Properties

Label 448.4.p.h
Level $448$
Weight $4$
Character orbit 448.p
Analytic conductor $26.433$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(255,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.255");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.4328556826\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{18} - 24 x^{17} + 28 x^{16} + 56 x^{15} - 192 x^{14} + 352 x^{13} - 448 x^{12} + \cdots + 1073741824 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{44} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{10} q^{3} + ( - \beta_{4} + \beta_{3}) q^{5} + (\beta_{13} + \beta_{2}) q^{7} + (\beta_{9} - 6 \beta_1 - 6) q^{9} - \beta_{15} q^{11} + (\beta_{19} - \beta_{11} + \beta_{9} + \cdots - 4) q^{13}+ \cdots + ( - \beta_{18} - 7 \beta_{17} + \cdots - 8 \beta_{2}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{5} - 56 q^{9} - 6 q^{17} - 238 q^{21} - 36 q^{25} + 352 q^{29} + 30 q^{33} - 258 q^{37} + 504 q^{45} - 644 q^{49} - 570 q^{53} + 1452 q^{57} - 294 q^{61} - 124 q^{65} + 966 q^{73} + 378 q^{77}+ \cdots + 306 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 2 x^{18} - 24 x^{17} + 28 x^{16} + 56 x^{15} - 192 x^{14} + 352 x^{13} - 448 x^{12} + \cdots + 1073741824 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - 793 \nu^{19} - 7760 \nu^{18} - 70462 \nu^{17} + 82360 \nu^{16} - 36188 \nu^{15} + \cdots + 940060966912 ) / 2280224980992 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 253 \nu^{19} + 720 \nu^{18} - 11414 \nu^{17} - 65832 \nu^{16} - 109324 \nu^{15} + \cdots + 1201651318784 ) / 325746425856 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 647 \nu^{19} - 13656 \nu^{18} - 111550 \nu^{17} + 323784 \nu^{16} - 943772 \nu^{15} + \cdots + 3620321886208 ) / 1140112490496 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 13969 \nu^{19} + 83816 \nu^{18} - 322254 \nu^{17} + 133768 \nu^{16} + \cdots + 10557834919936 ) / 2280224980992 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 7197 \nu^{19} + 68984 \nu^{18} + 122498 \nu^{17} + 1668776 \nu^{16} + \cdots - 9654952263680 ) / 1140112490496 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 4809 \nu^{19} + 488 \nu^{18} - 47870 \nu^{17} + 103368 \nu^{16} - 318364 \nu^{15} + \cdots + 562506498048 ) / 325746425856 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 39171 \nu^{19} + 88016 \nu^{18} + 123178 \nu^{17} - 159272 \nu^{16} + 596340 \nu^{15} + \cdots - 10618098679808 ) / 2280224980992 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 1751 \nu^{19} + 1586 \nu^{18} + 12018 \nu^{17} + 98900 \nu^{16} - 115692 \nu^{15} + \cdots - 932611883008 ) / 71257030656 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 1894 \nu^{19} + 58567 \nu^{18} + 387356 \nu^{17} - 54686 \nu^{16} - 826352 \nu^{15} + \cdots - 20322543730688 ) / 285028122624 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 35213 \nu^{19} + 43608 \nu^{18} - 69790 \nu^{17} + 86376 \nu^{16} - 867004 \nu^{15} + \cdots + 5266837864448 ) / 1140112490496 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 7973 \nu^{19} - 27196 \nu^{18} + 132966 \nu^{17} - 40640 \nu^{16} + 118860 \nu^{15} + \cdots - 4866399272960 ) / 190018748416 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 14861 \nu^{19} + 21795 \nu^{18} + 209574 \nu^{17} - 243230 \nu^{16} - 861276 \nu^{15} + \cdots - 10412292571136 ) / 285028122624 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( - 4095 \nu^{19} - 10250 \nu^{18} + 27770 \nu^{17} + 32460 \nu^{16} - 150956 \nu^{15} + \cdots - 1487602188288 ) / 81436606464 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 9811 \nu^{19} - 11616 \nu^{18} + 66782 \nu^{17} - 1880 \nu^{16} - 190468 \nu^{15} + \cdots - 2344381054976 ) / 162873212928 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( 74377 \nu^{19} - 27452 \nu^{18} - 793194 \nu^{17} + 594432 \nu^{16} + 1813708 \nu^{15} + \cdots + 34979287400448 ) / 1140112490496 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( - 16233 \nu^{19} + 65704 \nu^{18} - 77422 \nu^{17} + 26120 \nu^{16} - 86716 \nu^{15} + \cdots + 2878970265600 ) / 285028122624 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( - 151077 \nu^{19} + 463976 \nu^{18} - 229926 \nu^{17} - 371992 \nu^{16} + \cdots - 7711211126784 ) / 2280224980992 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( - 158821 \nu^{19} - 488368 \nu^{18} + 901626 \nu^{17} + 2990744 \nu^{16} + \cdots - 3806280548352 ) / 2280224980992 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( 25722 \nu^{19} - 28761 \nu^{18} + 6684 \nu^{17} - 453598 \nu^{16} + 507664 \nu^{15} + \cdots + 1721912786944 ) / 285028122624 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{10} - \beta_{8} + \beta_{5} ) / 16 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 2 \beta_{19} + \beta_{16} + \beta_{15} + \beta_{14} + \beta_{13} - \beta_{12} - \beta_{11} - \beta_{10} + \cdots - 1 ) / 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( - \beta_{18} - \beta_{16} + 4 \beta_{14} - 4 \beta_{11} - 5 \beta_{10} + 5 \beta_{7} + \beta_{5} + \cdots + 28 ) / 8 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( - \beta_{19} + \beta_{17} + 8 \beta_{14} - 8 \beta_{13} - \beta_{12} + \beta_{11} - 15 \beta_{10} + \cdots - 37 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 12 \beta_{19} + \beta_{18} + 11 \beta_{16} - 10 \beta_{15} - 10 \beta_{14} - 6 \beta_{13} - 6 \beta_{12} + \cdots - 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 3 \beta_{19} - 8 \beta_{18} - 13 \beta_{17} - 11 \beta_{16} - 13 \beta_{15} - \beta_{14} + 11 \beta_{13} + \cdots + 274 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( - 8 \beta_{19} + 24 \beta_{17} - 44 \beta_{14} + 44 \beta_{13} - 8 \beta_{12} + 8 \beta_{11} + \cdots - 1436 ) / 2 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( - 26 \beta_{19} - 55 \beta_{18} + 46 \beta_{16} + 51 \beta_{15} + 27 \beta_{14} + 59 \beta_{13} + \cdots + 13 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( - 114 \beta_{19} + 97 \beta_{18} - 98 \beta_{17} + 59 \beta_{16} - 98 \beta_{15} - 46 \beta_{14} + \cdots + 1128 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 6 \beta_{19} + 38 \beta_{17} - 152 \beta_{14} + 152 \beta_{13} - 6 \beta_{12} + 6 \beta_{11} + \cdots + 14250 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( 288 \beta_{19} + 1138 \beta_{18} - 334 \beta_{16} + 624 \beta_{15} - 1840 \beta_{14} + 232 \beta_{13} + \cdots - 144 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 2316 \beta_{19} + 1892 \beta_{18} + 2316 \beta_{17} + 1400 \beta_{16} + 2316 \beta_{15} + 2476 \beta_{14} + \cdots + 75160 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 184 \beta_{19} + 13048 \beta_{17} + 13392 \beta_{14} - 13392 \beta_{13} - 184 \beta_{12} + \cdots + 76120 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( 8144 \beta_{19} + 960 \beta_{18} - 7976 \beta_{16} + 20328 \beta_{15} + 21928 \beta_{14} - 38904 \beta_{13} + \cdots - 4072 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( 65856 \beta_{19} + 30664 \beta_{18} - 89920 \beta_{17} + 90056 \beta_{16} - 89920 \beta_{15} + \cdots - 388832 \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( - 94256 \beta_{19} - 102352 \beta_{17} + 209920 \beta_{14} - 209920 \beta_{13} - 94256 \beta_{12} + \cdots + 3601040 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( - 209344 \beta_{19} + 616944 \beta_{18} + 137296 \beta_{16} - 41440 \beta_{15} - 717792 \beta_{14} + \cdots + 104672 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( 789408 \beta_{19} - 2061056 \beta_{18} - 513632 \beta_{17} + 3020128 \beta_{16} - 513632 \beta_{15} + \cdots + 58623424 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( 5736192 \beta_{19} - 1460480 \beta_{17} - 396928 \beta_{14} + 396928 \beta_{13} + 5736192 \beta_{12} + \cdots - 6007424 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(1 + \beta_{1}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
255.1
2.82698 0.0903966i
−1.75840 2.21540i
0.448398 + 2.79266i
−2.26510 + 1.69390i
1.31147 2.50600i
−2.82600 0.117237i
2.59951 1.11469i
2.19431 + 1.78465i
−1.03939 2.63053i
−1.49178 + 2.40304i
2.82698 + 0.0903966i
−1.75840 + 2.21540i
0.448398 2.79266i
−2.26510 1.69390i
1.31147 + 2.50600i
−2.82600 + 0.117237i
2.59951 + 1.11469i
2.19431 1.78465i
−1.03939 + 2.63053i
−1.49178 2.40304i
0 −4.65345 + 8.06002i 0 −5.11538 + 2.95337i 0 1.92900 + 18.4195i 0 −29.8092 51.6311i 0
255.2 0 −3.44104 + 5.96006i 0 4.17670 2.41142i 0 5.03893 17.8216i 0 −10.1816 17.6350i 0
255.3 0 −2.11164 + 3.65747i 0 −1.03358 + 0.596737i 0 −16.7651 7.86959i 0 4.58193 + 7.93614i 0
255.4 0 −1.67134 + 2.89484i 0 15.9583 9.21354i 0 15.4841 + 10.1609i 0 7.91327 + 13.7062i 0
255.5 0 −0.0469307 + 0.0812864i 0 −12.4861 + 7.20883i 0 15.0686 10.7674i 0 13.4956 + 23.3751i 0
255.6 0 0.0469307 0.0812864i 0 −12.4861 + 7.20883i 0 −15.0686 + 10.7674i 0 13.4956 + 23.3751i 0
255.7 0 1.67134 2.89484i 0 15.9583 9.21354i 0 −15.4841 10.1609i 0 7.91327 + 13.7062i 0
255.8 0 2.11164 3.65747i 0 −1.03358 + 0.596737i 0 16.7651 + 7.86959i 0 4.58193 + 7.93614i 0
255.9 0 3.44104 5.96006i 0 4.17670 2.41142i 0 −5.03893 + 17.8216i 0 −10.1816 17.6350i 0
255.10 0 4.65345 8.06002i 0 −5.11538 + 2.95337i 0 −1.92900 18.4195i 0 −29.8092 51.6311i 0
383.1 0 −4.65345 8.06002i 0 −5.11538 2.95337i 0 1.92900 18.4195i 0 −29.8092 + 51.6311i 0
383.2 0 −3.44104 5.96006i 0 4.17670 + 2.41142i 0 5.03893 + 17.8216i 0 −10.1816 + 17.6350i 0
383.3 0 −2.11164 3.65747i 0 −1.03358 0.596737i 0 −16.7651 + 7.86959i 0 4.58193 7.93614i 0
383.4 0 −1.67134 2.89484i 0 15.9583 + 9.21354i 0 15.4841 10.1609i 0 7.91327 13.7062i 0
383.5 0 −0.0469307 0.0812864i 0 −12.4861 7.20883i 0 15.0686 + 10.7674i 0 13.4956 23.3751i 0
383.6 0 0.0469307 + 0.0812864i 0 −12.4861 7.20883i 0 −15.0686 10.7674i 0 13.4956 23.3751i 0
383.7 0 1.67134 + 2.89484i 0 15.9583 + 9.21354i 0 −15.4841 + 10.1609i 0 7.91327 13.7062i 0
383.8 0 2.11164 + 3.65747i 0 −1.03358 0.596737i 0 16.7651 7.86959i 0 4.58193 7.93614i 0
383.9 0 3.44104 + 5.96006i 0 4.17670 + 2.41142i 0 −5.03893 17.8216i 0 −10.1816 + 17.6350i 0
383.10 0 4.65345 + 8.06002i 0 −5.11538 2.95337i 0 −1.92900 + 18.4195i 0 −29.8092 + 51.6311i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 255.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.d odd 6 1 inner
28.f even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 448.4.p.h 20
4.b odd 2 1 inner 448.4.p.h 20
7.d odd 6 1 inner 448.4.p.h 20
8.b even 2 1 28.4.f.a 20
8.d odd 2 1 28.4.f.a 20
28.f even 6 1 inner 448.4.p.h 20
56.e even 2 1 196.4.f.d 20
56.h odd 2 1 196.4.f.d 20
56.j odd 6 1 28.4.f.a 20
56.j odd 6 1 196.4.d.b 20
56.k odd 6 1 196.4.d.b 20
56.k odd 6 1 196.4.f.d 20
56.m even 6 1 28.4.f.a 20
56.m even 6 1 196.4.d.b 20
56.p even 6 1 196.4.d.b 20
56.p even 6 1 196.4.f.d 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.4.f.a 20 8.b even 2 1
28.4.f.a 20 8.d odd 2 1
28.4.f.a 20 56.j odd 6 1
28.4.f.a 20 56.m even 6 1
196.4.d.b 20 56.j odd 6 1
196.4.d.b 20 56.k odd 6 1
196.4.d.b 20 56.m even 6 1
196.4.d.b 20 56.p even 6 1
196.4.f.d 20 56.e even 2 1
196.4.f.d 20 56.h odd 2 1
196.4.f.d 20 56.k odd 6 1
196.4.f.d 20 56.p even 6 1
448.4.p.h 20 1.a even 1 1 trivial
448.4.p.h 20 4.b odd 2 1 inner
448.4.p.h 20 7.d odd 6 1 inner
448.4.p.h 20 28.f even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{20} + 163 T_{3}^{18} + 18379 T_{3}^{16} + 1043398 T_{3}^{14} + 42494101 T_{3}^{12} + \cdots + 51883209 \) acting on \(S_{4}^{\mathrm{new}}(448, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{20} \) Copy content Toggle raw display
$3$ \( T^{20} + 163 T^{18} + \cdots + 51883209 \) Copy content Toggle raw display
$5$ \( (T^{10} - 3 T^{9} + \cdots + 81588675)^{2} \) Copy content Toggle raw display
$7$ \( T^{20} + \cdots + 22\!\cdots\!49 \) Copy content Toggle raw display
$11$ \( T^{20} + \cdots + 20\!\cdots\!25 \) Copy content Toggle raw display
$13$ \( (T^{10} + \cdots + 10072189747200)^{2} \) Copy content Toggle raw display
$17$ \( (T^{10} + \cdots + 60\!\cdots\!75)^{2} \) Copy content Toggle raw display
$19$ \( T^{20} + \cdots + 12\!\cdots\!25 \) Copy content Toggle raw display
$23$ \( T^{20} + \cdots + 17\!\cdots\!61 \) Copy content Toggle raw display
$29$ \( (T^{5} - 88 T^{4} + \cdots - 5066614016)^{4} \) Copy content Toggle raw display
$31$ \( T^{20} + \cdots + 43\!\cdots\!25 \) Copy content Toggle raw display
$37$ \( (T^{10} + \cdots + 48\!\cdots\!25)^{2} \) Copy content Toggle raw display
$41$ \( (T^{10} + \cdots + 14\!\cdots\!72)^{2} \) Copy content Toggle raw display
$43$ \( (T^{10} + \cdots + 55\!\cdots\!56)^{2} \) Copy content Toggle raw display
$47$ \( T^{20} + \cdots + 90\!\cdots\!25 \) Copy content Toggle raw display
$53$ \( (T^{10} + \cdots + 23\!\cdots\!25)^{2} \) Copy content Toggle raw display
$59$ \( T^{20} + \cdots + 53\!\cdots\!25 \) Copy content Toggle raw display
$61$ \( (T^{10} + \cdots + 25\!\cdots\!47)^{2} \) Copy content Toggle raw display
$67$ \( T^{20} + \cdots + 16\!\cdots\!21 \) Copy content Toggle raw display
$71$ \( (T^{10} + \cdots + 16\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( (T^{10} + \cdots + 39\!\cdots\!75)^{2} \) Copy content Toggle raw display
$79$ \( T^{20} + \cdots + 14\!\cdots\!25 \) Copy content Toggle raw display
$83$ \( (T^{10} + \cdots - 41\!\cdots\!08)^{2} \) Copy content Toggle raw display
$89$ \( (T^{10} + \cdots + 99\!\cdots\!27)^{2} \) Copy content Toggle raw display
$97$ \( (T^{10} + \cdots + 12\!\cdots\!00)^{2} \) Copy content Toggle raw display
show more
show less