Properties

Label 196.4.f.d.19.9
Level $196$
Weight $4$
Character 196.19
Analytic conductor $11.564$
Analytic rank $0$
Dimension $20$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [196,4,Mod(19,196)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(196, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("196.19");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 196 = 2^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 196.f (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5643743611\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 2 x^{18} - 24 x^{17} + 28 x^{16} + 56 x^{15} - 192 x^{14} + 352 x^{13} - 448 x^{12} + \cdots + 1073741824 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{24} \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 19.9
Root \(-2.26510 - 1.69390i\) of defining polynomial
Character \(\chi\) \(=\) 196.19
Dual form 196.4.f.d.31.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.59951 + 1.11469i) q^{2} +(-1.67134 - 2.89484i) q^{3} +(5.51494 + 5.79529i) q^{4} +(15.9583 + 9.21354i) q^{5} +(-1.11782 - 9.38820i) q^{6} +(7.87623 + 21.2124i) q^{8} +(7.91327 - 13.7062i) q^{9} +(31.2137 + 41.7393i) q^{10} +(-35.6274 + 20.5695i) q^{11} +(7.55911 - 25.6508i) q^{12} +24.8455i q^{13} -61.5957i q^{15} +(-3.17079 + 63.9214i) q^{16} +(41.3826 - 23.8923i) q^{17} +(35.8487 - 26.8086i) q^{18} +(30.9150 - 53.5464i) q^{19} +(34.6141 + 143.295i) q^{20} +(-115.542 + 13.7572i) q^{22} +(64.3994 + 37.1810i) q^{23} +(48.2426 - 58.2535i) q^{24} +(107.279 + 185.812i) q^{25} +(-27.6950 + 64.5862i) q^{26} -143.155 q^{27} +28.8513 q^{29} +(68.6600 - 160.119i) q^{30} +(11.5660 + 20.0328i) q^{31} +(-79.4949 + 162.630i) q^{32} +(119.091 + 68.7571i) q^{33} +(134.207 - 15.9796i) q^{34} +(123.072 - 29.7291i) q^{36} +(51.8900 - 89.8761i) q^{37} +(140.052 - 104.734i) q^{38} +(71.9237 - 41.5252i) q^{39} +(-69.7496 + 411.082i) q^{40} +96.1780i q^{41} -195.747i q^{43} +(-315.689 - 93.0315i) q^{44} +(252.565 - 145.818i) q^{45} +(125.962 + 168.438i) q^{46} +(89.8186 - 155.570i) q^{47} +(190.342 - 97.6553i) q^{48} +(71.7499 + 602.603i) q^{50} +(-138.329 - 79.8641i) q^{51} +(-143.987 + 137.021i) q^{52} +(-218.681 - 378.767i) q^{53} +(-372.134 - 159.573i) q^{54} -758.071 q^{55} -206.678 q^{57} +(74.9993 + 32.1601i) q^{58} +(-286.640 - 496.475i) q^{59} +(356.965 - 339.697i) q^{60} +(-368.470 - 212.736i) q^{61} +(7.73553 + 64.9681i) q^{62} +(-387.930 + 334.147i) q^{64} +(-228.915 + 396.492i) q^{65} +(232.935 + 311.484i) q^{66} +(-728.093 + 420.365i) q^{67} +(366.686 + 108.060i) q^{68} -248.568i q^{69} -1179.04i q^{71} +(353.067 + 59.9061i) q^{72} +(-716.185 + 413.489i) q^{73} +(235.072 - 175.793i) q^{74} +(358.597 - 621.109i) q^{75} +(480.812 - 116.144i) q^{76} +(233.254 - 27.7728i) q^{78} +(282.007 + 162.817i) q^{79} +(-639.543 + 990.864i) q^{80} +(25.6023 + 44.3445i) q^{81} +(-107.208 + 250.016i) q^{82} +507.854 q^{83} +880.530 q^{85} +(218.197 - 508.848i) q^{86} +(-48.2202 - 83.5198i) q^{87} +(-716.937 - 593.731i) q^{88} +(176.826 + 102.090i) q^{89} +(819.088 - 97.5260i) q^{90} +(139.684 + 578.264i) q^{92} +(38.6612 - 66.9632i) q^{93} +(406.897 - 304.288i) q^{94} +(986.704 - 569.674i) q^{95} +(603.651 - 41.6847i) q^{96} -1116.33i q^{97} +651.087i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{4} + 6 q^{5} + 72 q^{8} - 56 q^{9} + 12 q^{10} + 168 q^{12} - 104 q^{16} + 6 q^{17} + 68 q^{18} - 184 q^{22} - 348 q^{24} - 36 q^{25} - 396 q^{26} - 352 q^{29} + 644 q^{30} - 40 q^{32} - 30 q^{33}+ \cdots + 11784 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/196\mathbb{Z}\right)^\times\).

\(n\) \(99\) \(101\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.59951 + 1.11469i 0.919067 + 0.394102i
\(3\) −1.67134 2.89484i −0.321649 0.557112i 0.659179 0.751986i \(-0.270904\pi\)
−0.980828 + 0.194873i \(0.937570\pi\)
\(4\) 5.51494 + 5.79529i 0.689368 + 0.724411i
\(5\) 15.9583 + 9.21354i 1.42736 + 0.824084i 0.996911 0.0785333i \(-0.0250237\pi\)
0.430444 + 0.902617i \(0.358357\pi\)
\(6\) −1.11782 9.38820i −0.0760581 0.638786i
\(7\) 0 0
\(8\) 7.87623 + 21.2124i 0.348084 + 0.937463i
\(9\) 7.91327 13.7062i 0.293084 0.507636i
\(10\) 31.2137 + 41.7393i 0.987062 + 1.31991i
\(11\) −35.6274 + 20.5695i −0.976551 + 0.563812i −0.901227 0.433347i \(-0.857332\pi\)
−0.0753237 + 0.997159i \(0.523999\pi\)
\(12\) 7.55911 25.6508i 0.181844 0.617062i
\(13\) 24.8455i 0.530069i 0.964239 + 0.265035i \(0.0853834\pi\)
−0.964239 + 0.265035i \(0.914617\pi\)
\(14\) 0 0
\(15\) 61.5957i 1.06026i
\(16\) −3.17079 + 63.9214i −0.0495436 + 0.998772i
\(17\) 41.3826 23.8923i 0.590398 0.340866i −0.174857 0.984594i \(-0.555946\pi\)
0.765255 + 0.643728i \(0.222613\pi\)
\(18\) 35.8487 26.8086i 0.469424 0.351047i
\(19\) 30.9150 53.5464i 0.373284 0.646547i −0.616785 0.787132i \(-0.711565\pi\)
0.990069 + 0.140585i \(0.0448984\pi\)
\(20\) 34.6141 + 143.295i 0.386997 + 1.60209i
\(21\) 0 0
\(22\) −115.542 + 13.7572i −1.11971 + 0.133321i
\(23\) 64.3994 + 37.1810i 0.583835 + 0.337077i 0.762656 0.646804i \(-0.223895\pi\)
−0.178821 + 0.983882i \(0.557228\pi\)
\(24\) 48.2426 58.2535i 0.410312 0.495456i
\(25\) 107.279 + 185.812i 0.858229 + 1.48650i
\(26\) −27.6950 + 64.5862i −0.208901 + 0.487169i
\(27\) −143.155 −1.02038
\(28\) 0 0
\(29\) 28.8513 0.184743 0.0923715 0.995725i \(-0.470555\pi\)
0.0923715 + 0.995725i \(0.470555\pi\)
\(30\) 68.6600 160.119i 0.417851 0.974453i
\(31\) 11.5660 + 20.0328i 0.0670099 + 0.116065i 0.897584 0.440844i \(-0.145321\pi\)
−0.830574 + 0.556908i \(0.811987\pi\)
\(32\) −79.4949 + 162.630i −0.439151 + 0.898413i
\(33\) 119.091 + 68.7571i 0.628213 + 0.362699i
\(34\) 134.207 15.9796i 0.676951 0.0806023i
\(35\) 0 0
\(36\) 123.072 29.7291i 0.569780 0.137635i
\(37\) 51.8900 89.8761i 0.230558 0.399339i −0.727414 0.686199i \(-0.759278\pi\)
0.957973 + 0.286860i \(0.0926114\pi\)
\(38\) 140.052 104.734i 0.597878 0.447108i
\(39\) 71.9237 41.5252i 0.295308 0.170496i
\(40\) −69.7496 + 411.082i −0.275710 + 1.62494i
\(41\) 96.1780i 0.366353i 0.983080 + 0.183177i \(0.0586380\pi\)
−0.983080 + 0.183177i \(0.941362\pi\)
\(42\) 0 0
\(43\) 195.747i 0.694213i −0.937826 0.347107i \(-0.887164\pi\)
0.937826 0.347107i \(-0.112836\pi\)
\(44\) −315.689 93.0315i −1.08163 0.318751i
\(45\) 252.565 145.818i 0.836670 0.483052i
\(46\) 125.962 + 168.438i 0.403741 + 0.539887i
\(47\) 89.8186 155.570i 0.278753 0.482815i −0.692322 0.721589i \(-0.743412\pi\)
0.971075 + 0.238774i \(0.0767456\pi\)
\(48\) 190.342 97.6553i 0.572364 0.293653i
\(49\) 0 0
\(50\) 71.7499 + 602.603i 0.202939 + 1.70442i
\(51\) −138.329 79.8641i −0.379802 0.219279i
\(52\) −143.987 + 137.021i −0.383988 + 0.365413i
\(53\) −218.681 378.767i −0.566758 0.981654i −0.996884 0.0788851i \(-0.974864\pi\)
0.430125 0.902769i \(-0.358469\pi\)
\(54\) −372.134 159.573i −0.937796 0.402133i
\(55\) −758.071 −1.85851
\(56\) 0 0
\(57\) −206.678 −0.480266
\(58\) 74.9993 + 32.1601i 0.169791 + 0.0728075i
\(59\) −286.640 496.475i −0.632497 1.09552i −0.987040 0.160477i \(-0.948697\pi\)
0.354542 0.935040i \(-0.384637\pi\)
\(60\) 356.965 339.697i 0.768067 0.730911i
\(61\) −368.470 212.736i −0.773405 0.446526i 0.0606829 0.998157i \(-0.480672\pi\)
−0.834088 + 0.551632i \(0.814005\pi\)
\(62\) 7.73553 + 64.9681i 0.0158454 + 0.133080i
\(63\) 0 0
\(64\) −387.930 + 334.147i −0.757675 + 0.652631i
\(65\) −228.915 + 396.492i −0.436822 + 0.756597i
\(66\) 232.935 + 311.484i 0.434430 + 0.580924i
\(67\) −728.093 + 420.365i −1.32762 + 0.766504i −0.984932 0.172944i \(-0.944672\pi\)
−0.342692 + 0.939448i \(0.611339\pi\)
\(68\) 366.686 + 108.060i 0.653929 + 0.192709i
\(69\) 248.568i 0.433682i
\(70\) 0 0
\(71\) 1179.04i 1.97079i −0.170279 0.985396i \(-0.554467\pi\)
0.170279 0.985396i \(-0.445533\pi\)
\(72\) 353.067 + 59.9061i 0.577908 + 0.0980556i
\(73\) −716.185 + 413.489i −1.14826 + 0.662949i −0.948463 0.316888i \(-0.897362\pi\)
−0.199798 + 0.979837i \(0.564029\pi\)
\(74\) 235.072 175.793i 0.369279 0.276156i
\(75\) 358.597 621.109i 0.552097 0.956260i
\(76\) 480.812 116.144i 0.725696 0.175297i
\(77\) 0 0
\(78\) 233.254 27.7728i 0.338601 0.0403160i
\(79\) 282.007 + 162.817i 0.401623 + 0.231877i 0.687184 0.726483i \(-0.258847\pi\)
−0.285561 + 0.958361i \(0.592180\pi\)
\(80\) −639.543 + 990.864i −0.893788 + 1.38477i
\(81\) 25.6023 + 44.3445i 0.0351198 + 0.0608292i
\(82\) −107.208 + 250.016i −0.144380 + 0.336703i
\(83\) 507.854 0.671617 0.335808 0.941930i \(-0.390991\pi\)
0.335808 + 0.941930i \(0.390991\pi\)
\(84\) 0 0
\(85\) 880.530 1.12361
\(86\) 218.197 508.848i 0.273591 0.638029i
\(87\) −48.2202 83.5198i −0.0594224 0.102923i
\(88\) −716.937 593.731i −0.868474 0.719227i
\(89\) 176.826 + 102.090i 0.210601 + 0.121590i 0.601591 0.798805i \(-0.294534\pi\)
−0.390990 + 0.920395i \(0.627867\pi\)
\(90\) 819.088 97.5260i 0.959327 0.114224i
\(91\) 0 0
\(92\) 139.684 + 578.264i 0.158295 + 0.655307i
\(93\) 38.6612 66.9632i 0.0431074 0.0746641i
\(94\) 406.897 304.288i 0.446471 0.333882i
\(95\) 986.704 569.674i 1.06562 0.615235i
\(96\) 603.651 41.6847i 0.641770 0.0443170i
\(97\) 1116.33i 1.16852i −0.811566 0.584261i \(-0.801385\pi\)
0.811566 0.584261i \(-0.198615\pi\)
\(98\) 0 0
\(99\) 651.087i 0.660977i
\(100\) −485.199 + 1646.45i −0.485199 + 1.64645i
\(101\) 3.43081 1.98078i 0.00337999 0.00195144i −0.498309 0.866999i \(-0.666046\pi\)
0.501689 + 0.865048i \(0.332712\pi\)
\(102\) −270.564 361.801i −0.262645 0.351212i
\(103\) 179.406 310.741i 0.171626 0.297264i −0.767363 0.641213i \(-0.778431\pi\)
0.938988 + 0.343949i \(0.111765\pi\)
\(104\) −527.032 + 195.689i −0.496920 + 0.184508i
\(105\) 0 0
\(106\) −146.258 1228.37i −0.134017 1.12557i
\(107\) 803.472 + 463.885i 0.725931 + 0.419116i 0.816932 0.576735i \(-0.195673\pi\)
−0.0910010 + 0.995851i \(0.529007\pi\)
\(108\) −789.493 829.626i −0.703416 0.739174i
\(109\) −594.270 1029.31i −0.522209 0.904492i −0.999666 0.0258371i \(-0.991775\pi\)
0.477458 0.878655i \(-0.341558\pi\)
\(110\) −1970.62 845.012i −1.70810 0.732443i
\(111\) −346.903 −0.296635
\(112\) 0 0
\(113\) −662.367 −0.551418 −0.275709 0.961241i \(-0.588913\pi\)
−0.275709 + 0.961241i \(0.588913\pi\)
\(114\) −537.262 230.381i −0.441396 0.189273i
\(115\) 685.137 + 1186.69i 0.555560 + 0.962258i
\(116\) 159.113 + 167.201i 0.127356 + 0.133830i
\(117\) 340.537 + 196.609i 0.269082 + 0.155355i
\(118\) −191.710 1610.11i −0.149562 1.25612i
\(119\) 0 0
\(120\) 1306.59 485.142i 0.993958 0.369060i
\(121\) 180.707 312.993i 0.135768 0.235156i
\(122\) −720.708 963.739i −0.534835 0.715187i
\(123\) 278.420 160.746i 0.204100 0.117837i
\(124\) −52.3105 + 177.508i −0.0378840 + 0.128554i
\(125\) 1650.28i 1.18084i
\(126\) 0 0
\(127\) 1496.04i 1.04529i 0.852549 + 0.522647i \(0.175055\pi\)
−0.852549 + 0.522647i \(0.824945\pi\)
\(128\) −1380.90 + 436.200i −0.953558 + 0.301211i
\(129\) −566.657 + 327.160i −0.386755 + 0.223293i
\(130\) −1037.03 + 775.518i −0.699644 + 0.523211i
\(131\) −984.794 + 1705.71i −0.656808 + 1.13762i 0.324630 + 0.945841i \(0.394760\pi\)
−0.981437 + 0.191783i \(0.938573\pi\)
\(132\) 258.311 + 1069.36i 0.170327 + 0.705118i
\(133\) 0 0
\(134\) −2361.26 + 281.148i −1.52225 + 0.181250i
\(135\) −2284.52 1318.97i −1.45644 0.840878i
\(136\) 832.751 + 689.643i 0.525058 + 0.434826i
\(137\) 896.791 + 1553.29i 0.559256 + 0.968660i 0.997559 + 0.0698322i \(0.0222464\pi\)
−0.438303 + 0.898827i \(0.644420\pi\)
\(138\) 277.076 646.156i 0.170915 0.398583i
\(139\) 306.409 0.186973 0.0934867 0.995621i \(-0.470199\pi\)
0.0934867 + 0.995621i \(0.470199\pi\)
\(140\) 0 0
\(141\) −600.469 −0.358643
\(142\) 1314.26 3064.93i 0.776692 1.81129i
\(143\) −511.059 885.180i −0.298859 0.517639i
\(144\) 851.027 + 549.286i 0.492492 + 0.317874i
\(145\) 460.418 + 265.822i 0.263694 + 0.152244i
\(146\) −2322.64 + 276.549i −1.31660 + 0.156763i
\(147\) 0 0
\(148\) 807.028 194.944i 0.448225 0.108272i
\(149\) 714.928 1238.29i 0.393082 0.680838i −0.599773 0.800171i \(-0.704742\pi\)
0.992854 + 0.119333i \(0.0380756\pi\)
\(150\) 1624.52 1214.86i 0.884277 0.661285i
\(151\) −1079.16 + 623.054i −0.581595 + 0.335784i −0.761767 0.647851i \(-0.775668\pi\)
0.180172 + 0.983635i \(0.442335\pi\)
\(152\) 1379.34 + 234.037i 0.736048 + 0.124888i
\(153\) 756.264i 0.399610i
\(154\) 0 0
\(155\) 426.254i 0.220887i
\(156\) 637.306 + 187.810i 0.327085 + 0.0963899i
\(157\) 2201.64 1271.12i 1.11917 0.646154i 0.177982 0.984034i \(-0.443043\pi\)
0.941189 + 0.337880i \(0.109710\pi\)
\(158\) 551.591 + 737.594i 0.277736 + 0.371391i
\(159\) −730.980 + 1266.10i −0.364594 + 0.631496i
\(160\) −2767.00 + 1862.87i −1.36719 + 0.920457i
\(161\) 0 0
\(162\) 17.1233 + 143.813i 0.00830453 + 0.0697469i
\(163\) 637.434 + 368.022i 0.306305 + 0.176845i 0.645272 0.763953i \(-0.276744\pi\)
−0.338967 + 0.940798i \(0.610078\pi\)
\(164\) −557.379 + 530.416i −0.265390 + 0.252552i
\(165\) 1266.99 + 2194.49i 0.597789 + 1.03540i
\(166\) 1320.17 + 566.098i 0.617261 + 0.264685i
\(167\) 3110.82 1.44145 0.720726 0.693220i \(-0.243809\pi\)
0.720726 + 0.693220i \(0.243809\pi\)
\(168\) 0 0
\(169\) 1579.70 0.719027
\(170\) 2288.95 + 981.515i 1.03267 + 0.442816i
\(171\) −489.278 847.454i −0.218807 0.378985i
\(172\) 1134.41 1079.54i 0.502896 0.478569i
\(173\) −2719.50 1570.10i −1.19514 0.690015i −0.235674 0.971832i \(-0.575730\pi\)
−0.959468 + 0.281817i \(0.909063\pi\)
\(174\) −32.2506 270.861i −0.0140512 0.118011i
\(175\) 0 0
\(176\) −1201.86 2342.57i −0.514738 1.00328i
\(177\) −958.144 + 1659.55i −0.406884 + 0.704744i
\(178\) 345.862 + 462.491i 0.145637 + 0.194748i
\(179\) 206.742 119.362i 0.0863274 0.0498411i −0.456215 0.889870i \(-0.650795\pi\)
0.542542 + 0.840028i \(0.317462\pi\)
\(180\) 2237.94 + 659.506i 0.926701 + 0.273093i
\(181\) 1947.09i 0.799591i 0.916604 + 0.399796i \(0.130919\pi\)
−0.916604 + 0.399796i \(0.869081\pi\)
\(182\) 0 0
\(183\) 1422.21i 0.574498i
\(184\) −281.473 + 1658.91i −0.112774 + 0.664655i
\(185\) 1656.15 956.181i 0.658177 0.379999i
\(186\) 175.143 130.977i 0.0690438 0.0516327i
\(187\) −982.903 + 1702.44i −0.384369 + 0.665746i
\(188\) 1396.92 337.437i 0.541920 0.130905i
\(189\) 0 0
\(190\) 3199.96 381.008i 1.22184 0.145480i
\(191\) −393.391 227.124i −0.149030 0.0860427i 0.423631 0.905835i \(-0.360755\pi\)
−0.572661 + 0.819792i \(0.694089\pi\)
\(192\) 1615.66 + 564.522i 0.607295 + 0.212192i
\(193\) −1605.08 2780.08i −0.598634 1.03686i −0.993023 0.117921i \(-0.962377\pi\)
0.394389 0.918944i \(-0.370956\pi\)
\(194\) 1244.36 2901.93i 0.460516 1.07395i
\(195\) 1530.38 0.562013
\(196\) 0 0
\(197\) −4173.52 −1.50940 −0.754698 0.656073i \(-0.772216\pi\)
−0.754698 + 0.656073i \(0.772216\pi\)
\(198\) −725.758 + 1692.51i −0.260492 + 0.607482i
\(199\) 2639.30 + 4571.40i 0.940176 + 1.62843i 0.765134 + 0.643871i \(0.222673\pi\)
0.175042 + 0.984561i \(0.443994\pi\)
\(200\) −3096.56 + 3739.13i −1.09480 + 1.32198i
\(201\) 2433.78 + 1405.14i 0.854057 + 0.493090i
\(202\) 11.1264 1.32478i 0.00387550 0.000461443i
\(203\) 0 0
\(204\) −300.039 1242.10i −0.102975 0.426296i
\(205\) −886.140 + 1534.84i −0.301906 + 0.522916i
\(206\) 812.748 607.793i 0.274888 0.205568i
\(207\) 1019.22 588.446i 0.342225 0.197584i
\(208\) −1588.16 78.7798i −0.529418 0.0262615i
\(209\) 2543.62i 0.841848i
\(210\) 0 0
\(211\) 871.583i 0.284371i 0.989840 + 0.142185i \(0.0454130\pi\)
−0.989840 + 0.142185i \(0.954587\pi\)
\(212\) 989.051 3356.20i 0.320416 1.08729i
\(213\) −3413.13 + 1970.57i −1.09795 + 0.633903i
\(214\) 1571.55 + 2101.49i 0.502004 + 0.671286i
\(215\) 1803.53 3123.80i 0.572090 0.990889i
\(216\) −1127.52 3036.66i −0.355177 0.956568i
\(217\) 0 0
\(218\) −397.459 3338.12i −0.123483 1.03709i
\(219\) 2393.97 + 1382.16i 0.738674 + 0.426474i
\(220\) −4180.72 4393.24i −1.28120 1.34633i
\(221\) 593.615 + 1028.17i 0.180683 + 0.312952i
\(222\) −901.778 386.688i −0.272628 0.116904i
\(223\) 1930.21 0.579624 0.289812 0.957084i \(-0.406407\pi\)
0.289812 + 0.957084i \(0.406407\pi\)
\(224\) 0 0
\(225\) 3395.70 1.00613
\(226\) −1721.83 738.333i −0.506790 0.217315i
\(227\) 988.231 + 1711.67i 0.288948 + 0.500473i 0.973559 0.228436i \(-0.0733612\pi\)
−0.684611 + 0.728909i \(0.740028\pi\)
\(228\) −1139.82 1197.76i −0.331080 0.347910i
\(229\) 2237.66 + 1291.92i 0.645716 + 0.372804i 0.786813 0.617192i \(-0.211730\pi\)
−0.141097 + 0.989996i \(0.545063\pi\)
\(230\) 458.233 + 3848.54i 0.131369 + 1.10333i
\(231\) 0 0
\(232\) 227.239 + 612.004i 0.0643060 + 0.173190i
\(233\) 1724.22 2986.43i 0.484795 0.839690i −0.515052 0.857159i \(-0.672227\pi\)
0.999847 + 0.0174686i \(0.00556071\pi\)
\(234\) 666.072 + 890.680i 0.186079 + 0.248827i
\(235\) 2866.71 1655.10i 0.795759 0.459432i
\(236\) 1296.41 4399.19i 0.357582 1.21340i
\(237\) 1088.49i 0.298333i
\(238\) 0 0
\(239\) 3647.94i 0.987304i 0.869659 + 0.493652i \(0.164338\pi\)
−0.869659 + 0.493652i \(0.835662\pi\)
\(240\) 3937.28 + 195.307i 1.05896 + 0.0525292i
\(241\) 2194.49 1266.99i 0.586553 0.338646i −0.177180 0.984178i \(-0.556698\pi\)
0.763733 + 0.645532i \(0.223364\pi\)
\(242\) 818.639 612.198i 0.217455 0.162618i
\(243\) −1847.01 + 3199.12i −0.487597 + 0.844542i
\(244\) −799.222 3308.62i −0.209692 0.868084i
\(245\) 0 0
\(246\) 902.938 107.510i 0.234021 0.0278641i
\(247\) 1330.39 + 768.099i 0.342714 + 0.197866i
\(248\) −333.848 + 403.125i −0.0854813 + 0.103220i
\(249\) −848.795 1470.16i −0.216025 0.374166i
\(250\) −1839.54 + 4289.92i −0.465372 + 1.08527i
\(251\) −5658.23 −1.42289 −0.711443 0.702744i \(-0.751958\pi\)
−0.711443 + 0.702744i \(0.751958\pi\)
\(252\) 0 0
\(253\) −3059.18 −0.760193
\(254\) −1667.62 + 3888.98i −0.411952 + 0.960695i
\(255\) −1471.66 2548.99i −0.361408 0.625977i
\(256\) −4075.89 405.362i −0.995091 0.0989655i
\(257\) −4328.82 2499.25i −1.05068 0.606610i −0.127840 0.991795i \(-0.540804\pi\)
−0.922840 + 0.385185i \(0.874138\pi\)
\(258\) −1837.71 + 218.810i −0.443454 + 0.0528006i
\(259\) 0 0
\(260\) −3560.24 + 860.004i −0.849218 + 0.205135i
\(261\) 228.308 395.441i 0.0541452 0.0937822i
\(262\) −4461.32 + 3336.29i −1.05199 + 0.786704i
\(263\) −1646.99 + 950.892i −0.386152 + 0.222945i −0.680491 0.732756i \(-0.738234\pi\)
0.294340 + 0.955701i \(0.404900\pi\)
\(264\) −520.514 + 3067.74i −0.121346 + 0.715176i
\(265\) 8059.32i 1.86823i
\(266\) 0 0
\(267\) 682.509i 0.156438i
\(268\) −6451.53 1901.22i −1.47048 0.433342i
\(269\) −6976.20 + 4027.71i −1.58121 + 0.912913i −0.586530 + 0.809928i \(0.699506\pi\)
−0.994683 + 0.102986i \(0.967160\pi\)
\(270\) −4468.39 5975.19i −1.00718 1.34681i
\(271\) 2189.04 3791.53i 0.490682 0.849886i −0.509261 0.860612i \(-0.670081\pi\)
0.999942 + 0.0107264i \(0.00341438\pi\)
\(272\) 1396.01 + 2720.99i 0.311197 + 0.606560i
\(273\) 0 0
\(274\) 599.791 + 5037.44i 0.132243 + 1.11067i
\(275\) −7644.11 4413.33i −1.67621 0.967759i
\(276\) 1440.52 1370.84i 0.314164 0.298967i
\(277\) 1602.26 + 2775.19i 0.347547 + 0.601968i 0.985813 0.167847i \(-0.0536815\pi\)
−0.638266 + 0.769815i \(0.720348\pi\)
\(278\) 796.515 + 341.551i 0.171841 + 0.0736865i
\(279\) 366.098 0.0785581
\(280\) 0 0
\(281\) 6258.33 1.32861 0.664307 0.747460i \(-0.268727\pi\)
0.664307 + 0.747460i \(0.268727\pi\)
\(282\) −1560.93 669.335i −0.329617 0.141342i
\(283\) −3029.37 5247.02i −0.636316 1.10213i −0.986235 0.165351i \(-0.947124\pi\)
0.349919 0.936780i \(-0.386209\pi\)
\(284\) 6832.87 6502.33i 1.42766 1.35860i
\(285\) −3298.23 1904.23i −0.685510 0.395779i
\(286\) −341.806 2870.71i −0.0706692 0.593526i
\(287\) 0 0
\(288\) 1599.97 + 2376.51i 0.327359 + 0.486240i
\(289\) −1314.82 + 2277.33i −0.267620 + 0.463532i
\(290\) 900.554 + 1204.23i 0.182353 + 0.243844i
\(291\) −3231.61 + 1865.77i −0.650998 + 0.375854i
\(292\) −6346.01 1870.13i −1.27182 0.374798i
\(293\) 457.644i 0.0912486i 0.998959 + 0.0456243i \(0.0145277\pi\)
−0.998959 + 0.0456243i \(0.985472\pi\)
\(294\) 0 0
\(295\) 10563.9i 2.08492i
\(296\) 2315.18 + 392.825i 0.454619 + 0.0771367i
\(297\) 5100.24 2944.63i 0.996451 0.575301i
\(298\) 3238.77 2422.03i 0.629588 0.470821i
\(299\) −923.780 + 1600.03i −0.178674 + 0.309473i
\(300\) 5577.15 1347.20i 1.07332 0.259270i
\(301\) 0 0
\(302\) −3499.80 + 416.710i −0.666858 + 0.0794005i
\(303\) −11.4681 6.62110i −0.00217434 0.00125535i
\(304\) 3324.74 + 2145.92i 0.627259 + 0.404858i
\(305\) −3920.10 6789.82i −0.735949 1.27470i
\(306\) 842.997 1965.92i 0.157487 0.367268i
\(307\) 4195.62 0.779989 0.389995 0.920817i \(-0.372477\pi\)
0.389995 + 0.920817i \(0.372477\pi\)
\(308\) 0 0
\(309\) −1199.39 −0.220813
\(310\) −475.140 + 1108.05i −0.0870520 + 0.203010i
\(311\) −3254.20 5636.44i −0.593341 1.02770i −0.993779 0.111372i \(-0.964475\pi\)
0.400438 0.916324i \(-0.368858\pi\)
\(312\) 1447.34 + 1198.61i 0.262626 + 0.217494i
\(313\) 7481.59 + 4319.50i 1.35107 + 0.780040i 0.988399 0.151878i \(-0.0485320\pi\)
0.362670 + 0.931918i \(0.381865\pi\)
\(314\) 7140.09 850.146i 1.28324 0.152792i
\(315\) 0 0
\(316\) 611.682 + 2532.24i 0.108892 + 0.450789i
\(317\) −463.165 + 802.226i −0.0820629 + 0.142137i −0.904136 0.427245i \(-0.859484\pi\)
0.822073 + 0.569382i \(0.192818\pi\)
\(318\) −3311.49 + 2476.42i −0.583960 + 0.436700i
\(319\) −1027.90 + 593.455i −0.180411 + 0.104160i
\(320\) −9269.39 + 1758.22i −1.61930 + 0.307149i
\(321\) 3101.23i 0.539233i
\(322\) 0 0
\(323\) 2954.52i 0.508960i
\(324\) −115.794 + 392.930i −0.0198549 + 0.0673749i
\(325\) −4616.59 + 2665.39i −0.787946 + 0.454921i
\(326\) 1246.79 + 1667.22i 0.211820 + 0.283248i
\(327\) −1986.45 + 3440.63i −0.335936 + 0.581858i
\(328\) −2040.16 + 757.520i −0.343443 + 0.127522i
\(329\) 0 0
\(330\) 847.387 + 7116.92i 0.141355 + 1.18719i
\(331\) 8260.72 + 4769.33i 1.37175 + 0.791982i 0.991149 0.132756i \(-0.0423828\pi\)
0.380604 + 0.924738i \(0.375716\pi\)
\(332\) 2800.79 + 2943.16i 0.462991 + 0.486527i
\(333\) −821.238 1422.43i −0.135146 0.234080i
\(334\) 8086.62 + 3467.59i 1.32479 + 0.568078i
\(335\) −15492.2 −2.52665
\(336\) 0 0
\(337\) 4736.32 0.765589 0.382795 0.923833i \(-0.374962\pi\)
0.382795 + 0.923833i \(0.374962\pi\)
\(338\) 4106.46 + 1760.87i 0.660834 + 0.283370i
\(339\) 1107.04 + 1917.45i 0.177363 + 0.307202i
\(340\) 4856.07 + 5102.92i 0.774581 + 0.813956i
\(341\) −824.130 475.812i −0.130877 0.0755620i
\(342\) −327.238 2748.36i −0.0517398 0.434545i
\(343\) 0 0
\(344\) 4152.26 1541.75i 0.650800 0.241644i
\(345\) 2290.19 3966.73i 0.357391 0.619019i
\(346\) −5319.20 7112.89i −0.826479 1.10518i
\(347\) −1694.40 + 978.260i −0.262133 + 0.151342i −0.625307 0.780379i \(-0.715026\pi\)
0.363174 + 0.931721i \(0.381693\pi\)
\(348\) 218.090 740.057i 0.0335944 0.113998i
\(349\) 9739.50i 1.49382i 0.664924 + 0.746911i \(0.268464\pi\)
−0.664924 + 0.746911i \(0.731536\pi\)
\(350\) 0 0
\(351\) 3556.76i 0.540871i
\(352\) −513.022 7429.25i −0.0776823 1.12494i
\(353\) 2590.09 1495.39i 0.390528 0.225471i −0.291861 0.956461i \(-0.594274\pi\)
0.682389 + 0.730989i \(0.260941\pi\)
\(354\) −4340.59 + 3246.00i −0.651695 + 0.487353i
\(355\) 10863.1 18815.5i 1.62410 2.81302i
\(356\) 383.540 + 1587.78i 0.0571000 + 0.236382i
\(357\) 0 0
\(358\) 670.480 79.8318i 0.0989831 0.0117856i
\(359\) 1144.24 + 660.628i 0.168219 + 0.0971215i 0.581746 0.813371i \(-0.302370\pi\)
−0.413527 + 0.910492i \(0.635703\pi\)
\(360\) 5082.41 + 4209.00i 0.744074 + 0.616205i
\(361\) 1518.02 + 2629.29i 0.221318 + 0.383334i
\(362\) −2170.40 + 5061.49i −0.315120 + 0.734878i
\(363\) −1208.09 −0.174678
\(364\) 0 0
\(365\) −15238.8 −2.18530
\(366\) −1585.32 + 3697.07i −0.226411 + 0.528002i
\(367\) 3367.76 + 5833.14i 0.479008 + 0.829666i 0.999710 0.0240726i \(-0.00766327\pi\)
−0.520703 + 0.853738i \(0.674330\pi\)
\(368\) −2580.86 + 3998.61i −0.365589 + 0.566418i
\(369\) 1318.23 + 761.082i 0.185974 + 0.107372i
\(370\) 5371.04 639.511i 0.754667 0.0898557i
\(371\) 0 0
\(372\) 601.286 145.245i 0.0838044 0.0202436i
\(373\) −104.742 + 181.419i −0.0145398 + 0.0251837i −0.873204 0.487355i \(-0.837962\pi\)
0.858664 + 0.512539i \(0.171295\pi\)
\(374\) −4452.76 + 3329.88i −0.615632 + 0.460385i
\(375\) 4777.29 2758.17i 0.657862 0.379817i
\(376\) 4007.45 + 679.957i 0.549650 + 0.0932610i
\(377\) 716.824i 0.0979265i
\(378\) 0 0
\(379\) 1205.99i 0.163450i −0.996655 0.0817250i \(-0.973957\pi\)
0.996655 0.0817250i \(-0.0260429\pi\)
\(380\) 8743.04 + 2576.52i 1.18029 + 0.347822i
\(381\) 4330.81 2500.39i 0.582346 0.336218i
\(382\) −769.453 1028.92i −0.103059 0.137812i
\(383\) −1590.45 + 2754.73i −0.212188 + 0.367520i −0.952399 0.304854i \(-0.901392\pi\)
0.740211 + 0.672375i \(0.234726\pi\)
\(384\) 3570.68 + 3268.44i 0.474519 + 0.434354i
\(385\) 0 0
\(386\) −1073.51 9016.03i −0.141555 1.18887i
\(387\) −2682.95 1549.00i −0.352408 0.203463i
\(388\) 6469.48 6156.52i 0.846490 0.805541i
\(389\) 4006.02 + 6938.63i 0.522142 + 0.904377i 0.999668 + 0.0257595i \(0.00820040\pi\)
−0.477526 + 0.878618i \(0.658466\pi\)
\(390\) 3978.23 + 1705.89i 0.516527 + 0.221490i
\(391\) 3553.36 0.459593
\(392\) 0 0
\(393\) 6583.69 0.845046
\(394\) −10849.1 4652.17i −1.38724 0.594855i
\(395\) 3000.24 + 5196.56i 0.382173 + 0.661943i
\(396\) −3773.24 + 3590.71i −0.478819 + 0.455656i
\(397\) −10496.5 6060.15i −1.32696 0.766121i −0.342132 0.939652i \(-0.611149\pi\)
−0.984828 + 0.173531i \(0.944482\pi\)
\(398\) 1765.21 + 14825.4i 0.222317 + 1.86716i
\(399\) 0 0
\(400\) −12217.5 + 6268.23i −1.52719 + 0.783529i
\(401\) −5497.13 + 9521.31i −0.684573 + 1.18571i 0.288998 + 0.957330i \(0.406678\pi\)
−0.973571 + 0.228385i \(0.926655\pi\)
\(402\) 4760.35 + 6365.59i 0.590608 + 0.789768i
\(403\) −497.726 + 287.362i −0.0615223 + 0.0355199i
\(404\) 30.3999 + 8.95866i 0.00374370 + 0.00110324i
\(405\) 943.552i 0.115767i
\(406\) 0 0
\(407\) 4269.40i 0.519966i
\(408\) 604.598 3563.31i 0.0733629 0.432377i
\(409\) 1739.78 1004.46i 0.210333 0.121436i −0.391133 0.920334i \(-0.627917\pi\)
0.601466 + 0.798898i \(0.294583\pi\)
\(410\) −4014.40 + 3002.07i −0.483554 + 0.361613i
\(411\) 2997.68 5192.14i 0.359768 0.623137i
\(412\) 2790.25 674.007i 0.333655 0.0805969i
\(413\) 0 0
\(414\) 3305.41 393.564i 0.392396 0.0467213i
\(415\) 8104.49 + 4679.13i 0.958636 + 0.553469i
\(416\) −4040.63 1975.09i −0.476221 0.232781i
\(417\) −512.113 887.006i −0.0601398 0.104165i
\(418\) −2835.35 + 6612.18i −0.331773 + 0.773714i
\(419\) −6662.83 −0.776850 −0.388425 0.921480i \(-0.626981\pi\)
−0.388425 + 0.921480i \(0.626981\pi\)
\(420\) 0 0
\(421\) 5859.67 0.678344 0.339172 0.940724i \(-0.389853\pi\)
0.339172 + 0.940724i \(0.389853\pi\)
\(422\) −971.543 + 2265.69i −0.112071 + 0.261356i
\(423\) −1421.52 2462.14i −0.163396 0.283010i
\(424\) 6312.17 7622.01i 0.722986 0.873013i
\(425\) 8878.94 + 5126.26i 1.01339 + 0.585083i
\(426\) −11069.1 + 1317.95i −1.25891 + 0.149895i
\(427\) 0 0
\(428\) 1742.76 + 7214.65i 0.196821 + 0.814798i
\(429\) −1708.30 + 2958.87i −0.192256 + 0.332996i
\(430\) 8170.35 6109.99i 0.916300 0.685232i
\(431\) −3178.02 + 1834.83i −0.355174 + 0.205060i −0.666962 0.745092i \(-0.732406\pi\)
0.311788 + 0.950152i \(0.399072\pi\)
\(432\) 453.915 9150.68i 0.0505532 1.01913i
\(433\) 8282.34i 0.919224i −0.888120 0.459612i \(-0.847989\pi\)
0.888120 0.459612i \(-0.152011\pi\)
\(434\) 0 0
\(435\) 1777.11i 0.195876i
\(436\) 2687.76 9120.53i 0.295230 1.00182i
\(437\) 3981.82 2298.90i 0.435872 0.251651i
\(438\) 4682.49 + 6261.47i 0.510817 + 0.683070i
\(439\) −4840.93 + 8384.73i −0.526298 + 0.911575i 0.473233 + 0.880938i \(0.343087\pi\)
−0.999531 + 0.0306374i \(0.990246\pi\)
\(440\) −5970.74 16080.5i −0.646918 1.74229i
\(441\) 0 0
\(442\) 397.021 + 3334.44i 0.0427248 + 0.358831i
\(443\) −7154.34 4130.56i −0.767298 0.443000i 0.0646117 0.997910i \(-0.479419\pi\)
−0.831910 + 0.554911i \(0.812752\pi\)
\(444\) −1913.15 2010.40i −0.204491 0.214886i
\(445\) 1881.23 + 3258.38i 0.200402 + 0.347106i
\(446\) 5017.60 + 2151.58i 0.532713 + 0.228431i
\(447\) −4779.54 −0.505737
\(448\) 0 0
\(449\) −73.1562 −0.00768921 −0.00384461 0.999993i \(-0.501224\pi\)
−0.00384461 + 0.999993i \(0.501224\pi\)
\(450\) 8827.16 + 3785.14i 0.924703 + 0.396518i
\(451\) −1978.33 3426.57i −0.206554 0.357762i
\(452\) −3652.92 3838.61i −0.380130 0.399454i
\(453\) 3607.28 + 2082.67i 0.374139 + 0.216009i
\(454\) 660.948 + 5551.07i 0.0683256 + 0.573843i
\(455\) 0 0
\(456\) −1627.84 4384.13i −0.167173 0.450231i
\(457\) 6586.17 11407.6i 0.674153 1.16767i −0.302563 0.953129i \(-0.597842\pi\)
0.976716 0.214538i \(-0.0688245\pi\)
\(458\) 4376.75 + 5852.65i 0.446533 + 0.597110i
\(459\) −5924.14 + 3420.30i −0.602429 + 0.347813i
\(460\) −3098.74 + 10515.1i −0.314085 + 1.06580i
\(461\) 12655.0i 1.27853i 0.768985 + 0.639267i \(0.220762\pi\)
−0.768985 + 0.639267i \(0.779238\pi\)
\(462\) 0 0
\(463\) 852.596i 0.0855799i 0.999084 + 0.0427899i \(0.0136246\pi\)
−0.999084 + 0.0427899i \(0.986375\pi\)
\(464\) −91.4813 + 1844.21i −0.00915283 + 0.184516i
\(465\) 1233.94 712.414i 0.123059 0.0710482i
\(466\) 7811.07 5841.31i 0.776483 0.580673i
\(467\) −5462.60 + 9461.49i −0.541282 + 0.937528i 0.457549 + 0.889185i \(0.348728\pi\)
−0.998831 + 0.0483436i \(0.984606\pi\)
\(468\) 738.635 + 3057.80i 0.0729560 + 0.302023i
\(469\) 0 0
\(470\) 9296.96 1106.96i 0.912419 0.108639i
\(471\) −7359.36 4248.93i −0.719961 0.415669i
\(472\) 8273.77 9990.67i 0.806846 0.974275i
\(473\) 4026.42 + 6973.96i 0.391406 + 0.677935i
\(474\) 1213.32 2829.54i 0.117573 0.274188i
\(475\) 13266.1 1.28145
\(476\) 0 0
\(477\) −6921.93 −0.664431
\(478\) −4066.32 + 9482.88i −0.389098 + 0.907399i
\(479\) −5330.56 9232.81i −0.508475 0.880705i −0.999952 0.00981425i \(-0.996876\pi\)
0.491477 0.870891i \(-0.336457\pi\)
\(480\) 10017.3 + 4896.55i 0.952554 + 0.465616i
\(481\) 2233.01 + 1289.23i 0.211677 + 0.122212i
\(482\) 7116.89 847.384i 0.672542 0.0800774i
\(483\) 0 0
\(484\) 2810.47 678.892i 0.263944 0.0637577i
\(485\) 10285.4 17814.8i 0.962960 1.66789i
\(486\) −8367.36 + 6257.32i −0.780969 + 0.584028i
\(487\) 46.9282 27.0940i 0.00436657 0.00252104i −0.497815 0.867283i \(-0.665864\pi\)
0.502182 + 0.864762i \(0.332531\pi\)
\(488\) 1610.48 9491.68i 0.149392 0.880467i
\(489\) 2460.36i 0.227528i
\(490\) 0 0
\(491\) 5628.07i 0.517294i −0.965972 0.258647i \(-0.916723\pi\)
0.965972 0.258647i \(-0.0832766\pi\)
\(492\) 2467.04 + 727.020i 0.226062 + 0.0666191i
\(493\) 1193.94 689.322i 0.109072 0.0629727i
\(494\) 2602.17 + 3479.65i 0.236998 + 0.316917i
\(495\) −5998.81 + 10390.3i −0.544700 + 0.943449i
\(496\) −1317.20 + 675.793i −0.119242 + 0.0611774i
\(497\) 0 0
\(498\) −567.690 4767.83i −0.0510819 0.429019i
\(499\) −536.728 309.880i −0.0481508 0.0277999i 0.475731 0.879591i \(-0.342183\pi\)
−0.523882 + 0.851791i \(0.675517\pi\)
\(500\) −9563.84 + 9101.19i −0.855416 + 0.814035i
\(501\) −5199.23 9005.33i −0.463641 0.803050i
\(502\) −14708.7 6307.16i −1.30773 0.560762i
\(503\) 18680.1 1.65587 0.827935 0.560823i \(-0.189515\pi\)
0.827935 + 0.560823i \(0.189515\pi\)
\(504\) 0 0
\(505\) 73.0000 0.00643259
\(506\) −7952.37 3410.02i −0.698668 0.299593i
\(507\) −2640.21 4572.98i −0.231274 0.400579i
\(508\) −8670.00 + 8250.59i −0.757223 + 0.720592i
\(509\) −3084.16 1780.64i −0.268572 0.155060i 0.359667 0.933081i \(-0.382890\pi\)
−0.628238 + 0.778021i \(0.716224\pi\)
\(510\) −984.275 8266.58i −0.0854596 0.717746i
\(511\) 0 0
\(512\) −10143.5 5597.09i −0.875553 0.483123i
\(513\) −4425.65 + 7665.44i −0.380891 + 0.659722i
\(514\) −8466.96 11322.1i −0.726579 0.971590i
\(515\) 5726.05 3305.93i 0.489941 0.282868i
\(516\) −5021.07 1479.68i −0.428372 0.126239i
\(517\) 7390.09i 0.628657i
\(518\) 0 0
\(519\) 10496.7i 0.887771i
\(520\) −10213.5 1732.96i −0.861333 0.146145i
\(521\) −10004.0 + 5775.82i −0.841235 + 0.485687i −0.857684 0.514177i \(-0.828097\pi\)
0.0164486 + 0.999865i \(0.494764\pi\)
\(522\) 1034.28 773.462i 0.0867228 0.0648534i
\(523\) 2135.62 3699.00i 0.178554 0.309265i −0.762831 0.646598i \(-0.776191\pi\)
0.941386 + 0.337332i \(0.109525\pi\)
\(524\) −15316.2 + 3699.74i −1.27689 + 0.308443i
\(525\) 0 0
\(526\) −5341.33 + 635.974i −0.442762 + 0.0527182i
\(527\) 957.260 + 552.674i 0.0791250 + 0.0456829i
\(528\) −4772.66 + 7394.43i −0.393377 + 0.609472i
\(529\) −3318.65 5748.06i −0.272758 0.472431i
\(530\) 8983.62 20950.3i 0.736271 1.71702i
\(531\) −9073.03 −0.741499
\(532\) 0 0
\(533\) −2389.59 −0.194192
\(534\) 760.785 1774.19i 0.0616524 0.143777i
\(535\) 8548.04 + 14805.6i 0.690774 + 1.19646i
\(536\) −14651.6 12133.7i −1.18069 0.977791i
\(537\) −691.070 398.990i −0.0555342 0.0320627i
\(538\) −22624.4 + 2693.81i −1.81302 + 0.215870i
\(539\) 0 0
\(540\) −4955.18 20513.5i −0.394884 1.63474i
\(541\) −4878.48 + 8449.78i −0.387694 + 0.671505i −0.992139 0.125142i \(-0.960061\pi\)
0.604445 + 0.796647i \(0.293395\pi\)
\(542\) 9916.82 7416.04i 0.785911 0.587724i
\(543\) 5636.51 3254.24i 0.445462 0.257188i
\(544\) 595.896 + 8629.38i 0.0469647 + 0.680113i
\(545\) 21901.3i 1.72138i
\(546\) 0 0
\(547\) 19891.0i 1.55480i 0.629005 + 0.777401i \(0.283463\pi\)
−0.629005 + 0.777401i \(0.716537\pi\)
\(548\) −4056.00 + 13763.5i −0.316175 + 1.07289i
\(549\) −5831.60 + 3366.87i −0.453345 + 0.261739i
\(550\) −14951.5 19993.3i −1.15915 1.55003i
\(551\) 891.938 1544.88i 0.0689616 0.119445i
\(552\) 5272.72 1957.78i 0.406561 0.150958i
\(553\) 0 0
\(554\) 1071.62 + 9000.17i 0.0821819 + 0.690218i
\(555\) −5535.98 3196.20i −0.423404 0.244453i
\(556\) 1689.83 + 1775.73i 0.128893 + 0.135446i
\(557\) −3043.39 5271.30i −0.231513 0.400992i 0.726741 0.686912i \(-0.241034\pi\)
−0.958253 + 0.285920i \(0.907701\pi\)
\(558\) 951.677 + 408.085i 0.0722002 + 0.0309599i
\(559\) 4863.44 0.367981
\(560\) 0 0
\(561\) 6571.05 0.494527
\(562\) 16268.6 + 6976.08i 1.22108 + 0.523609i
\(563\) 4067.94 + 7045.87i 0.304517 + 0.527439i 0.977154 0.212534i \(-0.0681716\pi\)
−0.672637 + 0.739973i \(0.734838\pi\)
\(564\) −3311.55 3479.89i −0.247237 0.259805i
\(565\) −10570.3 6102.75i −0.787070 0.454415i
\(566\) −2026.10 17016.5i −0.150465 1.26371i
\(567\) 0 0
\(568\) 25010.2 9286.39i 1.84755 0.686000i
\(569\) −11495.9 + 19911.5i −0.846985 + 1.46702i 0.0369008 + 0.999319i \(0.488251\pi\)
−0.883886 + 0.467702i \(0.845082\pi\)
\(570\) −6451.17 8626.58i −0.474052 0.633908i
\(571\) 16493.6 9522.59i 1.20882 0.697912i 0.246318 0.969189i \(-0.420779\pi\)
0.962501 + 0.271277i \(0.0874459\pi\)
\(572\) 2311.41 7843.45i 0.168960 0.573341i
\(573\) 1518.41i 0.110702i
\(574\) 0 0
\(575\) 15954.9i 1.15716i
\(576\) 1510.09 + 7961.23i 0.109237 + 0.575899i
\(577\) −13902.1 + 8026.36i −1.00303 + 0.579102i −0.909144 0.416481i \(-0.863263\pi\)
−0.0938892 + 0.995583i \(0.529930\pi\)
\(578\) −5956.40 + 4454.35i −0.428640 + 0.320547i
\(579\) −5365.27 + 9292.92i −0.385100 + 0.667013i
\(580\) 998.660 + 4134.25i 0.0714950 + 0.295975i
\(581\) 0 0
\(582\) −10480.4 + 1247.86i −0.746435 + 0.0888755i
\(583\) 15582.1 + 8996.32i 1.10694 + 0.639090i
\(584\) −14411.9 11935.2i −1.02118 0.845691i
\(585\) 3622.93 + 6275.10i 0.256051 + 0.443493i
\(586\) −510.130 + 1189.65i −0.0359612 + 0.0838635i
\(587\) 21155.6 1.48754 0.743770 0.668436i \(-0.233036\pi\)
0.743770 + 0.668436i \(0.233036\pi\)
\(588\) 0 0
\(589\) 1430.25 0.100055
\(590\) 11775.4 27460.9i 0.821672 1.91618i
\(591\) 6975.36 + 12081.7i 0.485495 + 0.840903i
\(592\) 5580.47 + 3601.86i 0.387426 + 0.250060i
\(593\) 1240.18 + 716.018i 0.0858821 + 0.0495840i 0.542326 0.840168i \(-0.317544\pi\)
−0.456444 + 0.889752i \(0.650877\pi\)
\(594\) 16540.5 1969.42i 1.14253 0.136038i
\(595\) 0 0
\(596\) 11119.0 2685.89i 0.764184 0.184595i
\(597\) 8822.32 15280.7i 0.604813 1.04757i
\(598\) −4184.92 + 3129.59i −0.286177 + 0.214010i
\(599\) −4611.09 + 2662.21i −0.314531 + 0.181595i −0.648952 0.760829i \(-0.724793\pi\)
0.334421 + 0.942424i \(0.391459\pi\)
\(600\) 15999.6 + 2714.70i 1.08863 + 0.184712i
\(601\) 8711.39i 0.591256i −0.955303 0.295628i \(-0.904471\pi\)
0.955303 0.295628i \(-0.0955289\pi\)
\(602\) 0 0
\(603\) 13305.8i 0.898599i
\(604\) −9562.29 2817.94i −0.644179 0.189835i
\(605\) 5767.55 3329.90i 0.387577 0.223768i
\(606\) −22.4310 29.9950i −0.00150363 0.00201067i
\(607\) 12379.6 21442.1i 0.827796 1.43378i −0.0719681 0.997407i \(-0.522928\pi\)
0.899764 0.436377i \(-0.143739\pi\)
\(608\) 6250.67 + 9284.38i 0.416938 + 0.619295i
\(609\) 0 0
\(610\) −2621.84 22019.9i −0.174025 1.46157i
\(611\) 3865.22 + 2231.59i 0.255925 + 0.147758i
\(612\) 4382.77 4170.75i 0.289482 0.275478i
\(613\) −3167.74 5486.69i −0.208717 0.361509i 0.742593 0.669743i \(-0.233596\pi\)
−0.951311 + 0.308233i \(0.900262\pi\)
\(614\) 10906.6 + 4676.81i 0.716862 + 0.307395i
\(615\) 5924.15 0.388431
\(616\) 0 0
\(617\) 12720.7 0.830013 0.415006 0.909819i \(-0.363779\pi\)
0.415006 + 0.909819i \(0.363779\pi\)
\(618\) −3117.84 1336.95i −0.202942 0.0870226i
\(619\) 11135.8 + 19287.7i 0.723077 + 1.25241i 0.959761 + 0.280820i \(0.0906063\pi\)
−0.236683 + 0.971587i \(0.576060\pi\)
\(620\) −2470.26 + 2350.77i −0.160013 + 0.152273i
\(621\) −9219.10 5322.65i −0.595733 0.343946i
\(622\) −2176.47 18279.4i −0.140303 1.17836i
\(623\) 0 0
\(624\) 2426.29 + 4729.13i 0.155656 + 0.303392i
\(625\) −1795.08 + 3109.16i −0.114885 + 0.198987i
\(626\) 14633.6 + 19568.2i 0.934308 + 1.24937i
\(627\) 7363.39 4251.25i 0.469004 0.270779i
\(628\) 19508.4 + 5749.00i 1.23960 + 0.365303i
\(629\) 4959.08i 0.314358i
\(630\) 0 0
\(631\) 7895.30i 0.498110i −0.968489 0.249055i \(-0.919880\pi\)
0.968489 0.249055i \(-0.0801199\pi\)
\(632\) −1232.58 + 7264.42i −0.0775780 + 0.457220i
\(633\) 2523.10 1456.71i 0.158427 0.0914676i
\(634\) −2098.23 + 1569.11i −0.131438 + 0.0982924i
\(635\) −13783.8 + 23874.3i −0.861410 + 1.49201i
\(636\) −11368.7 + 2746.20i −0.708803 + 0.171217i
\(637\) 0 0
\(638\) −3333.54 + 396.914i −0.206859 + 0.0246301i
\(639\) −16160.1 9330.05i −1.00045 0.577607i
\(640\) −26055.8 5761.95i −1.60929 0.355876i
\(641\) −4213.92 7298.73i −0.259657 0.449739i 0.706493 0.707720i \(-0.250276\pi\)
−0.966150 + 0.257981i \(0.916943\pi\)
\(642\) 3456.90 8061.69i 0.212513 0.495591i
\(643\) −12838.8 −0.787424 −0.393712 0.919234i \(-0.628809\pi\)
−0.393712 + 0.919234i \(0.628809\pi\)
\(644\) 0 0
\(645\) −12057.2 −0.736049
\(646\) 3293.37 7680.32i 0.200582 0.467768i
\(647\) −11376.3 19704.4i −0.691267 1.19731i −0.971423 0.237355i \(-0.923719\pi\)
0.280156 0.959955i \(-0.409614\pi\)
\(648\) −739.003 + 892.354i −0.0448006 + 0.0540972i
\(649\) 20424.5 + 11792.1i 1.23533 + 0.713219i
\(650\) −14972.0 + 1782.66i −0.903460 + 0.107572i
\(651\) 0 0
\(652\) 1382.61 + 5723.74i 0.0830480 + 0.343802i
\(653\) −430.103 + 744.961i −0.0257753 + 0.0446441i −0.878625 0.477512i \(-0.841539\pi\)
0.852850 + 0.522156i \(0.174872\pi\)
\(654\) −8999.04 + 6729.70i −0.538058 + 0.402373i
\(655\) −31431.3 + 18146.9i −1.87500 + 1.08253i
\(656\) −6147.83 304.960i −0.365903 0.0181504i
\(657\) 13088.2i 0.777199i
\(658\) 0 0
\(659\) 19262.8i 1.13865i −0.822111 0.569327i \(-0.807204\pi\)
0.822111 0.569327i \(-0.192796\pi\)
\(660\) −5730.34 + 19445.1i −0.337959 + 1.14682i
\(661\) −3499.64 + 2020.52i −0.205931 + 0.118894i −0.599419 0.800436i \(-0.704602\pi\)
0.393488 + 0.919330i \(0.371268\pi\)
\(662\) 16157.5 + 21606.1i 0.948611 + 1.26849i
\(663\) 1984.26 3436.84i 0.116233 0.201321i
\(664\) 3999.98 + 10772.8i 0.233779 + 0.629616i
\(665\) 0 0
\(666\) −549.259 4613.04i −0.0319570 0.268396i
\(667\) 1858.00 + 1072.72i 0.107859 + 0.0622727i
\(668\) 17156.0 + 18028.1i 0.993691 + 1.04420i
\(669\) −3226.03 5587.64i −0.186435 0.322916i
\(670\) −40272.2 17269.0i −2.32216 0.995758i
\(671\) 17503.5 1.00703
\(672\) 0 0
\(673\) −30094.8 −1.72373 −0.861863 0.507141i \(-0.830702\pi\)
−0.861863 + 0.507141i \(0.830702\pi\)
\(674\) 12312.1 + 5279.51i 0.703628 + 0.301720i
\(675\) −15357.5 26599.9i −0.875718 1.51679i
\(676\) 8711.97 + 9154.83i 0.495674 + 0.520871i
\(677\) −16898.8 9756.55i −0.959343 0.553877i −0.0633724 0.997990i \(-0.520186\pi\)
−0.895971 + 0.444113i \(0.853519\pi\)
\(678\) 740.408 + 6218.43i 0.0419398 + 0.352238i
\(679\) 0 0
\(680\) 6935.26 + 18678.1i 0.391110 + 1.05334i
\(681\) 3303.34 5721.55i 0.185880 0.321953i
\(682\) −1611.96 2155.53i −0.0905058 0.121025i
\(683\) 19594.6 11312.9i 1.09775 0.633788i 0.162123 0.986771i \(-0.448166\pi\)
0.935630 + 0.352982i \(0.114832\pi\)
\(684\) 2212.90 7509.17i 0.123702 0.419766i
\(685\) 33050.5i 1.84350i
\(686\) 0 0
\(687\) 8636.90i 0.479648i
\(688\) 12512.4 + 620.673i 0.693361 + 0.0343938i
\(689\) 9410.66 5433.24i 0.520345 0.300421i
\(690\) 10375.0 7758.71i 0.572422 0.428071i
\(691\) −102.478 + 177.498i −0.00564177 + 0.00977182i −0.868833 0.495106i \(-0.835129\pi\)
0.863191 + 0.504878i \(0.168463\pi\)
\(692\) −5898.67 24419.3i −0.324037 1.34145i
\(693\) 0 0
\(694\) −5495.06 + 654.279i −0.300562 + 0.0357869i
\(695\) 4889.78 + 2823.11i 0.266877 + 0.154082i
\(696\) 1391.86 1680.69i 0.0758022 0.0915320i
\(697\) 2297.91 + 3980.10i 0.124877 + 0.216294i
\(698\) −10856.5 + 25318.0i −0.588717 + 1.37292i
\(699\) −11527.0 −0.623736
\(700\) 0 0
\(701\) 9946.71 0.535923 0.267962 0.963430i \(-0.413650\pi\)
0.267962 + 0.963430i \(0.413650\pi\)
\(702\) 3964.67 9245.84i 0.213158 0.497097i
\(703\) −3208.36 5557.04i −0.172127 0.298133i
\(704\) 6947.69 19884.3i 0.371947 1.06451i
\(705\) −9582.47 5532.44i −0.511910 0.295552i
\(706\) 8399.85 1000.14i 0.447780 0.0533157i
\(707\) 0 0
\(708\) −14901.7 + 3599.62i −0.791018 + 0.191076i
\(709\) −14432.4 + 24997.6i −0.764484 + 1.32412i 0.176035 + 0.984384i \(0.443673\pi\)
−0.940519 + 0.339741i \(0.889661\pi\)
\(710\) 49212.2 36802.1i 2.60127 1.94529i
\(711\) 4463.19 2576.82i 0.235419 0.135919i
\(712\) −772.858 + 4554.98i −0.0406799 + 0.239754i
\(713\) 1720.14i 0.0903501i
\(714\) 0 0
\(715\) 18834.6i 0.985141i
\(716\) 1831.91 + 539.852i 0.0956168 + 0.0281777i
\(717\) 10560.2 6096.94i 0.550039 0.317565i
\(718\) 2238.08 + 2992.78i 0.116329 + 0.155557i
\(719\) −3063.07 + 5305.39i −0.158878 + 0.275185i −0.934464 0.356057i \(-0.884121\pi\)
0.775586 + 0.631241i \(0.217454\pi\)
\(720\) 8520.09 + 16606.7i 0.441007 + 0.859574i
\(721\) 0 0
\(722\) 1015.28 + 8527.00i 0.0523336 + 0.439532i
\(723\) −7335.45 4235.12i −0.377328 0.217851i
\(724\) −11283.9 + 10738.1i −0.579233 + 0.551213i
\(725\) 3095.12 + 5360.91i 0.158552 + 0.274620i
\(726\) −3140.44 1346.64i −0.160541 0.0688409i
\(727\) −20742.9 −1.05820 −0.529101 0.848559i \(-0.677471\pi\)
−0.529101 + 0.848559i \(0.677471\pi\)
\(728\) 0 0
\(729\) 13730.5 0.697579
\(730\) −39613.5 16986.5i −2.00844 0.861231i
\(731\) −4676.85 8100.54i −0.236634 0.409862i
\(732\) −8242.15 + 7843.43i −0.416173 + 0.396040i
\(733\) 15694.9 + 9061.44i 0.790864 + 0.456606i 0.840267 0.542173i \(-0.182398\pi\)
−0.0494026 + 0.998779i \(0.515732\pi\)
\(734\) 2252.42 + 18917.3i 0.113268 + 0.951296i
\(735\) 0 0
\(736\) −11166.2 + 7517.58i −0.559227 + 0.376497i
\(737\) 17293.4 29953.0i 0.864328 1.49706i
\(738\) 2578.40 + 3447.86i 0.128607 + 0.171975i
\(739\) −32754.4 + 18910.8i −1.63043 + 0.941332i −0.646476 + 0.762934i \(0.723758\pi\)
−0.983958 + 0.178398i \(0.942909\pi\)
\(740\) 14674.9 + 4324.61i 0.729002 + 0.214832i
\(741\) 5135.01i 0.254574i
\(742\) 0 0
\(743\) 4974.35i 0.245614i 0.992431 + 0.122807i \(0.0391896\pi\)
−0.992431 + 0.122807i \(0.960810\pi\)
\(744\) 1724.95 + 292.679i 0.0849999 + 0.0144222i
\(745\) 22818.1 13174.0i 1.12213 0.647865i
\(746\) −474.504 + 354.846i −0.0232880 + 0.0174153i
\(747\) 4018.78 6960.73i 0.196840 0.340937i
\(748\) −15286.8 + 3692.64i −0.747246 + 0.180503i
\(749\) 0 0
\(750\) 15493.1 1844.72i 0.754306 0.0898127i
\(751\) −19034.7 10989.7i −0.924884 0.533982i −0.0396939 0.999212i \(-0.512638\pi\)
−0.885190 + 0.465230i \(0.845972\pi\)
\(752\) 9659.49 + 6234.61i 0.468411 + 0.302331i
\(753\) 9456.81 + 16379.7i 0.457670 + 0.792707i
\(754\) −799.035 + 1863.39i −0.0385930 + 0.0900011i
\(755\) −22962.1 −1.10686
\(756\) 0 0
\(757\) −10241.5 −0.491722 −0.245861 0.969305i \(-0.579071\pi\)
−0.245861 + 0.969305i \(0.579071\pi\)
\(758\) 1344.30 3134.99i 0.0644159 0.150221i
\(759\) 5112.91 + 8855.83i 0.244515 + 0.423513i
\(760\) 19855.6 + 16443.4i 0.947684 + 0.784824i
\(761\) 18578.2 + 10726.2i 0.884968 + 0.510937i 0.872293 0.488983i \(-0.162632\pi\)
0.0126751 + 0.999920i \(0.495965\pi\)
\(762\) 14045.1 1672.31i 0.667719 0.0795031i
\(763\) 0 0
\(764\) −853.278 3532.39i −0.0404064 0.167274i
\(765\) 6967.86 12068.7i 0.329312 0.570385i
\(766\) −7205.05 + 5388.12i −0.339855 + 0.254152i
\(767\) 12335.2 7121.71i 0.580700 0.335267i
\(768\) 5638.73 + 12476.6i 0.264935 + 0.586210i
\(769\) 26466.5i 1.24110i −0.784166 0.620551i \(-0.786909\pi\)
0.784166 0.620551i \(-0.213091\pi\)
\(770\) 0 0
\(771\) 16708.3i 0.780462i
\(772\) 7259.46 24633.9i 0.338437 1.14844i
\(773\) −9692.09 + 5595.73i −0.450971 + 0.260368i −0.708240 0.705972i \(-0.750511\pi\)
0.257269 + 0.966340i \(0.417177\pi\)
\(774\) −5247.71 7017.29i −0.243701 0.325880i
\(775\) −2481.56 + 4298.19i −0.115020 + 0.199220i
\(776\) 23680.1 8792.51i 1.09545 0.406743i
\(777\) 0 0
\(778\) 2679.30 + 22502.5i 0.123467 + 1.03696i
\(779\) 5149.99 + 2973.35i 0.236864 + 0.136754i
\(780\) 8439.94 + 8868.97i 0.387434 + 0.407128i
\(781\) 24252.2 + 42006.1i 1.11116 + 1.92458i
\(782\) 9237.00 + 3960.88i 0.422397 + 0.181126i
\(783\) −4130.21 −0.188508
\(784\) 0 0
\(785\) 46845.9 2.12994
\(786\) 17114.4 + 7338.75i 0.776654 + 0.333034i
\(787\) 15026.0 + 26025.7i 0.680582 + 1.17880i 0.974804 + 0.223065i \(0.0716062\pi\)
−0.294222 + 0.955737i \(0.595061\pi\)
\(788\) −23016.7 24186.8i −1.04053 1.09342i
\(789\) 5505.36 + 3178.52i 0.248411 + 0.143420i
\(790\) 2006.61 + 16852.9i 0.0903698 + 0.758985i
\(791\) 0 0
\(792\) −13811.1 + 5128.11i −0.619641 + 0.230075i
\(793\) 5285.53 9154.81i 0.236689 0.409958i
\(794\) −20530.6 27453.7i −0.917636 1.22707i
\(795\) −23330.4 + 13469.8i −1.04081 + 0.600913i
\(796\) −11937.0 + 40506.5i −0.531528 + 1.80366i
\(797\) 26567.8i 1.18078i −0.807119 0.590389i \(-0.798974\pi\)
0.807119 0.590389i \(-0.201026\pi\)
\(798\) 0 0
\(799\) 8583.89i 0.380070i
\(800\) −38746.7 + 2675.63i −1.71238 + 0.118247i
\(801\) 2798.54 1615.74i 0.123447 0.0712724i
\(802\) −24903.2 + 18623.2i −1.09646 + 0.819960i
\(803\) 17010.5 29463.1i 0.747557 1.29481i
\(804\) 5278.94 + 21853.7i 0.231560 + 0.958609i
\(805\) 0 0
\(806\) −1614.16 + 192.193i −0.0705415 + 0.00839914i
\(807\) 23319.1 + 13463.3i 1.01719 + 0.587275i
\(808\) 69.0390 + 57.1746i 0.00300592 + 0.00248935i
\(809\) 980.413 + 1698.13i 0.0426075 + 0.0737984i 0.886543 0.462647i \(-0.153100\pi\)
−0.843935 + 0.536445i \(0.819767\pi\)
\(810\) −1051.77 + 2452.78i −0.0456238 + 0.106397i
\(811\) 2633.82 0.114040 0.0570198 0.998373i \(-0.481840\pi\)
0.0570198 + 0.998373i \(0.481840\pi\)
\(812\) 0 0
\(813\) −14634.5 −0.631309
\(814\) −4759.04 + 11098.4i −0.204919 + 0.477884i
\(815\) 6781.58 + 11746.0i 0.291470 + 0.504841i
\(816\) 5543.63 8588.93i 0.237826 0.368471i
\(817\) −10481.6 6051.53i −0.448841 0.259139i
\(818\) 5642.23 671.801i 0.241169 0.0287151i
\(819\) 0 0
\(820\) −13781.8 + 3329.11i −0.586931 + 0.141778i
\(821\) −5333.16 + 9237.30i −0.226710 + 0.392672i −0.956831 0.290645i \(-0.906130\pi\)
0.730121 + 0.683317i \(0.239463\pi\)
\(822\) 13580.1 10155.6i 0.576230 0.430919i
\(823\) 32943.1 19019.7i 1.39529 0.805571i 0.401395 0.915905i \(-0.368525\pi\)
0.993895 + 0.110334i \(0.0351922\pi\)
\(824\) 8004.60 + 1358.17i 0.338414 + 0.0574199i
\(825\) 29504.6i 1.24512i
\(826\) 0 0
\(827\) 22277.0i 0.936697i −0.883544 0.468349i \(-0.844849\pi\)
0.883544 0.468349i \(-0.155151\pi\)
\(828\) 9031.15 + 2661.42i 0.379051 + 0.111704i
\(829\) −18752.2 + 10826.6i −0.785633 + 0.453585i −0.838423 0.545020i \(-0.816522\pi\)
0.0527901 + 0.998606i \(0.483189\pi\)
\(830\) 15852.0 + 21197.4i 0.662928 + 0.886475i
\(831\) 5355.83 9276.57i 0.223576 0.387245i
\(832\) −8302.05 9638.31i −0.345940 0.401620i
\(833\) 0 0
\(834\) −342.511 2876.63i −0.0142208 0.119436i
\(835\) 49643.4 + 28661.7i 2.05746 + 1.18788i
\(836\) −14741.0 + 14027.9i −0.609844 + 0.580343i
\(837\) −1655.73 2867.80i −0.0683755 0.118430i
\(838\) −17320.1 7426.97i −0.713977 0.306158i
\(839\) −47337.4 −1.94788 −0.973939 0.226811i \(-0.927170\pi\)
−0.973939 + 0.226811i \(0.927170\pi\)
\(840\) 0 0
\(841\) −23556.6 −0.965870
\(842\) 15232.3 + 6531.70i 0.623443 + 0.267336i
\(843\) −10459.8 18116.9i −0.427347 0.740187i
\(844\) −5051.08 + 4806.73i −0.206002 + 0.196036i
\(845\) 25209.4 + 14554.6i 1.02631 + 0.592538i
\(846\) −950.737 7984.92i −0.0386371 0.324500i
\(847\) 0 0
\(848\) 24904.7 12777.4i 1.00853 0.517428i
\(849\) −10126.2 + 17539.1i −0.409341 + 0.708999i
\(850\) 17366.8 + 23223.0i 0.700794 + 0.937110i
\(851\) 6683.37 3858.64i 0.269216 0.155432i
\(852\) −30243.3 8912.49i −1.21610 0.358377i
\(853\) 16562.9i 0.664833i 0.943133 + 0.332417i \(0.107864\pi\)
−0.943133 + 0.332417i \(0.892136\pi\)
\(854\) 0 0
\(855\) 18031.9i 0.721261i
\(856\) −3511.76 + 20697.2i −0.140222 + 0.826421i
\(857\) 28076.8 16210.2i 1.11912 0.646124i 0.177944 0.984041i \(-0.443056\pi\)
0.941176 + 0.337917i \(0.109722\pi\)
\(858\) −7738.97 + 5787.39i −0.307930 + 0.230278i
\(859\) 16065.2 27825.8i 0.638112 1.10524i −0.347735 0.937593i \(-0.613049\pi\)
0.985847 0.167649i \(-0.0536177\pi\)
\(860\) 28049.7 6775.61i 1.11219 0.268659i
\(861\) 0 0
\(862\) −10306.6 + 1227.17i −0.407243 + 0.0484891i
\(863\) −33292.7 19221.5i −1.31320 0.758179i −0.330579 0.943778i \(-0.607244\pi\)
−0.982625 + 0.185600i \(0.940577\pi\)
\(864\) 11380.1 23281.3i 0.448101 0.916721i
\(865\) −28932.4 50112.4i −1.13726 1.96979i
\(866\) 9232.22 21530.1i 0.362267 0.844828i
\(867\) 8790.02 0.344319
\(868\) 0 0
\(869\) −13396.2 −0.522941
\(870\) 1980.93 4619.63i 0.0771951 0.180023i
\(871\) −10444.2 18089.8i −0.406300 0.703732i
\(872\) 17153.4 20712.9i 0.666156 0.804390i
\(873\) −15300.7 8833.85i −0.593184 0.342475i
\(874\) 12913.4 1537.55i 0.499772 0.0595062i
\(875\) 0 0
\(876\) 5192.60 + 21496.3i 0.200276 + 0.829101i
\(877\) 10742.3 18606.2i 0.413616 0.716404i −0.581666 0.813428i \(-0.697599\pi\)
0.995282 + 0.0970237i \(0.0309323\pi\)
\(878\) −21930.4 + 16400.1i −0.842956 + 0.630383i
\(879\) 1324.81 764.877i 0.0508357 0.0293500i
\(880\) 2403.68 48456.9i 0.0920774 1.85623i
\(881\) 17193.8i 0.657517i 0.944414 + 0.328759i \(0.106630\pi\)
−0.944414 + 0.328759i \(0.893370\pi\)
\(882\) 0 0
\(883\) 16514.2i 0.629384i −0.949194 0.314692i \(-0.898099\pi\)
0.949194 0.314692i \(-0.101901\pi\)
\(884\) −2684.80 + 9110.48i −0.102149 + 0.346627i
\(885\) −30580.7 + 17655.8i −1.16154 + 0.670614i
\(886\) −13993.5 18712.3i −0.530612 0.709540i
\(887\) 10239.6 17735.5i 0.387612 0.671364i −0.604516 0.796593i \(-0.706633\pi\)
0.992128 + 0.125229i \(0.0399667\pi\)
\(888\) −2732.29 7358.63i −0.103254 0.278085i
\(889\) 0 0
\(890\) 1258.20 + 10567.2i 0.0473876 + 0.397992i
\(891\) −1824.29 1053.25i −0.0685925 0.0396019i
\(892\) 10645.0 + 11186.1i 0.399574 + 0.419886i
\(893\) −5553.49 9618.93i −0.208108 0.360454i
\(894\) −12424.5 5327.70i −0.464806 0.199312i
\(895\) 4399.00 0.164293
\(896\) 0 0
\(897\) 6175.79 0.229882
\(898\) −190.171 81.5463i −0.00706690 0.00303033i
\(899\) 333.693 + 577.973i 0.0123796 + 0.0214421i
\(900\) 18727.1 + 19679.0i 0.693595 + 0.728854i
\(901\) −18099.2 10449.6i −0.669226 0.386378i
\(902\) −1323.14 11112.6i −0.0488424 0.410211i
\(903\) 0 0
\(904\) −5216.96 14050.4i −0.191940 0.516935i
\(905\) −17939.6 + 31072.3i −0.658930 + 1.14130i
\(906\) 7055.66 + 9434.91i 0.258729 + 0.345976i
\(907\) −26983.7 + 15579.0i −0.987848 + 0.570334i −0.904630 0.426197i \(-0.859853\pi\)
−0.0832177 + 0.996531i \(0.526520\pi\)
\(908\) −4469.57 + 15166.8i −0.163357 + 0.554327i
\(909\) 62.6978i 0.00228774i
\(910\) 0 0
\(911\) 412.348i 0.0149964i 0.999972 + 0.00749818i \(0.00238677\pi\)
−0.999972 + 0.00749818i \(0.997613\pi\)
\(912\) 655.331 13211.1i 0.0237941 0.479676i
\(913\) −18093.5 + 10446.3i −0.655868 + 0.378666i
\(914\) 29836.7 22312.6i 1.07977 0.807480i
\(915\) −13103.6 + 22696.2i −0.473435 + 0.820013i
\(916\) 4853.56 + 20092.7i 0.175072 + 0.724763i
\(917\) 0 0
\(918\) −19212.4 + 2287.56i −0.690746 + 0.0822448i
\(919\) 8444.08 + 4875.19i 0.303095 + 0.174992i 0.643832 0.765166i \(-0.277343\pi\)
−0.340737 + 0.940159i \(0.610677\pi\)
\(920\) −19776.3 + 23880.1i −0.708700 + 0.855763i
\(921\) −7012.30 12145.7i −0.250883 0.434542i
\(922\) −14106.4 + 32897.0i −0.503872 + 1.17506i
\(923\) 29293.8 1.04466
\(924\) 0 0
\(925\) 22266.7 0.791487
\(926\) −950.378 + 2216.33i −0.0337272 + 0.0786536i
\(927\) −2839.38 4917.95i −0.100601 0.174247i
\(928\) −2293.53 + 4692.09i −0.0811301 + 0.165976i
\(929\) 19036.4 + 10990.7i 0.672297 + 0.388151i 0.796946 0.604050i \(-0.206447\pi\)
−0.124650 + 0.992201i \(0.539781\pi\)
\(930\) 4001.75 476.475i 0.141100 0.0168003i
\(931\) 0 0
\(932\) 26816.2 6477.67i 0.942484 0.227664i
\(933\) −10877.7 + 18840.8i −0.381695 + 0.661115i
\(934\) −24746.7 + 18506.2i −0.866956 + 0.648331i
\(935\) −31371.0 + 18112.0i −1.09726 + 0.633505i
\(936\) −1488.40 + 8772.13i −0.0519762 + 0.306331i
\(937\) 19723.5i 0.687662i −0.939032 0.343831i \(-0.888275\pi\)
0.939032 0.343831i \(-0.111725\pi\)
\(938\) 0 0
\(939\) 28877.4i 1.00360i
\(940\) 25401.5 + 7485.65i 0.881389 + 0.259739i
\(941\) 9773.15 5642.53i 0.338571 0.195474i −0.321069 0.947056i \(-0.604042\pi\)
0.659640 + 0.751582i \(0.270709\pi\)
\(942\) −14394.5 19248.5i −0.497876 0.665766i
\(943\) −3575.99 + 6193.80i −0.123489 + 0.213890i
\(944\) 32644.2 16748.2i 1.12551 0.577445i
\(945\) 0 0
\(946\) 2692.94 + 22617.1i 0.0925530 + 0.777321i
\(947\) −26386.0 15234.0i −0.905417 0.522743i −0.0264635 0.999650i \(-0.508425\pi\)
−0.878954 + 0.476907i \(0.841758\pi\)
\(948\) 6308.10 6002.94i 0.216115 0.205661i
\(949\) −10273.3 17794.0i −0.351409 0.608658i
\(950\) 34485.4 + 14787.5i 1.17774 + 0.505022i
\(951\) 3096.42 0.105582
\(952\) 0 0
\(953\) 11791.2 0.400791 0.200395 0.979715i \(-0.435777\pi\)
0.200395 + 0.979715i \(0.435777\pi\)
\(954\) −17993.7 7715.79i −0.610657 0.261853i
\(955\) −4185.24 7249.05i −0.141813 0.245627i
\(956\) −21140.9 + 20118.2i −0.715215 + 0.680616i
\(957\) 3435.92 + 1983.73i 0.116058 + 0.0670061i
\(958\) −3565.18 29942.7i −0.120236 1.00982i
\(959\) 0 0
\(960\) 20582.0 + 23894.8i 0.691961 + 0.803335i
\(961\) 14628.0 25336.4i 0.491019 0.850470i
\(962\) 4367.66 + 5840.49i 0.146382 + 0.195743i
\(963\) 12716.2 7341.69i 0.425517 0.245672i
\(964\) 19445.0 + 5730.32i 0.649670 + 0.191454i
\(965\) 59154.0i 1.97330i
\(966\) 0 0
\(967\) 40914.1i 1.36061i −0.732929 0.680305i \(-0.761847\pi\)
0.732929 0.680305i \(-0.238153\pi\)
\(968\) 8062.61 + 1368.01i 0.267709 + 0.0454230i
\(969\) −8552.87 + 4938.00i −0.283548 + 0.163706i
\(970\) 46595.0 34844.9i 1.54234 1.15340i
\(971\) −9276.00 + 16066.5i −0.306572 + 0.530997i −0.977610 0.210425i \(-0.932515\pi\)
0.671038 + 0.741423i \(0.265849\pi\)
\(972\) −28726.0 + 6939.00i −0.947930 + 0.228980i
\(973\) 0 0
\(974\) 152.192 18.1210i 0.00500671 0.000596133i
\(975\) 15431.8 + 8909.53i 0.506884 + 0.292650i
\(976\) 14766.7 22878.6i 0.484294 0.750333i
\(977\) 1455.74 + 2521.42i 0.0476697 + 0.0825664i 0.888876 0.458148i \(-0.151487\pi\)
−0.841206 + 0.540715i \(0.818154\pi\)
\(978\) 2742.53 6395.74i 0.0896692 0.209114i
\(979\) −8399.78 −0.274217
\(980\) 0 0
\(981\) −18810.5 −0.612204
\(982\) 6273.54 14630.3i 0.203866 0.475428i
\(983\) −18251.1 31611.8i −0.592186 1.02570i −0.993937 0.109947i \(-0.964932\pi\)
0.401752 0.915749i \(-0.368402\pi\)
\(984\) 5602.70 + 4639.88i 0.181512 + 0.150319i
\(985\) −66602.3 38452.9i −2.15444 1.24387i
\(986\) 3872.05 461.032i 0.125062 0.0148907i
\(987\) 0 0
\(988\) 2885.65 + 11946.0i 0.0929198 + 0.384669i
\(989\) 7278.08 12606.0i 0.234004 0.405306i
\(990\) −27175.9 + 20322.8i −0.872431 + 0.652425i
\(991\) 31879.7 18405.7i 1.02189 0.589987i 0.107238 0.994233i \(-0.465799\pi\)
0.914650 + 0.404246i \(0.132466\pi\)
\(992\) −4177.38 + 288.466i −0.133701 + 0.00923266i
\(993\) 31884.6i 1.01896i
\(994\) 0 0
\(995\) 97269.2i 3.09914i
\(996\) 3838.92 13026.8i 0.122129 0.414429i
\(997\) 10060.1 5808.18i 0.319564 0.184500i −0.331634 0.943408i \(-0.607600\pi\)
0.651198 + 0.758908i \(0.274267\pi\)
\(998\) −1049.81 1403.82i −0.0332978 0.0445262i
\(999\) −7428.32 + 12866.2i −0.235257 + 0.407477i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 196.4.f.d.19.9 20
4.3 odd 2 inner 196.4.f.d.19.2 20
7.2 even 3 196.4.d.b.195.10 20
7.3 odd 6 inner 196.4.f.d.31.2 20
7.4 even 3 28.4.f.a.3.2 20
7.5 odd 6 196.4.d.b.195.9 20
7.6 odd 2 28.4.f.a.19.9 yes 20
28.3 even 6 inner 196.4.f.d.31.9 20
28.11 odd 6 28.4.f.a.3.9 yes 20
28.19 even 6 196.4.d.b.195.12 20
28.23 odd 6 196.4.d.b.195.11 20
28.27 even 2 28.4.f.a.19.2 yes 20
56.11 odd 6 448.4.p.h.255.4 20
56.13 odd 2 448.4.p.h.383.4 20
56.27 even 2 448.4.p.h.383.7 20
56.53 even 6 448.4.p.h.255.7 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
28.4.f.a.3.2 20 7.4 even 3
28.4.f.a.3.9 yes 20 28.11 odd 6
28.4.f.a.19.2 yes 20 28.27 even 2
28.4.f.a.19.9 yes 20 7.6 odd 2
196.4.d.b.195.9 20 7.5 odd 6
196.4.d.b.195.10 20 7.2 even 3
196.4.d.b.195.11 20 28.23 odd 6
196.4.d.b.195.12 20 28.19 even 6
196.4.f.d.19.2 20 4.3 odd 2 inner
196.4.f.d.19.9 20 1.1 even 1 trivial
196.4.f.d.31.2 20 7.3 odd 6 inner
196.4.f.d.31.9 20 28.3 even 6 inner
448.4.p.h.255.4 20 56.11 odd 6
448.4.p.h.255.7 20 56.53 even 6
448.4.p.h.383.4 20 56.13 odd 2
448.4.p.h.383.7 20 56.27 even 2