L(s) = 1 | + (3.44 − 5.96i)3-s + (4.17 − 2.41i)5-s + (−5.03 + 17.8i)7-s + (−10.1 − 17.6i)9-s + (36.6 + 21.1i)11-s − 3.39i·13-s − 33.1i·15-s + (101. + 58.6i)17-s + (−45.5 − 78.9i)19-s + (88.8 + 91.3i)21-s + (147. − 85.3i)23-s + (−50.8 + 88.1i)25-s + 45.6·27-s + 131.·29-s + (5.70 − 9.87i)31-s + ⋯ |
L(s) = 1 | + (0.662 − 1.14i)3-s + (0.373 − 0.215i)5-s + (−0.272 + 0.962i)7-s + (−0.377 − 0.653i)9-s + (1.00 + 0.579i)11-s − 0.0724i·13-s − 0.571i·15-s + (1.45 + 0.837i)17-s + (−0.550 − 0.953i)19-s + (0.923 + 0.949i)21-s + (1.33 − 0.773i)23-s + (−0.406 + 0.704i)25-s + 0.325·27-s + 0.841·29-s + (0.0330 − 0.0572i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.782 + 0.622i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.782 + 0.622i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.850211640\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.850211640\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (5.03 - 17.8i)T \) |
good | 3 | \( 1 + (-3.44 + 5.96i)T + (-13.5 - 23.3i)T^{2} \) |
| 5 | \( 1 + (-4.17 + 2.41i)T + (62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-36.6 - 21.1i)T + (665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + 3.39iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (-101. - 58.6i)T + (2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (45.5 + 78.9i)T + (-3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-147. + 85.3i)T + (6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 - 131.T + 2.43e4T^{2} \) |
| 31 | \( 1 + (-5.70 + 9.87i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (59.2 + 102. i)T + (-2.53e4 + 4.38e4i)T^{2} \) |
| 41 | \( 1 - 109. iT - 6.89e4T^{2} \) |
| 43 | \( 1 + 82.5iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (36.7 + 63.6i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 + (87.2 - 151. i)T + (-7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (-166. + 288. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (472. - 272. i)T + (1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (516. + 298. i)T + (1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 384. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-187. - 108. i)T + (1.94e5 + 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-868. + 501. i)T + (2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 - 459.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (771. - 445. i)T + (3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 - 282. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52753457085898610657254536095, −9.334896388655536580931463837888, −8.812669494135185646769705574560, −7.86480153952560603037399526455, −6.85555103450285970125976489606, −6.13027824668936698329548464068, −4.89417187371466157700160127753, −3.26033627589690143831309798271, −2.17032017880016278473201036482, −1.16607347351574228249982888723,
1.11962340652743862020918371647, 3.08321303015698744257885326189, 3.72071940547298640950536185882, 4.75390973820078525320876767338, 6.05050567079704686815194251902, 7.10264216088909246507247368155, 8.229060255652287892795077772355, 9.211651024457236694577954079459, 9.907927049877761182255714359648, 10.42966036296278717466163149272