L(s) = 1 | + (3.44 − 5.96i)3-s + (4.17 − 2.41i)5-s + (−5.03 + 17.8i)7-s + (−10.1 − 17.6i)9-s + (36.6 + 21.1i)11-s − 3.39i·13-s − 33.1i·15-s + (101. + 58.6i)17-s + (−45.5 − 78.9i)19-s + (88.8 + 91.3i)21-s + (147. − 85.3i)23-s + (−50.8 + 88.1i)25-s + 45.6·27-s + 131.·29-s + (5.70 − 9.87i)31-s + ⋯ |
L(s) = 1 | + (0.662 − 1.14i)3-s + (0.373 − 0.215i)5-s + (−0.272 + 0.962i)7-s + (−0.377 − 0.653i)9-s + (1.00 + 0.579i)11-s − 0.0724i·13-s − 0.571i·15-s + (1.45 + 0.837i)17-s + (−0.550 − 0.953i)19-s + (0.923 + 0.949i)21-s + (1.33 − 0.773i)23-s + (−0.406 + 0.704i)25-s + 0.325·27-s + 0.841·29-s + (0.0330 − 0.0572i)31-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)(0.782+0.622i)Λ(4−s)
Λ(s)=(=(448s/2ΓC(s+3/2)L(s)(0.782+0.622i)Λ(1−s)
Degree: |
2 |
Conductor: |
448
= 26⋅7
|
Sign: |
0.782+0.622i
|
Analytic conductor: |
26.4328 |
Root analytic conductor: |
5.14128 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(255,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 448, ( :3/2), 0.782+0.622i)
|
Particular Values
L(2) |
≈ |
2.850211640 |
L(21) |
≈ |
2.850211640 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(5.03−17.8i)T |
good | 3 | 1+(−3.44+5.96i)T+(−13.5−23.3i)T2 |
| 5 | 1+(−4.17+2.41i)T+(62.5−108.i)T2 |
| 11 | 1+(−36.6−21.1i)T+(665.5+1.15e3i)T2 |
| 13 | 1+3.39iT−2.19e3T2 |
| 17 | 1+(−101.−58.6i)T+(2.45e3+4.25e3i)T2 |
| 19 | 1+(45.5+78.9i)T+(−3.42e3+5.94e3i)T2 |
| 23 | 1+(−147.+85.3i)T+(6.08e3−1.05e4i)T2 |
| 29 | 1−131.T+2.43e4T2 |
| 31 | 1+(−5.70+9.87i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(59.2+102.i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1−109.iT−6.89e4T2 |
| 43 | 1+82.5iT−7.95e4T2 |
| 47 | 1+(36.7+63.6i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(87.2−151.i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(−166.+288.i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(472.−272.i)T+(1.13e5−1.96e5i)T2 |
| 67 | 1+(516.+298.i)T+(1.50e5+2.60e5i)T2 |
| 71 | 1+384.iT−3.57e5T2 |
| 73 | 1+(−187.−108.i)T+(1.94e5+3.36e5i)T2 |
| 79 | 1+(−868.+501.i)T+(2.46e5−4.26e5i)T2 |
| 83 | 1−459.T+5.71e5T2 |
| 89 | 1+(771.−445.i)T+(3.52e5−6.10e5i)T2 |
| 97 | 1−282.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.52753457085898610657254536095, −9.334896388655536580931463837888, −8.812669494135185646769705574560, −7.86480153952560603037399526455, −6.85555103450285970125976489606, −6.13027824668936698329548464068, −4.89417187371466157700160127753, −3.26033627589690143831309798271, −2.17032017880016278473201036482, −1.16607347351574228249982888723,
1.11962340652743862020918371647, 3.08321303015698744257885326189, 3.72071940547298640950536185882, 4.75390973820078525320876767338, 6.05050567079704686815194251902, 7.10264216088909246507247368155, 8.229060255652287892795077772355, 9.211651024457236694577954079459, 9.907927049877761182255714359648, 10.42966036296278717466163149272