdots + 10317683776 Copy content Toggle raw display
4141 (T2+244T17564)2 (T^{2} + 244 T - 17564)^{2} Copy content Toggle raw display
4343 T4+66272T2+239135296 T^{4} + 66272 T^{2} + 239135296 Copy content Toggle raw display
4747 (T2392T50336)2 (T^{2} - 392 T - 50336)^{2} Copy content Toggle raw display
5353 T4++1448868096 T^{4} + \cdots + 1448868096 Copy content Toggle raw display
5959 T4++16809122500 T^{4} + \cdots + 16809122500 Copy content Toggle raw display
6161 T4+106136T2+682985956 T^{4} + 106136 T^{2} + 682985956 Copy content Toggle raw display
6767 T4++92922548224 T^{4} + \cdots + 92922548224 Copy content Toggle raw display
7171 (T2248T+1504)2 (T^{2} - 248 T + 1504)^{2} Copy content Toggle raw display
7373 (T2204T86796)2 (T^{2} - 204 T - 86796)^{2} Copy content Toggle raw display
7979 (T2440T193568)2 (T^{2} - 440 T - 193568)^{2} Copy content Toggle raw display
8383 T4++22271980644 T^{4} + \cdots + 22271980644 Copy content Toggle raw display
8989 (T2+1156T+310852)2 (T^{2} + 1156 T + 310852)^{2} Copy content Toggle raw display
9797 (T2+428T803276)2 (T^{2} + 428 T - 803276)^{2} Copy content Toggle raw display
show more
show less