L(s) = 1 | + (−1.67 − 2.89i)3-s + (15.9 + 9.21i)5-s + (15.4 − 10.1i)7-s + (7.91 − 13.7i)9-s + (35.6 − 20.5i)11-s + 24.8i·13-s − 61.5i·15-s + (−41.3 + 23.8i)17-s + (30.9 − 53.5i)19-s + (−55.2 − 27.8i)21-s + (64.3 + 37.1i)23-s + (107. + 185. i)25-s − 143.·27-s − 28.8·29-s + (−11.5 − 20.0i)31-s + ⋯ |
L(s) = 1 | + (−0.321 − 0.557i)3-s + (1.42 + 0.824i)5-s + (0.836 − 0.548i)7-s + (0.293 − 0.507i)9-s + (0.976 − 0.563i)11-s + 0.530i·13-s − 1.06i·15-s + (−0.590 + 0.340i)17-s + (0.373 − 0.646i)19-s + (−0.574 − 0.289i)21-s + (0.583 + 0.337i)23-s + (0.858 + 1.48i)25-s − 1.02·27-s − 0.184·29-s + (−0.0670 − 0.116i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.829 + 0.559i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 448 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.829 + 0.559i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.732970502\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.732970502\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (-15.4 + 10.1i)T \) |
good | 3 | \( 1 + (1.67 + 2.89i)T + (-13.5 + 23.3i)T^{2} \) |
| 5 | \( 1 + (-15.9 - 9.21i)T + (62.5 + 108. i)T^{2} \) |
| 11 | \( 1 + (-35.6 + 20.5i)T + (665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 24.8iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (41.3 - 23.8i)T + (2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-30.9 + 53.5i)T + (-3.42e3 - 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-64.3 - 37.1i)T + (6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 28.8T + 2.43e4T^{2} \) |
| 31 | \( 1 + (11.5 + 20.0i)T + (-1.48e4 + 2.57e4i)T^{2} \) |
| 37 | \( 1 + (51.8 - 89.8i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + 96.1iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 195. iT - 7.95e4T^{2} \) |
| 47 | \( 1 + (89.8 - 155. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (-218. - 378. i)T + (-7.44e4 + 1.28e5i)T^{2} \) |
| 59 | \( 1 + (286. + 496. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (368. + 212. i)T + (1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-728. + 420. i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 1.17e3iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-716. + 413. i)T + (1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (-282. - 162. i)T + (2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 - 507.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (176. + 102. i)T + (3.52e5 + 6.10e5i)T^{2} \) |
| 97 | \( 1 - 1.11e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83211683569265927328190891247, −9.607361810493884810810848624568, −9.046626896794901301285252468877, −7.57822881980022749248942106901, −6.59745025856543775362442157801, −6.26694795829773359459319187491, −4.95144486173400651195138891766, −3.55729119740226090620351617935, −2.01330997001616826219917375973, −1.11055033503310064053121723260,
1.33726617737530191491384893122, 2.25369887337802688296658388721, 4.24274946909559392166941582175, 5.16453941407837586293930672524, 5.65215586786970183513928278797, 6.94265859108976052931682592236, 8.291074726339640865757636828081, 9.143052287967858577728112416318, 9.804103274756138252995321825677, 10.62114316271152389263581725899