Properties

Label 448.4.p.h.383.4
Level $448$
Weight $4$
Character 448.383
Analytic conductor $26.433$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [448,4,Mod(255,448)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(448, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("448.255");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 448 = 2^{6} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 448.p (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.4328556826\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{18} - 24 x^{17} + 28 x^{16} + 56 x^{15} - 192 x^{14} + 352 x^{13} - 448 x^{12} + \cdots + 1073741824 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{44} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 383.4
Root \(-2.26510 - 1.69390i\) of defining polynomial
Character \(\chi\) \(=\) 448.383
Dual form 448.4.p.h.255.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.67134 - 2.89484i) q^{3} +(15.9583 + 9.21354i) q^{5} +(15.4841 - 10.1609i) q^{7} +(7.91327 - 13.7062i) q^{9} +(35.6274 - 20.5695i) q^{11} +24.8455i q^{13} -61.5957i q^{15} +(-41.3826 + 23.8923i) q^{17} +(30.9150 - 53.5464i) q^{19} +(-55.2933 - 27.8416i) q^{21} +(64.3994 + 37.1810i) q^{23} +(107.279 + 185.812i) q^{25} -143.155 q^{27} -28.8513 q^{29} +(-11.5660 - 20.0328i) q^{31} +(-119.091 - 68.7571i) q^{33} +(340.717 - 19.4877i) q^{35} +(-51.8900 + 89.8761i) q^{37} +(71.9237 - 41.5252i) q^{39} -96.1780i q^{41} +195.747i q^{43} +(252.565 - 145.818i) q^{45} +(-89.8186 + 155.570i) q^{47} +(136.513 - 314.664i) q^{49} +(138.329 + 79.8641i) q^{51} +(218.681 + 378.767i) q^{53} +758.071 q^{55} -206.678 q^{57} +(-286.640 - 496.475i) q^{59} +(-368.470 - 212.736i) q^{61} +(-16.7374 - 292.633i) q^{63} +(-228.915 + 396.492i) q^{65} +(728.093 - 420.365i) q^{67} -248.568i q^{69} -1179.04i q^{71} +(716.185 - 413.489i) q^{73} +(358.597 - 621.109i) q^{75} +(342.652 - 680.505i) q^{77} +(282.007 + 162.817i) q^{79} +(25.6023 + 44.3445i) q^{81} +507.854 q^{83} -880.530 q^{85} +(48.2202 + 83.5198i) q^{87} +(-176.826 - 102.090i) q^{89} +(252.452 + 384.709i) q^{91} +(-38.6612 + 66.9632i) q^{93} +(986.704 - 569.674i) q^{95} +1116.33i q^{97} -651.087i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 6 q^{5} - 56 q^{9} - 6 q^{17} - 238 q^{21} - 36 q^{25} + 352 q^{29} + 30 q^{33} - 258 q^{37} + 504 q^{45} - 644 q^{49} - 570 q^{53} + 1452 q^{57} - 294 q^{61} - 124 q^{65} + 966 q^{73} + 378 q^{77}+ \cdots + 306 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/448\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(129\) \(197\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.67134 2.89484i −0.321649 0.557112i 0.659179 0.751986i \(-0.270904\pi\)
−0.980828 + 0.194873i \(0.937570\pi\)
\(4\) 0 0
\(5\) 15.9583 + 9.21354i 1.42736 + 0.824084i 0.996911 0.0785333i \(-0.0250237\pi\)
0.430444 + 0.902617i \(0.358357\pi\)
\(6\) 0 0
\(7\) 15.4841 10.1609i 0.836061 0.548636i
\(8\) 0 0
\(9\) 7.91327 13.7062i 0.293084 0.507636i
\(10\) 0 0
\(11\) 35.6274 20.5695i 0.976551 0.563812i 0.0753237 0.997159i \(-0.476001\pi\)
0.901227 + 0.433347i \(0.142668\pi\)
\(12\) 0 0
\(13\) 24.8455i 0.530069i 0.964239 + 0.265035i \(0.0853834\pi\)
−0.964239 + 0.265035i \(0.914617\pi\)
\(14\) 0 0
\(15\) 61.5957i 1.06026i
\(16\) 0 0
\(17\) −41.3826 + 23.8923i −0.590398 + 0.340866i −0.765255 0.643728i \(-0.777387\pi\)
0.174857 + 0.984594i \(0.444054\pi\)
\(18\) 0 0
\(19\) 30.9150 53.5464i 0.373284 0.646547i −0.616785 0.787132i \(-0.711565\pi\)
0.990069 + 0.140585i \(0.0448984\pi\)
\(20\) 0 0
\(21\) −55.2933 27.8416i −0.574570 0.289312i
\(22\) 0 0
\(23\) 64.3994 + 37.1810i 0.583835 + 0.337077i 0.762656 0.646804i \(-0.223895\pi\)
−0.178821 + 0.983882i \(0.557228\pi\)
\(24\) 0 0
\(25\) 107.279 + 185.812i 0.858229 + 1.48650i
\(26\) 0 0
\(27\) −143.155 −1.02038
\(28\) 0 0
\(29\) −28.8513 −0.184743 −0.0923715 0.995725i \(-0.529445\pi\)
−0.0923715 + 0.995725i \(0.529445\pi\)
\(30\) 0 0
\(31\) −11.5660 20.0328i −0.0670099 0.116065i 0.830574 0.556908i \(-0.188013\pi\)
−0.897584 + 0.440844i \(0.854679\pi\)
\(32\) 0 0
\(33\) −119.091 68.7571i −0.628213 0.362699i
\(34\) 0 0
\(35\) 340.717 19.4877i 1.64548 0.0941147i
\(36\) 0 0
\(37\) −51.8900 + 89.8761i −0.230558 + 0.399339i −0.957973 0.286860i \(-0.907389\pi\)
0.727414 + 0.686199i \(0.240722\pi\)
\(38\) 0 0
\(39\) 71.9237 41.5252i 0.295308 0.170496i
\(40\) 0 0
\(41\) 96.1780i 0.366353i −0.983080 0.183177i \(-0.941362\pi\)
0.983080 0.183177i \(-0.0586380\pi\)
\(42\) 0 0
\(43\) 195.747i 0.694213i 0.937826 + 0.347107i \(0.112836\pi\)
−0.937826 + 0.347107i \(0.887164\pi\)
\(44\) 0 0
\(45\) 252.565 145.818i 0.836670 0.483052i
\(46\) 0 0
\(47\) −89.8186 + 155.570i −0.278753 + 0.482815i −0.971075 0.238774i \(-0.923254\pi\)
0.692322 + 0.721589i \(0.256588\pi\)
\(48\) 0 0
\(49\) 136.513 314.664i 0.397996 0.917387i
\(50\) 0 0
\(51\) 138.329 + 79.8641i 0.379802 + 0.219279i
\(52\) 0 0
\(53\) 218.681 + 378.767i 0.566758 + 0.981654i 0.996884 + 0.0788851i \(0.0251360\pi\)
−0.430125 + 0.902769i \(0.641531\pi\)
\(54\) 0 0
\(55\) 758.071 1.85851
\(56\) 0 0
\(57\) −206.678 −0.480266
\(58\) 0 0
\(59\) −286.640 496.475i −0.632497 1.09552i −0.987040 0.160477i \(-0.948697\pi\)
0.354542 0.935040i \(-0.384637\pi\)
\(60\) 0 0
\(61\) −368.470 212.736i −0.773405 0.446526i 0.0606829 0.998157i \(-0.480672\pi\)
−0.834088 + 0.551632i \(0.814005\pi\)
\(62\) 0 0
\(63\) −16.7374 292.633i −0.0334717 0.585211i
\(64\) 0 0
\(65\) −228.915 + 396.492i −0.436822 + 0.756597i
\(66\) 0 0
\(67\) 728.093 420.365i 1.32762 0.766504i 0.342692 0.939448i \(-0.388661\pi\)
0.984932 + 0.172944i \(0.0553281\pi\)
\(68\) 0 0
\(69\) 248.568i 0.433682i
\(70\) 0 0
\(71\) 1179.04i 1.97079i −0.170279 0.985396i \(-0.554467\pi\)
0.170279 0.985396i \(-0.445533\pi\)
\(72\) 0 0
\(73\) 716.185 413.489i 1.14826 0.662949i 0.199798 0.979837i \(-0.435971\pi\)
0.948463 + 0.316888i \(0.102638\pi\)
\(74\) 0 0
\(75\) 358.597 621.109i 0.552097 0.956260i
\(76\) 0 0
\(77\) 342.652 680.505i 0.507128 1.00715i
\(78\) 0 0
\(79\) 282.007 + 162.817i 0.401623 + 0.231877i 0.687184 0.726483i \(-0.258847\pi\)
−0.285561 + 0.958361i \(0.592180\pi\)
\(80\) 0 0
\(81\) 25.6023 + 44.3445i 0.0351198 + 0.0608292i
\(82\) 0 0
\(83\) 507.854 0.671617 0.335808 0.941930i \(-0.390991\pi\)
0.335808 + 0.941930i \(0.390991\pi\)
\(84\) 0 0
\(85\) −880.530 −1.12361
\(86\) 0 0
\(87\) 48.2202 + 83.5198i 0.0594224 + 0.102923i
\(88\) 0 0
\(89\) −176.826 102.090i −0.210601 0.121590i 0.390990 0.920395i \(-0.372133\pi\)
−0.601591 + 0.798805i \(0.705466\pi\)
\(90\) 0 0
\(91\) 252.452 + 384.709i 0.290815 + 0.443170i
\(92\) 0 0
\(93\) −38.6612 + 66.9632i −0.0431074 + 0.0746641i
\(94\) 0 0
\(95\) 986.704 569.674i 1.06562 0.615235i
\(96\) 0 0
\(97\) 1116.33i 1.16852i 0.811566 + 0.584261i \(0.198615\pi\)
−0.811566 + 0.584261i \(0.801385\pi\)
\(98\) 0 0
\(99\) 651.087i 0.660977i
\(100\) 0 0
\(101\) 3.43081 1.98078i 0.00337999 0.00195144i −0.498309 0.866999i \(-0.666046\pi\)
0.501689 + 0.865048i \(0.332712\pi\)
\(102\) 0 0
\(103\) −179.406 + 310.741i −0.171626 + 0.297264i −0.938988 0.343949i \(-0.888235\pi\)
0.767363 + 0.641213i \(0.221569\pi\)
\(104\) 0 0
\(105\) −625.867 953.752i −0.581699 0.886445i
\(106\) 0 0
\(107\) −803.472 463.885i −0.725931 0.419116i 0.0910010 0.995851i \(-0.470993\pi\)
−0.816932 + 0.576735i \(0.804327\pi\)
\(108\) 0 0
\(109\) 594.270 + 1029.31i 0.522209 + 0.904492i 0.999666 + 0.0258371i \(0.00822512\pi\)
−0.477458 + 0.878655i \(0.658442\pi\)
\(110\) 0 0
\(111\) 346.903 0.296635
\(112\) 0 0
\(113\) −662.367 −0.551418 −0.275709 0.961241i \(-0.588913\pi\)
−0.275709 + 0.961241i \(0.588913\pi\)
\(114\) 0 0
\(115\) 685.137 + 1186.69i 0.555560 + 0.962258i
\(116\) 0 0
\(117\) 340.537 + 196.609i 0.269082 + 0.155355i
\(118\) 0 0
\(119\) −398.005 + 790.434i −0.306597 + 0.608899i
\(120\) 0 0
\(121\) 180.707 312.993i 0.135768 0.235156i
\(122\) 0 0
\(123\) −278.420 + 160.746i −0.204100 + 0.117837i
\(124\) 0 0
\(125\) 1650.28i 1.18084i
\(126\) 0 0
\(127\) 1496.04i 1.04529i 0.852549 + 0.522647i \(0.175055\pi\)
−0.852549 + 0.522647i \(0.824945\pi\)
\(128\) 0 0
\(129\) 566.657 327.160i 0.386755 0.223293i
\(130\) 0 0
\(131\) −984.794 + 1705.71i −0.656808 + 1.13762i 0.324630 + 0.945841i \(0.394760\pi\)
−0.981437 + 0.191783i \(0.938573\pi\)
\(132\) 0 0
\(133\) −65.3887 1143.24i −0.0426310 0.745350i
\(134\) 0 0
\(135\) −2284.52 1318.97i −1.45644 0.840878i
\(136\) 0 0
\(137\) 896.791 + 1553.29i 0.559256 + 0.968660i 0.997559 + 0.0698322i \(0.0222464\pi\)
−0.438303 + 0.898827i \(0.644420\pi\)
\(138\) 0 0
\(139\) 306.409 0.186973 0.0934867 0.995621i \(-0.470199\pi\)
0.0934867 + 0.995621i \(0.470199\pi\)
\(140\) 0 0
\(141\) 600.469 0.358643
\(142\) 0 0
\(143\) 511.059 + 885.180i 0.298859 + 0.517639i
\(144\) 0 0
\(145\) −460.418 265.822i −0.263694 0.152244i
\(146\) 0 0
\(147\) −1139.06 + 130.727i −0.639103 + 0.0733481i
\(148\) 0 0
\(149\) −714.928 + 1238.29i −0.393082 + 0.680838i −0.992854 0.119333i \(-0.961924\pi\)
0.599773 + 0.800171i \(0.295258\pi\)
\(150\) 0 0
\(151\) −1079.16 + 623.054i −0.581595 + 0.335784i −0.761767 0.647851i \(-0.775668\pi\)
0.180172 + 0.983635i \(0.442335\pi\)
\(152\) 0 0
\(153\) 756.264i 0.399610i
\(154\) 0 0
\(155\) 426.254i 0.220887i
\(156\) 0 0
\(157\) 2201.64 1271.12i 1.11917 0.646154i 0.177982 0.984034i \(-0.443043\pi\)
0.941189 + 0.337880i \(0.109710\pi\)
\(158\) 0 0
\(159\) 730.980 1266.10i 0.364594 0.631496i
\(160\) 0 0
\(161\) 1374.96 78.6420i 0.673054 0.0384960i
\(162\) 0 0
\(163\) −637.434 368.022i −0.306305 0.176845i 0.338967 0.940798i \(-0.389922\pi\)
−0.645272 + 0.763953i \(0.723256\pi\)
\(164\) 0 0
\(165\) −1266.99 2194.49i −0.597789 1.03540i
\(166\) 0 0
\(167\) −3110.82 −1.44145 −0.720726 0.693220i \(-0.756191\pi\)
−0.720726 + 0.693220i \(0.756191\pi\)
\(168\) 0 0
\(169\) 1579.70 0.719027
\(170\) 0 0
\(171\) −489.278 847.454i −0.218807 0.378985i
\(172\) 0 0
\(173\) −2719.50 1570.10i −1.19514 0.690015i −0.235674 0.971832i \(-0.575730\pi\)
−0.959468 + 0.281817i \(0.909063\pi\)
\(174\) 0 0
\(175\) 3549.12 + 1787.08i 1.53308 + 0.771946i
\(176\) 0 0
\(177\) −958.144 + 1659.55i −0.406884 + 0.704744i
\(178\) 0 0
\(179\) −206.742 + 119.362i −0.0863274 + 0.0498411i −0.542542 0.840028i \(-0.682538\pi\)
0.456215 + 0.889870i \(0.349205\pi\)
\(180\) 0 0
\(181\) 1947.09i 0.799591i 0.916604 + 0.399796i \(0.130919\pi\)
−0.916604 + 0.399796i \(0.869081\pi\)
\(182\) 0 0
\(183\) 1422.21i 0.574498i
\(184\) 0 0
\(185\) −1656.15 + 956.181i −0.658177 + 0.379999i
\(186\) 0 0
\(187\) −982.903 + 1702.44i −0.384369 + 0.665746i
\(188\) 0 0
\(189\) −2216.62 + 1454.58i −0.853099 + 0.559817i
\(190\) 0 0
\(191\) −393.391 227.124i −0.149030 0.0860427i 0.423631 0.905835i \(-0.360755\pi\)
−0.572661 + 0.819792i \(0.694089\pi\)
\(192\) 0 0
\(193\) −1605.08 2780.08i −0.598634 1.03686i −0.993023 0.117921i \(-0.962377\pi\)
0.394389 0.918944i \(-0.370956\pi\)
\(194\) 0 0
\(195\) 1530.38 0.562013
\(196\) 0 0
\(197\) 4173.52 1.50940 0.754698 0.656073i \(-0.227784\pi\)
0.754698 + 0.656073i \(0.227784\pi\)
\(198\) 0 0
\(199\) −2639.30 4571.40i −0.940176 1.62843i −0.765134 0.643871i \(-0.777327\pi\)
−0.175042 0.984561i \(-0.556006\pi\)
\(200\) 0 0
\(201\) −2433.78 1405.14i −0.854057 0.493090i
\(202\) 0 0
\(203\) −446.735 + 293.155i −0.154456 + 0.101357i
\(204\) 0 0
\(205\) 886.140 1534.84i 0.301906 0.522916i
\(206\) 0 0
\(207\) 1019.22 588.446i 0.342225 0.197584i
\(208\) 0 0
\(209\) 2543.62i 0.841848i
\(210\) 0 0
\(211\) 871.583i 0.284371i −0.989840 0.142185i \(-0.954587\pi\)
0.989840 0.142185i \(-0.0454130\pi\)
\(212\) 0 0
\(213\) −3413.13 + 1970.57i −1.09795 + 0.633903i
\(214\) 0 0
\(215\) −1803.53 + 3123.80i −0.572090 + 0.990889i
\(216\) 0 0
\(217\) −382.640 192.669i −0.119702 0.0602730i
\(218\) 0 0
\(219\) −2393.97 1382.16i −0.738674 0.426474i
\(220\) 0 0
\(221\) −593.615 1028.17i −0.180683 0.312952i
\(222\) 0 0
\(223\) −1930.21 −0.579624 −0.289812 0.957084i \(-0.593593\pi\)
−0.289812 + 0.957084i \(0.593593\pi\)
\(224\) 0 0
\(225\) 3395.70 1.00613
\(226\) 0 0
\(227\) 988.231 + 1711.67i 0.288948 + 0.500473i 0.973559 0.228436i \(-0.0733612\pi\)
−0.684611 + 0.728909i \(0.740028\pi\)
\(228\) 0 0
\(229\) 2237.66 + 1291.92i 0.645716 + 0.372804i 0.786813 0.617192i \(-0.211730\pi\)
−0.141097 + 0.989996i \(0.545063\pi\)
\(230\) 0 0
\(231\) −2542.64 + 145.429i −0.724214 + 0.0414221i
\(232\) 0 0
\(233\) 1724.22 2986.43i 0.484795 0.839690i −0.515052 0.857159i \(-0.672227\pi\)
0.999847 + 0.0174686i \(0.00556071\pi\)
\(234\) 0 0
\(235\) −2866.71 + 1655.10i −0.795759 + 0.459432i
\(236\) 0 0
\(237\) 1088.49i 0.298333i
\(238\) 0 0
\(239\) 3647.94i 0.987304i 0.869659 + 0.493652i \(0.164338\pi\)
−0.869659 + 0.493652i \(0.835662\pi\)
\(240\) 0 0
\(241\) −2194.49 + 1266.99i −0.586553 + 0.338646i −0.763733 0.645532i \(-0.776636\pi\)
0.177180 + 0.984178i \(0.443302\pi\)
\(242\) 0 0
\(243\) −1847.01 + 3199.12i −0.487597 + 0.844542i
\(244\) 0 0
\(245\) 5077.68 3763.74i 1.32409 0.981455i
\(246\) 0 0
\(247\) 1330.39 + 768.099i 0.342714 + 0.197866i
\(248\) 0 0
\(249\) −848.795 1470.16i −0.216025 0.374166i
\(250\) 0 0
\(251\) −5658.23 −1.42289 −0.711443 0.702744i \(-0.751958\pi\)
−0.711443 + 0.702744i \(0.751958\pi\)
\(252\) 0 0
\(253\) 3059.18 0.760193
\(254\) 0 0
\(255\) 1471.66 + 2548.99i 0.361408 + 0.625977i
\(256\) 0 0
\(257\) 4328.82 + 2499.25i 1.05068 + 0.606610i 0.922840 0.385185i \(-0.125862\pi\)
0.127840 + 0.991795i \(0.459196\pi\)
\(258\) 0 0
\(259\) 109.753 + 1918.90i 0.0263310 + 0.460364i
\(260\) 0 0
\(261\) −228.308 + 395.441i −0.0541452 + 0.0937822i
\(262\) 0 0
\(263\) −1646.99 + 950.892i −0.386152 + 0.222945i −0.680491 0.732756i \(-0.738234\pi\)
0.294340 + 0.955701i \(0.404900\pi\)
\(264\) 0 0
\(265\) 8059.32i 1.86823i
\(266\) 0 0
\(267\) 682.509i 0.156438i
\(268\) 0 0
\(269\) −6976.20 + 4027.71i −1.58121 + 0.912913i −0.586530 + 0.809928i \(0.699506\pi\)
−0.994683 + 0.102986i \(0.967160\pi\)
\(270\) 0 0
\(271\) −2189.04 + 3791.53i −0.490682 + 0.849886i −0.999942 0.0107264i \(-0.996586\pi\)
0.509261 + 0.860612i \(0.329919\pi\)
\(272\) 0 0
\(273\) 691.739 1373.79i 0.153355 0.304562i
\(274\) 0 0
\(275\) 7644.11 + 4413.33i 1.67621 + 0.967759i
\(276\) 0 0
\(277\) −1602.26 2775.19i −0.347547 0.601968i 0.638266 0.769815i \(-0.279652\pi\)
−0.985813 + 0.167847i \(0.946318\pi\)
\(278\) 0 0
\(279\) −366.098 −0.0785581
\(280\) 0 0
\(281\) 6258.33 1.32861 0.664307 0.747460i \(-0.268727\pi\)
0.664307 + 0.747460i \(0.268727\pi\)
\(282\) 0 0
\(283\) −3029.37 5247.02i −0.636316 1.10213i −0.986235 0.165351i \(-0.947124\pi\)
0.349919 0.936780i \(-0.386209\pi\)
\(284\) 0 0
\(285\) −3298.23 1904.23i −0.685510 0.395779i
\(286\) 0 0
\(287\) −977.254 1489.23i −0.200995 0.306294i
\(288\) 0 0
\(289\) −1314.82 + 2277.33i −0.267620 + 0.463532i
\(290\) 0 0
\(291\) 3231.61 1865.77i 0.650998 0.375854i
\(292\) 0 0
\(293\) 457.644i 0.0912486i 0.998959 + 0.0456243i \(0.0145277\pi\)
−0.998959 + 0.0456243i \(0.985472\pi\)
\(294\) 0 0
\(295\) 10563.9i 2.08492i
\(296\) 0 0
\(297\) −5100.24 + 2944.63i −0.996451 + 0.575301i
\(298\) 0 0
\(299\) −923.780 + 1600.03i −0.178674 + 0.309473i
\(300\) 0 0
\(301\) 1988.97 + 3030.96i 0.380871 + 0.580405i
\(302\) 0 0
\(303\) −11.4681 6.62110i −0.00217434 0.00125535i
\(304\) 0 0
\(305\) −3920.10 6789.82i −0.735949 1.27470i
\(306\) 0 0
\(307\) 4195.62 0.779989 0.389995 0.920817i \(-0.372477\pi\)
0.389995 + 0.920817i \(0.372477\pi\)
\(308\) 0 0
\(309\) 1199.39 0.220813
\(310\) 0 0
\(311\) 3254.20 + 5636.44i 0.593341 + 1.02770i 0.993779 + 0.111372i \(0.0355246\pi\)
−0.400438 + 0.916324i \(0.631142\pi\)
\(312\) 0 0
\(313\) −7481.59 4319.50i −1.35107 0.780040i −0.362670 0.931918i \(-0.618135\pi\)
−0.988399 + 0.151878i \(0.951468\pi\)
\(314\) 0 0
\(315\) 2429.09 4824.14i 0.434487 0.862888i
\(316\) 0 0
\(317\) 463.165 802.226i 0.0820629 0.142137i −0.822073 0.569382i \(-0.807182\pi\)
0.904136 + 0.427245i \(0.140516\pi\)
\(318\) 0 0
\(319\) −1027.90 + 593.455i −0.180411 + 0.104160i
\(320\) 0 0
\(321\) 3101.23i 0.539233i
\(322\) 0 0
\(323\) 2954.52i 0.508960i
\(324\) 0 0
\(325\) −4616.59 + 2665.39i −0.787946 + 0.454921i
\(326\) 0 0
\(327\) 1986.45 3440.63i 0.335936 0.581858i
\(328\) 0 0
\(329\) 189.976 + 3321.50i 0.0318351 + 0.556596i
\(330\) 0 0
\(331\) −8260.72 4769.33i −1.37175 0.791982i −0.380604 0.924738i \(-0.624284\pi\)
−0.991149 + 0.132756i \(0.957617\pi\)
\(332\) 0 0
\(333\) 821.238 + 1422.43i 0.135146 + 0.234080i
\(334\) 0 0
\(335\) 15492.2 2.52665
\(336\) 0 0
\(337\) 4736.32 0.765589 0.382795 0.923833i \(-0.374962\pi\)
0.382795 + 0.923833i \(0.374962\pi\)
\(338\) 0 0
\(339\) 1107.04 + 1917.45i 0.177363 + 0.307202i
\(340\) 0 0
\(341\) −824.130 475.812i −0.130877 0.0755620i
\(342\) 0 0
\(343\) −1083.49 6259.36i −0.170563 0.985347i
\(344\) 0 0
\(345\) 2290.19 3966.73i 0.357391 0.619019i
\(346\) 0 0
\(347\) 1694.40 978.260i 0.262133 0.151342i −0.363174 0.931721i \(-0.618307\pi\)
0.625307 + 0.780379i \(0.284974\pi\)
\(348\) 0 0
\(349\) 9739.50i 1.49382i 0.664924 + 0.746911i \(0.268464\pi\)
−0.664924 + 0.746911i \(0.731536\pi\)
\(350\) 0 0
\(351\) 3556.76i 0.540871i
\(352\) 0 0
\(353\) −2590.09 + 1495.39i −0.390528 + 0.225471i −0.682389 0.730989i \(-0.739059\pi\)
0.291861 + 0.956461i \(0.405726\pi\)
\(354\) 0 0
\(355\) 10863.1 18815.5i 1.62410 2.81302i
\(356\) 0 0
\(357\) 2953.38 168.921i 0.437842 0.0250428i
\(358\) 0 0
\(359\) 1144.24 + 660.628i 0.168219 + 0.0971215i 0.581746 0.813371i \(-0.302370\pi\)
−0.413527 + 0.910492i \(0.635703\pi\)
\(360\) 0 0
\(361\) 1518.02 + 2629.29i 0.221318 + 0.383334i
\(362\) 0 0
\(363\) −1208.09 −0.174678
\(364\) 0 0
\(365\) 15238.8 2.18530
\(366\) 0 0
\(367\) −3367.76 5833.14i −0.479008 0.829666i 0.520703 0.853738i \(-0.325670\pi\)
−0.999710 + 0.0240726i \(0.992337\pi\)
\(368\) 0 0
\(369\) −1318.23 761.082i −0.185974 0.107372i
\(370\) 0 0
\(371\) 7234.69 + 3642.86i 1.01242 + 0.509779i
\(372\) 0 0
\(373\) 104.742 181.419i 0.0145398 0.0251837i −0.858664 0.512539i \(-0.828705\pi\)
0.873204 + 0.487355i \(0.162038\pi\)
\(374\) 0 0
\(375\) 4777.29 2758.17i 0.657862 0.379817i
\(376\) 0 0
\(377\) 716.824i 0.0979265i
\(378\) 0 0
\(379\) 1205.99i 0.163450i 0.996655 + 0.0817250i \(0.0260429\pi\)
−0.996655 + 0.0817250i \(0.973957\pi\)
\(380\) 0 0
\(381\) 4330.81 2500.39i 0.582346 0.336218i
\(382\) 0 0
\(383\) 1590.45 2754.73i 0.212188 0.367520i −0.740211 0.672375i \(-0.765274\pi\)
0.952399 + 0.304854i \(0.0986078\pi\)
\(384\) 0 0
\(385\) 11738.0 7702.67i 1.55383 1.01965i
\(386\) 0 0
\(387\) 2682.95 + 1549.00i 0.352408 + 0.203463i
\(388\) 0 0
\(389\) −4006.02 6938.63i −0.522142 0.904377i −0.999668 0.0257595i \(-0.991800\pi\)
0.477526 0.878618i \(-0.341534\pi\)
\(390\) 0 0
\(391\) −3553.36 −0.459593
\(392\) 0 0
\(393\) 6583.69 0.845046
\(394\) 0 0
\(395\) 3000.24 + 5196.56i 0.382173 + 0.661943i
\(396\) 0 0
\(397\) −10496.5 6060.15i −1.32696 0.766121i −0.342132 0.939652i \(-0.611149\pi\)
−0.984828 + 0.173531i \(0.944482\pi\)
\(398\) 0 0
\(399\) −3200.21 + 2100.03i −0.401531 + 0.263491i
\(400\) 0 0
\(401\) −5497.13 + 9521.31i −0.684573 + 1.18571i 0.288998 + 0.957330i \(0.406678\pi\)
−0.973571 + 0.228385i \(0.926655\pi\)
\(402\) 0 0
\(403\) 497.726 287.362i 0.0615223 0.0355199i
\(404\) 0 0
\(405\) 943.552i 0.115767i
\(406\) 0 0
\(407\) 4269.40i 0.519966i
\(408\) 0 0
\(409\) −1739.78 + 1004.46i −0.210333 + 0.121436i −0.601466 0.798898i \(-0.705417\pi\)
0.391133 + 0.920334i \(0.372083\pi\)
\(410\) 0 0
\(411\) 2997.68 5192.14i 0.359768 0.623137i
\(412\) 0 0
\(413\) −9482.98 4774.93i −1.12985 0.568908i
\(414\) 0 0
\(415\) 8104.49 + 4679.13i 0.958636 + 0.553469i
\(416\) 0 0
\(417\) −512.113 887.006i −0.0601398 0.104165i
\(418\) 0 0
\(419\) −6662.83 −0.776850 −0.388425 0.921480i \(-0.626981\pi\)
−0.388425 + 0.921480i \(0.626981\pi\)
\(420\) 0 0
\(421\) −5859.67 −0.678344 −0.339172 0.940724i \(-0.610147\pi\)
−0.339172 + 0.940724i \(0.610147\pi\)
\(422\) 0 0
\(423\) 1421.52 + 2462.14i 0.163396 + 0.283010i
\(424\) 0 0
\(425\) −8878.94 5126.26i −1.01339 0.585083i
\(426\) 0 0
\(427\) −7867.00 + 449.960i −0.891594 + 0.0509956i
\(428\) 0 0
\(429\) 1708.30 2958.87i 0.192256 0.332996i
\(430\) 0 0
\(431\) −3178.02 + 1834.83i −0.355174 + 0.205060i −0.666962 0.745092i \(-0.732406\pi\)
0.311788 + 0.950152i \(0.399072\pi\)
\(432\) 0 0
\(433\) 8282.34i 0.919224i 0.888120 + 0.459612i \(0.152011\pi\)
−0.888120 + 0.459612i \(0.847989\pi\)
\(434\) 0 0
\(435\) 1777.11i 0.195876i
\(436\) 0 0
\(437\) 3981.82 2298.90i 0.435872 0.251651i
\(438\) 0 0
\(439\) 4840.93 8384.73i 0.526298 0.911575i −0.473233 0.880938i \(-0.656913\pi\)
0.999531 0.0306374i \(-0.00975370\pi\)
\(440\) 0 0
\(441\) −3232.58 4361.08i −0.349053 0.470909i
\(442\) 0 0
\(443\) 7154.34 + 4130.56i 0.767298 + 0.443000i 0.831910 0.554911i \(-0.187248\pi\)
−0.0646117 + 0.997910i \(0.520581\pi\)
\(444\) 0 0
\(445\) −1881.23 3258.38i −0.200402 0.347106i
\(446\) 0 0
\(447\) 4779.54 0.505737
\(448\) 0 0
\(449\) −73.1562 −0.00768921 −0.00384461 0.999993i \(-0.501224\pi\)
−0.00384461 + 0.999993i \(0.501224\pi\)
\(450\) 0 0
\(451\) −1978.33 3426.57i −0.206554 0.357762i
\(452\) 0 0
\(453\) 3607.28 + 2082.67i 0.374139 + 0.216009i
\(454\) 0 0
\(455\) 484.180 + 8465.29i 0.0498873 + 0.872217i
\(456\) 0 0
\(457\) 6586.17 11407.6i 0.674153 1.16767i −0.302563 0.953129i \(-0.597842\pi\)
0.976716 0.214538i \(-0.0688245\pi\)
\(458\) 0 0
\(459\) 5924.14 3420.30i 0.602429 0.347813i
\(460\) 0 0
\(461\) 12655.0i 1.27853i 0.768985 + 0.639267i \(0.220762\pi\)
−0.768985 + 0.639267i \(0.779238\pi\)
\(462\) 0 0
\(463\) 852.596i 0.0855799i 0.999084 + 0.0427899i \(0.0136246\pi\)
−0.999084 + 0.0427899i \(0.986375\pi\)
\(464\) 0 0
\(465\) −1233.94 + 712.414i −0.123059 + 0.0710482i
\(466\) 0 0
\(467\) −5462.60 + 9461.49i −0.541282 + 0.937528i 0.457549 + 0.889185i \(0.348728\pi\)
−0.998831 + 0.0483436i \(0.984606\pi\)
\(468\) 0 0
\(469\) 7002.56 13907.0i 0.689442 1.36923i
\(470\) 0 0
\(471\) −7359.36 4248.93i −0.719961 0.415669i
\(472\) 0 0
\(473\) 4026.42 + 6973.96i 0.391406 + 0.677935i
\(474\) 0 0
\(475\) 13266.1 1.28145
\(476\) 0 0
\(477\) 6921.93 0.664431
\(478\) 0 0
\(479\) 5330.56 + 9232.81i 0.508475 + 0.880705i 0.999952 + 0.00981425i \(0.00312402\pi\)
−0.491477 + 0.870891i \(0.663543\pi\)
\(480\) 0 0
\(481\) −2233.01 1289.23i −0.211677 0.122212i
\(482\) 0 0
\(483\) −2525.67 3848.84i −0.237934 0.362585i
\(484\) 0 0
\(485\) −10285.4 + 17814.8i −0.962960 + 1.66789i
\(486\) 0 0
\(487\) 46.9282 27.0940i 0.00436657 0.00252104i −0.497815 0.867283i \(-0.665864\pi\)
0.502182 + 0.864762i \(0.332531\pi\)
\(488\) 0 0
\(489\) 2460.36i 0.227528i
\(490\) 0 0
\(491\) 5628.07i 0.517294i 0.965972 + 0.258647i \(0.0832766\pi\)
−0.965972 + 0.258647i \(0.916723\pi\)
\(492\) 0 0
\(493\) 1193.94 689.322i 0.109072 0.0629727i
\(494\) 0 0
\(495\) 5998.81 10390.3i 0.544700 0.943449i
\(496\) 0 0
\(497\) −11980.1 18256.3i −1.08125 1.64770i
\(498\) 0 0
\(499\) 536.728 + 309.880i 0.0481508 + 0.0277999i 0.523882 0.851791i \(-0.324483\pi\)
−0.475731 + 0.879591i \(0.657817\pi\)
\(500\) 0 0
\(501\) 5199.23 + 9005.33i 0.463641 + 0.803050i
\(502\) 0 0
\(503\) −18680.1 −1.65587 −0.827935 0.560823i \(-0.810485\pi\)
−0.827935 + 0.560823i \(0.810485\pi\)
\(504\) 0 0
\(505\) 73.0000 0.00643259
\(506\) 0 0
\(507\) −2640.21 4572.98i −0.231274 0.400579i
\(508\) 0 0
\(509\) −3084.16 1780.64i −0.268572 0.155060i 0.359667 0.933081i \(-0.382890\pi\)
−0.628238 + 0.778021i \(0.716224\pi\)
\(510\) 0 0
\(511\) 6888.03 13679.6i 0.596298 1.18424i
\(512\) 0 0
\(513\) −4425.65 + 7665.44i −0.380891 + 0.659722i
\(514\) 0 0
\(515\) −5726.05 + 3305.93i −0.489941 + 0.282868i
\(516\) 0 0
\(517\) 7390.09i 0.628657i
\(518\) 0 0
\(519\) 10496.7i 0.887771i
\(520\) 0 0
\(521\) 10004.0 5775.82i 0.841235 0.485687i −0.0164486 0.999865i \(-0.505236\pi\)
0.857684 + 0.514177i \(0.171903\pi\)
\(522\) 0 0
\(523\) 2135.62 3699.00i 0.178554 0.309265i −0.762831 0.646598i \(-0.776191\pi\)
0.941386 + 0.337332i \(0.109525\pi\)
\(524\) 0 0
\(525\) −758.474 13261.0i −0.0630524 1.10239i
\(526\) 0 0
\(527\) 957.260 + 552.674i 0.0791250 + 0.0456829i
\(528\) 0 0
\(529\) −3318.65 5748.06i −0.272758 0.472431i
\(530\) 0 0
\(531\) −9073.03 −0.741499
\(532\) 0 0
\(533\) 2389.59 0.194192
\(534\) 0 0
\(535\) −8548.04 14805.6i −0.690774 1.19646i
\(536\) 0 0
\(537\) 691.070 + 398.990i 0.0555342 + 0.0320627i
\(538\) 0 0
\(539\) −1608.88 14018.6i −0.128570 1.12027i
\(540\) 0 0
\(541\) 4878.48 8449.78i 0.387694 0.671505i −0.604445 0.796647i \(-0.706605\pi\)
0.992139 + 0.125142i \(0.0399385\pi\)
\(542\) 0 0
\(543\) 5636.51 3254.24i 0.445462 0.257188i
\(544\) 0 0
\(545\) 21901.3i 1.72138i
\(546\) 0 0
\(547\) 19891.0i 1.55480i −0.629005 0.777401i \(-0.716537\pi\)
0.629005 0.777401i \(-0.283463\pi\)
\(548\) 0 0
\(549\) −5831.60 + 3366.87i −0.453345 + 0.261739i
\(550\) 0 0
\(551\) −891.938 + 1544.88i −0.0689616 + 0.119445i
\(552\) 0 0
\(553\) 6020.98 344.376i 0.462998 0.0264816i
\(554\) 0 0
\(555\) 5535.98 + 3196.20i 0.423404 + 0.244453i
\(556\) 0 0
\(557\) 3043.39 + 5271.30i 0.231513 + 0.400992i 0.958253 0.285920i \(-0.0922992\pi\)
−0.726741 + 0.686912i \(0.758966\pi\)
\(558\) 0 0
\(559\) −4863.44 −0.367981
\(560\) 0 0
\(561\) 6571.05 0.494527
\(562\) 0 0
\(563\) 4067.94 + 7045.87i 0.304517 + 0.527439i 0.977154 0.212534i \(-0.0681716\pi\)
−0.672637 + 0.739973i \(0.734838\pi\)
\(564\) 0 0
\(565\) −10570.3 6102.75i −0.787070 0.454415i
\(566\) 0 0
\(567\) 847.008 + 426.491i 0.0627354 + 0.0315890i
\(568\) 0 0
\(569\) −11495.9 + 19911.5i −0.846985 + 1.46702i 0.0369008 + 0.999319i \(0.488251\pi\)
−0.883886 + 0.467702i \(0.845082\pi\)
\(570\) 0 0
\(571\) −16493.6 + 9522.59i −1.20882 + 0.697912i −0.962501 0.271277i \(-0.912554\pi\)
−0.246318 + 0.969189i \(0.579221\pi\)
\(572\) 0 0
\(573\) 1518.41i 0.110702i
\(574\) 0 0
\(575\) 15954.9i 1.15716i
\(576\) 0 0
\(577\) 13902.1 8026.36i 1.00303 0.579102i 0.0938892 0.995583i \(-0.470070\pi\)
0.909144 + 0.416481i \(0.136737\pi\)
\(578\) 0 0
\(579\) −5365.27 + 9292.92i −0.385100 + 0.667013i
\(580\) 0 0
\(581\) 7863.64 5160.25i 0.561513 0.368473i
\(582\) 0 0
\(583\) 15582.1 + 8996.32i 1.10694 + 0.639090i
\(584\) 0 0
\(585\) 3622.93 + 6275.10i 0.256051 + 0.443493i
\(586\) 0 0
\(587\) 21155.6 1.48754 0.743770 0.668436i \(-0.233036\pi\)
0.743770 + 0.668436i \(0.233036\pi\)
\(588\) 0 0
\(589\) −1430.25 −0.100055
\(590\) 0 0
\(591\) −6975.36 12081.7i −0.485495 0.840903i
\(592\) 0 0
\(593\) −1240.18 716.018i −0.0858821 0.0495840i 0.456444 0.889752i \(-0.349123\pi\)
−0.542326 + 0.840168i \(0.682456\pi\)
\(594\) 0 0
\(595\) −13634.2 + 8946.96i −0.939406 + 0.616453i
\(596\) 0 0
\(597\) −8822.32 + 15280.7i −0.604813 + 1.04757i
\(598\) 0 0
\(599\) −4611.09 + 2662.21i −0.314531 + 0.181595i −0.648952 0.760829i \(-0.724793\pi\)
0.334421 + 0.942424i \(0.391459\pi\)
\(600\) 0 0
\(601\) 8711.39i 0.591256i 0.955303 + 0.295628i \(0.0955289\pi\)
−0.955303 + 0.295628i \(0.904471\pi\)
\(602\) 0 0
\(603\) 13305.8i 0.898599i
\(604\) 0 0
\(605\) 5767.55 3329.90i 0.387577 0.223768i
\(606\) 0 0
\(607\) −12379.6 + 21442.1i −0.827796 + 1.43378i 0.0719681 + 0.997407i \(0.477072\pi\)
−0.899764 + 0.436377i \(0.856261\pi\)
\(608\) 0 0
\(609\) 1595.28 + 803.266i 0.106148 + 0.0534483i
\(610\) 0 0
\(611\) −3865.22 2231.59i −0.255925 0.147758i
\(612\) 0 0
\(613\) 3167.74 + 5486.69i 0.208717 + 0.361509i 0.951311 0.308233i \(-0.0997378\pi\)
−0.742593 + 0.669743i \(0.766404\pi\)
\(614\) 0 0
\(615\) −5924.15 −0.388431
\(616\) 0 0
\(617\) 12720.7 0.830013 0.415006 0.909819i \(-0.363779\pi\)
0.415006 + 0.909819i \(0.363779\pi\)
\(618\) 0 0
\(619\) 11135.8 + 19287.7i 0.723077 + 1.25241i 0.959761 + 0.280820i \(0.0906063\pi\)
−0.236683 + 0.971587i \(0.576060\pi\)
\(620\) 0 0
\(621\) −9219.10 5322.65i −0.595733 0.343946i
\(622\) 0 0
\(623\) −3775.31 + 215.932i −0.242784 + 0.0138863i
\(624\) 0 0
\(625\) −1795.08 + 3109.16i −0.114885 + 0.198987i
\(626\) 0 0
\(627\) −7363.39 + 4251.25i −0.469004 + 0.270779i
\(628\) 0 0
\(629\) 4959.08i 0.314358i
\(630\) 0 0
\(631\) 7895.30i 0.498110i −0.968489 0.249055i \(-0.919880\pi\)
0.968489 0.249055i \(-0.0801199\pi\)
\(632\) 0 0
\(633\) −2523.10 + 1456.71i −0.158427 + 0.0914676i
\(634\) 0 0
\(635\) −13783.8 + 23874.3i −0.861410 + 1.49201i
\(636\) 0 0
\(637\) 7817.98 + 3391.72i 0.486279 + 0.210965i
\(638\) 0 0
\(639\) −16160.1 9330.05i −1.00045 0.577607i
\(640\) 0 0
\(641\) −4213.92 7298.73i −0.259657 0.449739i 0.706493 0.707720i \(-0.250276\pi\)
−0.966150 + 0.257981i \(0.916943\pi\)
\(642\) 0 0
\(643\) −12838.8 −0.787424 −0.393712 0.919234i \(-0.628809\pi\)
−0.393712 + 0.919234i \(0.628809\pi\)
\(644\) 0 0
\(645\) 12057.2 0.736049
\(646\) 0 0
\(647\) 11376.3 + 19704.4i 0.691267 + 1.19731i 0.971423 + 0.237355i \(0.0762805\pi\)
−0.280156 + 0.959955i \(0.590386\pi\)
\(648\) 0 0
\(649\) −20424.5 11792.1i −1.23533 0.713219i
\(650\) 0 0
\(651\) 81.7728 + 1429.70i 0.00492309 + 0.0860740i
\(652\) 0 0
\(653\) 430.103 744.961i 0.0257753 0.0446441i −0.852850 0.522156i \(-0.825128\pi\)
0.878625 + 0.477512i \(0.158461\pi\)
\(654\) 0 0
\(655\) −31431.3 + 18146.9i −1.87500 + 1.08253i
\(656\) 0 0
\(657\) 13088.2i 0.777199i
\(658\) 0 0
\(659\) 19262.8i 1.13865i 0.822111 + 0.569327i \(0.192796\pi\)
−0.822111 + 0.569327i \(0.807204\pi\)
\(660\) 0 0
\(661\) −3499.64 + 2020.52i −0.205931 + 0.118894i −0.599419 0.800436i \(-0.704602\pi\)
0.393488 + 0.919330i \(0.371268\pi\)
\(662\) 0 0
\(663\) −1984.26 + 3436.84i −0.116233 + 0.201321i
\(664\) 0 0
\(665\) 9489.80 18846.7i 0.553381 1.09901i
\(666\) 0 0
\(667\) −1858.00 1072.72i −0.107859 0.0622727i
\(668\) 0 0
\(669\) 3226.03 + 5587.64i 0.186435 + 0.322916i
\(670\) 0 0
\(671\) −17503.5 −1.00703
\(672\) 0 0
\(673\) −30094.8 −1.72373 −0.861863 0.507141i \(-0.830702\pi\)
−0.861863 + 0.507141i \(0.830702\pi\)
\(674\) 0 0
\(675\) −15357.5 26599.9i −0.875718 1.51679i
\(676\) 0 0
\(677\) −16898.8 9756.55i −0.959343 0.553877i −0.0633724 0.997990i \(-0.520186\pi\)
−0.895971 + 0.444113i \(0.853519\pi\)
\(678\) 0 0
\(679\) 11342.9 + 17285.4i 0.641093 + 0.976955i
\(680\) 0 0
\(681\) 3303.34 5721.55i 0.185880 0.321953i
\(682\) 0 0
\(683\) −19594.6 + 11312.9i −1.09775 + 0.633788i −0.935630 0.352982i \(-0.885168\pi\)
−0.162123 + 0.986771i \(0.551834\pi\)
\(684\) 0 0
\(685\) 33050.5i 1.84350i
\(686\) 0 0
\(687\) 8636.90i 0.479648i
\(688\) 0 0
\(689\) −9410.66 + 5433.24i −0.520345 + 0.300421i
\(690\) 0 0
\(691\) −102.478 + 177.498i −0.00564177 + 0.00977182i −0.868833 0.495106i \(-0.835129\pi\)
0.863191 + 0.504878i \(0.168463\pi\)
\(692\) 0 0
\(693\) −6615.62 10081.5i −0.362636 0.552617i
\(694\) 0 0
\(695\) 4889.78 + 2823.11i 0.266877 + 0.154082i
\(696\) 0 0
\(697\) 2297.91 + 3980.10i 0.124877 + 0.216294i
\(698\) 0 0
\(699\) −11527.0 −0.623736
\(700\) 0 0
\(701\) −9946.71 −0.535923 −0.267962 0.963430i \(-0.586350\pi\)
−0.267962 + 0.963430i \(0.586350\pi\)
\(702\) 0 0
\(703\) 3208.36 + 5557.04i 0.172127 + 0.298133i
\(704\) 0 0
\(705\) 9582.47 + 5532.44i 0.511910 + 0.295552i
\(706\) 0 0
\(707\) 32.9964 65.5307i 0.00175525 0.00348590i
\(708\) 0 0
\(709\) 14432.4 24997.6i 0.764484 1.32412i −0.176035 0.984384i \(-0.556327\pi\)
0.940519 0.339741i \(-0.110339\pi\)
\(710\) 0 0
\(711\) 4463.19 2576.82i 0.235419 0.135919i
\(712\) 0 0
\(713\) 1720.14i 0.0903501i
\(714\) 0 0
\(715\) 18834.6i 0.985141i
\(716\) 0 0
\(717\) 10560.2 6096.94i 0.550039 0.317565i
\(718\) 0 0
\(719\) 3063.07 5305.39i 0.158878 0.275185i −0.775586 0.631241i \(-0.782546\pi\)
0.934464 + 0.356057i \(0.115879\pi\)
\(720\) 0 0
\(721\) 379.464 + 6634.46i 0.0196005 + 0.342691i
\(722\) 0 0
\(723\) 7335.45 + 4235.12i 0.377328 + 0.217851i
\(724\) 0 0
\(725\) −3095.12 5360.91i −0.158552 0.274620i
\(726\) 0 0
\(727\) 20742.9 1.05820 0.529101 0.848559i \(-0.322529\pi\)
0.529101 + 0.848559i \(0.322529\pi\)
\(728\) 0 0
\(729\) 13730.5 0.697579
\(730\) 0 0
\(731\) −4676.85 8100.54i −0.236634 0.409862i
\(732\) 0 0
\(733\) 15694.9 + 9061.44i 0.790864 + 0.456606i 0.840267 0.542173i \(-0.182398\pi\)
−0.0494026 + 0.998779i \(0.515732\pi\)
\(734\) 0 0
\(735\) −19381.9 8408.59i −0.972672 0.421980i
\(736\) 0 0
\(737\) 17293.4 29953.0i 0.864328 1.49706i
\(738\) 0 0
\(739\) 32754.4 18910.8i 1.63043 0.941332i 0.646476 0.762934i \(-0.276242\pi\)
0.983958 0.178398i \(-0.0570913\pi\)
\(740\) 0 0
\(741\) 5135.01i 0.254574i
\(742\) 0 0
\(743\) 4974.35i 0.245614i 0.992431 + 0.122807i \(0.0391896\pi\)
−0.992431 + 0.122807i \(0.960810\pi\)
\(744\) 0 0
\(745\) −22818.1 + 13174.0i −1.12213 + 0.647865i
\(746\) 0 0
\(747\) 4018.78 6960.73i 0.196840 0.340937i
\(748\) 0 0
\(749\) −17154.5 + 981.168i −0.836865 + 0.0478653i
\(750\) 0 0
\(751\) −19034.7 10989.7i −0.924884 0.533982i −0.0396939 0.999212i \(-0.512638\pi\)
−0.885190 + 0.465230i \(0.845972\pi\)
\(752\) 0 0
\(753\) 9456.81 + 16379.7i 0.457670 + 0.792707i
\(754\) 0 0
\(755\) −22962.1 −1.10686
\(756\) 0 0
\(757\) 10241.5 0.491722 0.245861 0.969305i \(-0.420929\pi\)
0.245861 + 0.969305i \(0.420929\pi\)
\(758\) 0 0
\(759\) −5112.91 8855.83i −0.244515 0.423513i
\(760\) 0 0
\(761\) −18578.2 10726.2i −0.884968 0.510937i −0.0126751 0.999920i \(-0.504035\pi\)
−0.872293 + 0.488983i \(0.837368\pi\)
\(762\) 0 0
\(763\) 19660.4 + 9899.53i 0.932836 + 0.469708i
\(764\) 0 0
\(765\) −6967.86 + 12068.7i −0.329312 + 0.570385i
\(766\) 0 0
\(767\) 12335.2 7121.71i 0.580700 0.335267i
\(768\) 0 0
\(769\) 26466.5i 1.24110i 0.784166 + 0.620551i \(0.213091\pi\)
−0.784166 + 0.620551i \(0.786909\pi\)
\(770\) 0 0
\(771\) 16708.3i 0.780462i
\(772\) 0 0
\(773\) −9692.09 + 5595.73i −0.450971 + 0.260368i −0.708240 0.705972i \(-0.750511\pi\)
0.257269 + 0.966340i \(0.417177\pi\)
\(774\) 0 0
\(775\) 2481.56 4298.19i 0.115020 0.199220i
\(776\) 0 0
\(777\) 5371.46 3524.84i 0.248005 0.162745i
\(778\) 0 0
\(779\) −5149.99 2973.35i −0.236864 0.136754i
\(780\) 0 0
\(781\) −24252.2 42006.1i −1.11116 1.92458i
\(782\) 0 0
\(783\) 4130.21 0.188508
\(784\) 0 0
\(785\) 46845.9 2.12994
\(786\) 0 0
\(787\) 15026.0 + 26025.7i 0.680582 + 1.17880i 0.974804 + 0.223065i \(0.0716062\pi\)
−0.294222 + 0.955737i \(0.595061\pi\)
\(788\) 0 0
\(789\) 5505.36 + 3178.52i 0.248411 + 0.143420i
\(790\) 0 0
\(791\) −10256.1 + 6730.24i −0.461019 + 0.302528i
\(792\) 0 0
\(793\) 5285.53 9154.81i 0.236689 0.409958i
\(794\) 0 0
\(795\) 23330.4 13469.8i 1.04081 0.600913i
\(796\) 0 0
\(797\) 26567.8i 1.18078i −0.807119 0.590389i \(-0.798974\pi\)
0.807119 0.590389i \(-0.201026\pi\)
\(798\) 0 0
\(799\) 8583.89i 0.380070i
\(800\) 0 0
\(801\) −2798.54 + 1615.74i −0.123447 + 0.0712724i
\(802\) 0 0
\(803\) 17010.5 29463.1i 0.747557 1.29481i
\(804\) 0 0
\(805\) 22666.6 + 11413.2i 0.992412 + 0.499706i
\(806\) 0 0
\(807\) 23319.1 + 13463.3i 1.01719 + 0.587275i
\(808\) 0 0
\(809\) 980.413 + 1698.13i 0.0426075 + 0.0737984i 0.886543 0.462647i \(-0.153100\pi\)
−0.843935 + 0.536445i \(0.819767\pi\)
\(810\) 0 0
\(811\) 2633.82 0.114040 0.0570198 0.998373i \(-0.481840\pi\)
0.0570198 + 0.998373i \(0.481840\pi\)
\(812\) 0 0
\(813\) 14634.5 0.631309
\(814\) 0 0
\(815\) −6781.58 11746.0i −0.291470 0.504841i
\(816\) 0 0
\(817\) 10481.6 + 6051.53i 0.448841 + 0.259139i
\(818\) 0 0
\(819\) 7270.61 415.850i 0.310202 0.0177423i
\(820\) 0 0
\(821\) 5333.16 9237.30i 0.226710 0.392672i −0.730121 0.683317i \(-0.760537\pi\)
0.956831 + 0.290645i \(0.0938699\pi\)
\(822\) 0 0
\(823\) 32943.1 19019.7i 1.39529 0.805571i 0.401395 0.915905i \(-0.368525\pi\)
0.993895 + 0.110334i \(0.0351922\pi\)
\(824\) 0 0
\(825\) 29504.6i 1.24512i
\(826\) 0 0
\(827\) 22277.0i 0.936697i 0.883544 + 0.468349i \(0.155151\pi\)
−0.883544 + 0.468349i \(0.844849\pi\)
\(828\) 0 0
\(829\) −18752.2 + 10826.6i −0.785633 + 0.453585i −0.838423 0.545020i \(-0.816522\pi\)
0.0527901 + 0.998606i \(0.483189\pi\)
\(830\) 0 0
\(831\) −5355.83 + 9276.57i −0.223576 + 0.387245i
\(832\) 0 0
\(833\) 1868.78 + 16283.2i 0.0777304 + 0.677287i
\(834\) 0 0
\(835\) −49643.4 28661.7i −2.05746 1.18788i
\(836\) 0 0
\(837\) 1655.73 + 2867.80i 0.0683755 + 0.118430i
\(838\) 0 0
\(839\) 47337.4 1.94788 0.973939 0.226811i \(-0.0728299\pi\)
0.973939 + 0.226811i \(0.0728299\pi\)
\(840\) 0 0
\(841\) −23556.6 −0.965870
\(842\) 0 0
\(843\) −10459.8 18116.9i −0.427347 0.740187i
\(844\) 0 0
\(845\) 25209.4 + 14554.6i 1.02631 + 0.592538i
\(846\) 0 0
\(847\) −382.215 6682.55i −0.0155054 0.271092i
\(848\) 0 0
\(849\) −10126.2 + 17539.1i −0.409341 + 0.708999i
\(850\) 0 0
\(851\) −6683.37 + 3858.64i −0.269216 + 0.155432i
\(852\) 0 0
\(853\) 16562.9i 0.664833i 0.943133 + 0.332417i \(0.107864\pi\)
−0.943133 + 0.332417i \(0.892136\pi\)
\(854\) 0 0
\(855\) 18031.9i 0.721261i
\(856\) 0 0
\(857\) −28076.8 + 16210.2i −1.11912 + 0.646124i −0.941176 0.337917i \(-0.890278\pi\)
−0.177944 + 0.984041i \(0.556944\pi\)
\(858\) 0 0
\(859\) 16065.2 27825.8i 0.638112 1.10524i −0.347735 0.937593i \(-0.613049\pi\)
0.985847 0.167649i \(-0.0536177\pi\)
\(860\) 0 0
\(861\) −2677.75 + 5317.99i −0.105990 + 0.210496i
\(862\) 0 0
\(863\) −33292.7 19221.5i −1.31320 0.758179i −0.330579 0.943778i \(-0.607244\pi\)
−0.982625 + 0.185600i \(0.940577\pi\)
\(864\) 0 0
\(865\) −28932.4 50112.4i −1.13726 1.96979i
\(866\) 0 0
\(867\) 8790.02 0.344319
\(868\) 0 0
\(869\) 13396.2 0.522941
\(870\) 0 0
\(871\) 10444.2 + 18089.8i 0.406300 + 0.703732i
\(872\) 0 0
\(873\) 15300.7 + 8833.85i 0.593184 + 0.342475i
\(874\) 0 0
\(875\) 16768.3 + 25553.0i 0.647854 + 0.987257i
\(876\) 0 0
\(877\) −10742.3 + 18606.2i −0.413616 + 0.716404i −0.995282 0.0970237i \(-0.969068\pi\)
0.581666 + 0.813428i \(0.302401\pi\)
\(878\) 0 0
\(879\) 1324.81 764.877i 0.0508357 0.0293500i
\(880\) 0 0
\(881\) 17193.8i 0.657517i −0.944414 0.328759i \(-0.893370\pi\)
0.944414 0.328759i \(-0.106630\pi\)
\(882\) 0 0
\(883\) 16514.2i 0.629384i 0.949194 + 0.314692i \(0.101901\pi\)
−0.949194 + 0.314692i \(0.898099\pi\)
\(884\) 0 0
\(885\) −30580.7 + 17655.8i −1.16154 + 0.670614i
\(886\) 0 0
\(887\) −10239.6 + 17735.5i −0.387612 + 0.671364i −0.992128 0.125229i \(-0.960033\pi\)
0.604516 + 0.796593i \(0.293367\pi\)
\(888\) 0 0
\(889\) 15201.1 + 23164.8i 0.573486 + 0.873929i
\(890\) 0 0
\(891\) 1824.29 + 1053.25i 0.0685925 + 0.0396019i
\(892\) 0 0
\(893\) 5553.49 + 9618.93i 0.208108 + 0.360454i
\(894\) 0 0
\(895\) −4399.00 −0.164293
\(896\) 0 0
\(897\) 6175.79 0.229882
\(898\) 0 0
\(899\) 333.693 + 577.973i 0.0123796 + 0.0214421i
\(900\) 0 0
\(901\) −18099.2 10449.6i −0.669226 0.386378i
\(902\) 0 0
\(903\) 5449.92 10823.5i 0.200844 0.398874i
\(904\) 0 0
\(905\) −17939.6 + 31072.3i −0.658930 + 1.14130i
\(906\) 0 0
\(907\) 26983.7 15579.0i 0.987848 0.570334i 0.0832177 0.996531i \(-0.473480\pi\)
0.904630 + 0.426197i \(0.140147\pi\)
\(908\) 0 0
\(909\) 62.6978i 0.00228774i
\(910\) 0 0
\(911\) 412.348i 0.0149964i 0.999972 + 0.00749818i \(0.00238677\pi\)
−0.999972 + 0.00749818i \(0.997613\pi\)
\(912\) 0 0
\(913\) 18093.5 10446.3i 0.655868 0.378666i
\(914\) 0 0
\(915\) −13103.6 + 22696.2i −0.473435 + 0.820013i
\(916\) 0 0
\(917\) 2082.95 + 36417.7i 0.0750109 + 1.31147i
\(918\) 0 0
\(919\) 8444.08 + 4875.19i 0.303095 + 0.174992i 0.643832 0.765166i \(-0.277343\pi\)
−0.340737 + 0.940159i \(0.610677\pi\)
\(920\) 0 0
\(921\) −7012.30 12145.7i −0.250883 0.434542i
\(922\) 0 0
\(923\) 29293.8 1.04466
\(924\) 0 0
\(925\) −22266.7 −0.791487
\(926\) 0 0
\(927\) 2839.38 + 4917.95i 0.100601 + 0.174247i
\(928\) 0 0
\(929\) −19036.4 10990.7i −0.672297 0.388151i 0.124650 0.992201i \(-0.460219\pi\)
−0.796946 + 0.604050i \(0.793553\pi\)
\(930\) 0 0
\(931\) −12628.8 17037.6i −0.444568 0.599769i
\(932\) 0 0
\(933\) 10877.7 18840.8i 0.381695 0.661115i
\(934\) 0 0
\(935\) −31371.0 + 18112.0i −1.09726 + 0.633505i
\(936\) 0 0
\(937\) 19723.5i 0.687662i 0.939032 + 0.343831i \(0.111725\pi\)
−0.939032 + 0.343831i \(0.888275\pi\)
\(938\) 0 0
\(939\) 28877.4i 1.00360i
\(940\) 0 0
\(941\) 9773.15 5642.53i 0.338571 0.195474i −0.321069 0.947056i \(-0.604042\pi\)
0.659640 + 0.751582i \(0.270709\pi\)
\(942\) 0 0
\(943\) 3575.99 6193.80i 0.123489 0.213890i
\(944\) 0 0
\(945\) −48775.4 + 2789.76i −1.67901 + 0.0960327i
\(946\) 0 0
\(947\) 26386.0 + 15234.0i 0.905417 + 0.522743i 0.878954 0.476907i \(-0.158242\pi\)
0.0264635 + 0.999650i \(0.491575\pi\)
\(948\) 0 0
\(949\) 10273.3 + 17794.0i 0.351409 + 0.608658i
\(950\) 0 0
\(951\) −3096.42 −0.105582
\(952\) 0 0
\(953\) 11791.2 0.400791 0.200395 0.979715i \(-0.435777\pi\)
0.200395 + 0.979715i \(0.435777\pi\)
\(954\) 0 0
\(955\) −4185.24 7249.05i −0.141813 0.245627i
\(956\) 0 0
\(957\) 3435.92 + 1983.73i 0.116058 + 0.0670061i
\(958\) 0 0
\(959\) 29668.8 + 14939.0i 0.999014 + 0.503030i
\(960\) 0 0
\(961\) 14628.0 25336.4i 0.491019 0.850470i
\(962\) 0 0
\(963\) −12716.2 + 7341.69i −0.425517 + 0.245672i
\(964\) 0 0
\(965\) 59154.0i 1.97330i
\(966\) 0 0
\(967\) 40914.1i 1.36061i −0.732929 0.680305i \(-0.761847\pi\)
0.732929 0.680305i \(-0.238153\pi\)
\(968\) 0 0
\(969\) 8552.87 4938.00i 0.283548 0.163706i
\(970\) 0 0
\(971\) −9276.00 + 16066.5i −0.306572 + 0.530997i −0.977610 0.210425i \(-0.932515\pi\)
0.671038 + 0.741423i \(0.265849\pi\)
\(972\) 0 0
\(973\) 4744.46 3113.39i 0.156321 0.102580i
\(974\) 0 0
\(975\) 15431.8 + 8909.53i 0.506884 + 0.292650i
\(976\) 0 0
\(977\) 1455.74 + 2521.42i 0.0476697 + 0.0825664i 0.888876 0.458148i \(-0.151487\pi\)
−0.841206 + 0.540715i \(0.818154\pi\)
\(978\) 0 0
\(979\) −8399.78 −0.274217
\(980\) 0 0
\(981\) 18810.5 0.612204
\(982\) 0 0
\(983\) 18251.1 + 31611.8i 0.592186 + 1.02570i 0.993937 + 0.109947i \(0.0350682\pi\)
−0.401752 + 0.915749i \(0.631598\pi\)
\(984\) 0 0
\(985\) 66602.3 + 38452.9i 2.15444 + 1.24387i
\(986\) 0 0
\(987\) 9297.70 6101.30i 0.299847 0.196764i
\(988\) 0 0
\(989\) −7278.08 + 12606.0i −0.234004 + 0.405306i
\(990\) 0 0
\(991\) 31879.7 18405.7i 1.02189 0.589987i 0.107238 0.994233i \(-0.465799\pi\)
0.914650 + 0.404246i \(0.132466\pi\)
\(992\) 0 0
\(993\) 31884.6i 1.01896i
\(994\) 0 0
\(995\) 97269.2i 3.09914i
\(996\) 0 0
\(997\) 10060.1 5808.18i 0.319564 0.184500i −0.331634 0.943408i \(-0.607600\pi\)
0.651198 + 0.758908i \(0.274267\pi\)
\(998\) 0 0
\(999\) 7428.32 12866.2i 0.235257 0.407477i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 448.4.p.h.383.4 20
4.3 odd 2 inner 448.4.p.h.383.7 20
7.3 odd 6 inner 448.4.p.h.255.7 20
8.3 odd 2 28.4.f.a.19.2 yes 20
8.5 even 2 28.4.f.a.19.9 yes 20
28.3 even 6 inner 448.4.p.h.255.4 20
56.3 even 6 28.4.f.a.3.9 yes 20
56.5 odd 6 196.4.d.b.195.10 20
56.11 odd 6 196.4.f.d.31.9 20
56.13 odd 2 196.4.f.d.19.9 20
56.19 even 6 196.4.d.b.195.11 20
56.27 even 2 196.4.f.d.19.2 20
56.37 even 6 196.4.d.b.195.9 20
56.45 odd 6 28.4.f.a.3.2 20
56.51 odd 6 196.4.d.b.195.12 20
56.53 even 6 196.4.f.d.31.2 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.4.f.a.3.2 20 56.45 odd 6
28.4.f.a.3.9 yes 20 56.3 even 6
28.4.f.a.19.2 yes 20 8.3 odd 2
28.4.f.a.19.9 yes 20 8.5 even 2
196.4.d.b.195.9 20 56.37 even 6
196.4.d.b.195.10 20 56.5 odd 6
196.4.d.b.195.11 20 56.19 even 6
196.4.d.b.195.12 20 56.51 odd 6
196.4.f.d.19.2 20 56.27 even 2
196.4.f.d.19.9 20 56.13 odd 2
196.4.f.d.31.2 20 56.53 even 6
196.4.f.d.31.9 20 56.11 odd 6
448.4.p.h.255.4 20 28.3 even 6 inner
448.4.p.h.255.7 20 7.3 odd 6 inner
448.4.p.h.383.4 20 1.1 even 1 trivial
448.4.p.h.383.7 20 4.3 odd 2 inner