Properties

Label 2-448-28.19-c3-0-28
Degree 22
Conductor 448448
Sign 0.829+0.559i0.829 + 0.559i
Analytic cond. 26.432826.4328
Root an. cond. 5.141285.14128
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.67 − 2.89i)3-s + (15.9 + 9.21i)5-s + (15.4 − 10.1i)7-s + (7.91 − 13.7i)9-s + (35.6 − 20.5i)11-s + 24.8i·13-s − 61.5i·15-s + (−41.3 + 23.8i)17-s + (30.9 − 53.5i)19-s + (−55.2 − 27.8i)21-s + (64.3 + 37.1i)23-s + (107. + 185. i)25-s − 143.·27-s − 28.8·29-s + (−11.5 − 20.0i)31-s + ⋯
L(s)  = 1  + (−0.321 − 0.557i)3-s + (1.42 + 0.824i)5-s + (0.836 − 0.548i)7-s + (0.293 − 0.507i)9-s + (0.976 − 0.563i)11-s + 0.530i·13-s − 1.06i·15-s + (−0.590 + 0.340i)17-s + (0.373 − 0.646i)19-s + (−0.574 − 0.289i)21-s + (0.583 + 0.337i)23-s + (0.858 + 1.48i)25-s − 1.02·27-s − 0.184·29-s + (−0.0670 − 0.116i)31-s + ⋯

Functional equation

Λ(s)=(448s/2ΓC(s)L(s)=((0.829+0.559i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 + 0.559i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(448s/2ΓC(s+3/2)L(s)=((0.829+0.559i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.829 + 0.559i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 448448    =    2672^{6} \cdot 7
Sign: 0.829+0.559i0.829 + 0.559i
Analytic conductor: 26.432826.4328
Root analytic conductor: 5.141285.14128
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ448(383,)\chi_{448} (383, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 448, ( :3/2), 0.829+0.559i)(2,\ 448,\ (\ :3/2),\ 0.829 + 0.559i)

Particular Values

L(2)L(2) \approx 2.7329705022.732970502
L(12)L(\frac12) \approx 2.7329705022.732970502
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1+(15.4+10.1i)T 1 + (-15.4 + 10.1i)T
good3 1+(1.67+2.89i)T+(13.5+23.3i)T2 1 + (1.67 + 2.89i)T + (-13.5 + 23.3i)T^{2}
5 1+(15.99.21i)T+(62.5+108.i)T2 1 + (-15.9 - 9.21i)T + (62.5 + 108. i)T^{2}
11 1+(35.6+20.5i)T+(665.51.15e3i)T2 1 + (-35.6 + 20.5i)T + (665.5 - 1.15e3i)T^{2}
13 124.8iT2.19e3T2 1 - 24.8iT - 2.19e3T^{2}
17 1+(41.323.8i)T+(2.45e34.25e3i)T2 1 + (41.3 - 23.8i)T + (2.45e3 - 4.25e3i)T^{2}
19 1+(30.9+53.5i)T+(3.42e35.94e3i)T2 1 + (-30.9 + 53.5i)T + (-3.42e3 - 5.94e3i)T^{2}
23 1+(64.337.1i)T+(6.08e3+1.05e4i)T2 1 + (-64.3 - 37.1i)T + (6.08e3 + 1.05e4i)T^{2}
29 1+28.8T+2.43e4T2 1 + 28.8T + 2.43e4T^{2}
31 1+(11.5+20.0i)T+(1.48e4+2.57e4i)T2 1 + (11.5 + 20.0i)T + (-1.48e4 + 2.57e4i)T^{2}
37 1+(51.889.8i)T+(2.53e44.38e4i)T2 1 + (51.8 - 89.8i)T + (-2.53e4 - 4.38e4i)T^{2}
41 1+96.1iT6.89e4T2 1 + 96.1iT - 6.89e4T^{2}
43 1195.iT7.95e4T2 1 - 195. iT - 7.95e4T^{2}
47 1+(89.8155.i)T+(5.19e48.99e4i)T2 1 + (89.8 - 155. i)T + (-5.19e4 - 8.99e4i)T^{2}
53 1+(218.378.i)T+(7.44e4+1.28e5i)T2 1 + (-218. - 378. i)T + (-7.44e4 + 1.28e5i)T^{2}
59 1+(286.+496.i)T+(1.02e5+1.77e5i)T2 1 + (286. + 496. i)T + (-1.02e5 + 1.77e5i)T^{2}
61 1+(368.+212.i)T+(1.13e5+1.96e5i)T2 1 + (368. + 212. i)T + (1.13e5 + 1.96e5i)T^{2}
67 1+(728.+420.i)T+(1.50e52.60e5i)T2 1 + (-728. + 420. i)T + (1.50e5 - 2.60e5i)T^{2}
71 1+1.17e3iT3.57e5T2 1 + 1.17e3iT - 3.57e5T^{2}
73 1+(716.+413.i)T+(1.94e53.36e5i)T2 1 + (-716. + 413. i)T + (1.94e5 - 3.36e5i)T^{2}
79 1+(282.162.i)T+(2.46e5+4.26e5i)T2 1 + (-282. - 162. i)T + (2.46e5 + 4.26e5i)T^{2}
83 1507.T+5.71e5T2 1 - 507.T + 5.71e5T^{2}
89 1+(176.+102.i)T+(3.52e5+6.10e5i)T2 1 + (176. + 102. i)T + (3.52e5 + 6.10e5i)T^{2}
97 11.11e3iT9.12e5T2 1 - 1.11e3iT - 9.12e5T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.83211683569265927328190891247, −9.607361810493884810810848624568, −9.046626896794901301285252468877, −7.57822881980022749248942106901, −6.59745025856543775362442157801, −6.26694795829773359459319187491, −4.95144486173400651195138891766, −3.55729119740226090620351617935, −2.01330997001616826219917375973, −1.11055033503310064053121723260, 1.33726617737530191491384893122, 2.25369887337802688296658388721, 4.24274946909559392166941582175, 5.16453941407837586293930672524, 5.65215586786970183513928278797, 6.94265859108976052931682592236, 8.291074726339640865757636828081, 9.143052287967858577728112416318, 9.804103274756138252995321825677, 10.62114316271152389263581725899

Graph of the ZZ-function along the critical line