L(s) = 1 | + (−4.65 − 8.06i)3-s + (−5.11 − 2.95i)5-s + (1.92 − 18.4i)7-s + (−29.8 + 51.6i)9-s + (−0.267 + 0.154i)11-s + 43.7i·13-s + 54.9i·15-s + (−27.0 + 15.6i)17-s + (−39.7 + 68.8i)19-s + (−157. + 70.1i)21-s + (16.5 + 9.52i)23-s + (−45.0 − 78.0i)25-s + 303.·27-s + 40.1·29-s + (42.8 + 74.2i)31-s + ⋯ |
L(s) = 1 | + (−0.895 − 1.55i)3-s + (−0.457 − 0.264i)5-s + (0.104 − 0.994i)7-s + (−1.10 + 1.91i)9-s + (−0.00733 + 0.00423i)11-s + 0.932i·13-s + 0.946i·15-s + (−0.386 + 0.223i)17-s + (−0.479 + 0.830i)19-s + (−1.63 + 0.729i)21-s + (0.149 + 0.0863i)23-s + (−0.360 − 0.624i)25-s + 2.16·27-s + 0.256·29-s + (0.248 + 0.430i)31-s + ⋯ |
Λ(s)=(=(448s/2ΓC(s)L(s)(0.957−0.288i)Λ(4−s)
Λ(s)=(=(448s/2ΓC(s+3/2)L(s)(0.957−0.288i)Λ(1−s)
Degree: |
2 |
Conductor: |
448
= 26⋅7
|
Sign: |
0.957−0.288i
|
Analytic conductor: |
26.4328 |
Root analytic conductor: |
5.14128 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ448(383,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 448, ( :3/2), 0.957−0.288i)
|
Particular Values
L(2) |
≈ |
0.5075453434 |
L(21) |
≈ |
0.5075453434 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−1.92+18.4i)T |
good | 3 | 1+(4.65+8.06i)T+(−13.5+23.3i)T2 |
| 5 | 1+(5.11+2.95i)T+(62.5+108.i)T2 |
| 11 | 1+(0.267−0.154i)T+(665.5−1.15e3i)T2 |
| 13 | 1−43.7iT−2.19e3T2 |
| 17 | 1+(27.0−15.6i)T+(2.45e3−4.25e3i)T2 |
| 19 | 1+(39.7−68.8i)T+(−3.42e3−5.94e3i)T2 |
| 23 | 1+(−16.5−9.52i)T+(6.08e3+1.05e4i)T2 |
| 29 | 1−40.1T+2.43e4T2 |
| 31 | 1+(−42.8−74.2i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(72.4−125.i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1−254.iT−6.89e4T2 |
| 43 | 1+366.iT−7.95e4T2 |
| 47 | 1+(5.12−8.87i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(315.+546.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(−257.−446.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(−669.−386.i)T+(1.13e5+1.96e5i)T2 |
| 67 | 1+(−450.+259.i)T+(1.50e5−2.60e5i)T2 |
| 71 | 1−261.iT−3.57e5T2 |
| 73 | 1+(−588.+339.i)T+(1.94e5−3.36e5i)T2 |
| 79 | 1+(299.+172.i)T+(2.46e5+4.26e5i)T2 |
| 83 | 1−805.T+5.71e5T2 |
| 89 | 1+(40.7+23.5i)T+(3.52e5+6.10e5i)T2 |
| 97 | 1−763.iT−9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.00545914416135307063992674808, −10.08475361689581260998907879523, −8.497368836973818088561414647564, −7.83507770299879752825987932075, −6.86696028946125397314318041808, −6.39245144402913579663009021840, −5.08092109632802843967417934730, −3.96120629388547398068858634959, −2.02790136213562454620582986870, −0.961022829921070248312949009224,
0.23166319796105913900465715351, 2.76145151197298689353952576819, 3.88025043670143244986744078803, 4.94480832511804792488538348236, 5.61129042277035784900869875611, 6.63031632772264630677344016990, 8.109312308197776064308359217633, 9.112540511550688701343816148719, 9.770441864644129863577642845938, 10.87412670442892012440955780504